DIFFERENT FUNCTIONAL TYPES OF SUBMERGED MACROPHYTES ON DISSOLVED OXYGEN AND ITS ENVIRONMENTAL EFFECTS
-
摘要:
研究选用刺苦草(Vallisneria spinulosa)、黑藻(Hydrilla verticillata)和穗花狐尾藻(Myriophyllum spicatum)分别代表底层型、冠层少根型和冠层多根型沉水植物, 通过中宇宙实验, 探索不同功能型沉水植物在生长过程中水柱和沉积物中溶解氧(DO)浓度及其相关指标的差异。实验结果表明: 不同处理组水柱DO浓度存在显著差异, 空白组水柱DO浓度显著低于植物处理组, 且空白组水柱总氮(TN)和总磷(TP)浓度降低程度最少; 黑藻组比叶面积、叶面积指数、净增长生物量、相对生长速率和水柱DO浓度最大, 能够有效降低水柱TP和TN浓度; 穗花狐尾藻组株高最高, 提升水柱DO浓度显著高于刺苦草, 水柱TP降低程度最大; 刺苦草组比根长、单株总根长和根冠比最大, 提升沉积物深度6 cm以内的DO效果最好, 沉积物铁含量最高, 沉积物总氮(TN)、总碳(TC)含量和间隙水总溶解性磷(TDP)浓度最低。在修复富营养湖泊过程中, 可根据水和沉积物缺氧状况, 合理配置底层型和冠层型沉水植物, 构建释氧能力较强的群落, 从沉积物表层到水柱上层均为湖泊提供充足的氧气, 从而更加有利于清水态的形成。
Abstract:The concentration of dissolved oxygen (DO) in lakes decreases due to eutrophication and climate warming. However, submerged macrophytes can release oxygen through photosynthesis, effectively increasing DO levels in lakes. The process can induce changes in the physicochemical properties of the water column and sediment, subsequently impacting the ecosystem. We conducted a mesocosm experiment to examine the differences in dissolved oxygen and related indexes in water column and sediment across different functional types of submerged macrophytes. Vallisneria spinulosa was assigned to bottom-dwelling species, Hydrilla verticillata was assigned to less rooted canopy-forming species, while Myriophyllum spicatum was assigned to more rooted canopy-forming species. The results showed that significant differences in water column DO among treatment groups. The blank group had significantly lower water column DO compared to the plant treatment group, and it exhibited the least reduction in total nitrogen (TN) and total phosphorus (TP) in the water column. The specific leaf area, leaf area index, net growth biomass, total biomass, relative growth rate and water column DO of H. verticillata were the largest, which can effectively reduce the concentration of TP and TN in the water column. The plant height of M. spicatum was the highest, and its ability to elevate water column DO was significantly higher than that of spiny bittercress, with the greatest reduction in water column TP. V. spinulosa had the largest specific root length, total root length per individual and root shoot ratio among the 3 species. It significantly increased DO concentration in the sediment up to a depth of 6 cm. Additionally, V. spinulosa had the highest sediment iron content and the lowest sediment total nitrogen (TN), total carbon (TC) content and total dissolved phosphorus (TDP) in interstitial water. Therefore, we suggest diverse functional submerged macrophyte types were constructed in the restoration of eutrophic lakes, such as combing bottom-dwelling and canopy-forming species, since it would be conducive to the formation of clear water state.
-
Keywords:
- Functional types /
- Submerged macrophytes /
- Dissolved oxygen /
- Environmental effects /
- Canopy /
- Root system
-
-
图 1 三种植物在收获时的比叶面积(A)、叶面积指数(B)、比根长(C)和单株总根长(D)
菱形箱线图内点表示均值点, 上、下短横线表示最大值、最小值, 菱形箱线图右边为数据点具体分布情况。图中字母a、b和c表示显著性差异, P<0.05时显著; 下同
Figure 1. Specific leaf area (A), leaf area index (B), specific root length (C) and total root length per individual (D) of the three plants at harvest
The points inside the diamond box plot indicate the mean points, the upper and lower short horizontal lines indicate the maximum and minimum values, and the right side of the diamond box plot shows the specific distribution of data points. Letters a, b and c in the graph indicate significant differences (P<0.05). The same applies below
表 1 植物指标计算公式
Table 1 Calculation formulas of plant index
公式Formula 说明Instruction 参考文献 Reference $\text{SLA}{(}{\text{m} }^{{2} }\text{/g)=}\displaystyle\frac{\text{LA} }{\text{LB} }$ 比叶面积Specific leaf area (SLA, m2/g) [25] 单株叶面积Leaf area per plant (LA, m2) 叶生物量(干重)Leaf biomass (dry weight; LB, g) $\text{SRL}{({\rm{m}}/{\rm{g}})=}\displaystyle\frac{\text{RL} }{\text{RB} }$ 比根长Specific root length (SRL, m/g) [26] 根长Root length (RL, m) 根生物量(干重)Root biomass (dry weight; RB, g) $\text{RGR}{(\text{%})}\text{=}\\\displaystyle\frac{\text{ln}\left({ {W} }_{\text{2} }\right)-\text{ln}({ {W} }_{ {1} }{)} }{ { {t} }_{ {2} }{-}{ {t} }_{ {1} } } \\\times 100$ 相对生长速率Relative growth rate (RGR, %) [27] 初始植物干重Plant dry weight at start (W1, g) 收获时植物干重Plant dry weight at end (W2, g) 实验开始时间Start time (t1, d) 实验结束时间End time (t2, d) $\text{RSR}\text{(g/g)=}\displaystyle\frac{\text{RB} }{\text{SB} }$ 根冠比Root shoot ratio (RSR, g/g) [28] 地下生物量(干重)Root biomass (dry weight; RB, g) 地上生物量(干重) Shoot biomass (dry weight; SB, g) $\text{LAI}{(}{\text{m} }^{\text{2} }{\text{/m} }^{\text{2} }{)=}\displaystyle\frac{\text{TLA} }{\text{SA} }$ 叶面积指数Leaf area index (LAI, m2/m2) [29] 叶片总面积Total leaf area (TLA, m2) 底泥面积Soil area (SA, m2) -
[1] Jane S F, Hansen G J A, Kraemer B M, et al. Widespread deoxygenation of temperate lakes [J]. Nature, 2021(594): 66-70. doi: 10.1038/s41586-021-03550-y
[2] Schindler D E. Warmer climate squeezes aquatic predators out of their preferred habitat [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(37): 9764-9765.
[3] Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades [J]. Nature, 2017(542): 335-339. doi: 10.1038/nature21399
[4] 刘雪晴, 黄廷林, 李楠, 等. 水库热分层期藻类水华与温跃层厌氧成因分析 [J]. 环境科学, 2019, 40(5): 2258-2264. Liu X, Huang T, Li N, et al. Algal bloom and mechanism of hypoxia in the metalimnion of the Lijiahe Reservoir during thermal stratification [J]. Environmental Science, 2019, 40(5): 2258-2264.
[5] 裴佳瑶, 冯民权. 环境因子对雁鸣湖沉积物氮磷释放的影响 [J]. 环境工程学报, 2020, 14(12): 3447-3459. Pei J, Feng M. Effects of environmental factors on the release of nitrogen and phosphorus from the sediment of the Yanming Lake, China [J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3447-3459.
[6] Rogener M K, Hunter K S, Rabalais N N, et al. Pelagic denitrification and methane oxidation in oxygen-depleted waters of the Louisiana shelf [J]. Biogeochemistry, 2021, 154(2): 231-254. doi: 10.1007/s10533-021-00778-8
[7] Liu M, Ran Y, Peng X, et al. Sustainable modulation of anaerobic malodorous black water: the interactive effect of oxygen-loaded porous material and submerged macrophyte [J]. Water Research, 2019(160): 70-80. doi: 10.1016/j.watres.2019.05.045
[8] Kalff J. Limnology: Inland Water Ecosystems [M]. Upper Saddle River, NJ: Prentice Hall, 2002: 231-233.
[9] 王雅雯, 李迎鹤, 张博, 等. 嘉兴南湖不同湖区浮游动植物群落结构特征与环境因子关系 [J]. 环境科学, 2022, 43(6): 3106-3117. Wang Y W, Li Y H, Zhang B, et al. Structural characteristics of zooplankton and phytoplankton communities and its relationship with environmental factors in different regions of Nanhu Lake in Jiaxing city [J]. Environmental Science, 2022, 43(6): 3106-3117.
[10] Wang L, Wu X, Song H, et al. Effect of environmental factors on phosphorus transformation during the growth of submerged macrophytes [J]. Sn Applied Sciences, 2023, 5(4): 2523-3963.
[11] Hilt S, Alirangues N M M, Bakker E S, et al. Response of submerged macrophyte communities to external and internal restoration measures in north temperate shallow lakes [J]. Frontiers in Plant Science, 2018(9): 194. doi: 10.3389/fpls.2018.00194
[12] Dalla Vecchia A, Villa P, Bolpagni R. Functional traits in macrophyte studies: current trends and future research agenda [J]. Aquatic Botany, 2020(167): 103290. doi: 10.1016/j.aquabot.2020.103290
[13] Zhang Q, Liu Y P, Luo F L, et al. Does species richness affect the growth and water quality of submerged macrophyte assemblages [J]? Aquatic Botany, 2019(153): 51-57. doi: 10.1016/j.aquabot.2018.11.006
[14] 胡傲, 李宇辉, 杨予静, 等. 不同生长型沉水植物配置对生物量积累和水质净化效果的影响 [J]. 湖泊科学, 2022, 34(5): 1484-1492. doi: 10.18307/2022.0527 Hu A, Li Y, Yang Y, et al. Effects of different growth from submerged macrophyte assemblages on biomass accumulation and water purification [J]. Journal of Lake Science, 2022, 34(5): 1484-1492. doi: 10.18307/2022.0527
[15] 桑雨璇, 杨珈乐, 熊怡, 等. 不同光照和磷水平下两种沉水植物磷富集和钙磷含量的比较 [J]. 环境科学, 2020, 41(6): 2698-2705. Sang Y X, Yang J L, Xiong Y, et al. Comparative phosphorus accumulation and Ca-P content of two submerged plants in response to light intensity and phosphorus levels [J]. Environmental Science, 2020, 41(6): 2698-2705.
[16] Zhao Y, Guan B, Yin C, et al. Water quality profits by the submerged macrophyte community consisting of multi-functional species-rich groups [J]. Science of the Total Environment, 2022(850): 157847. doi: 10.1016/j.scitotenv.2022.157847
[17] 邓嘉懿, 高晓钰, 单航, 等. 洱海沉水植物的光合特性与分布水深的关系 [J]. 水生生物学报, 2023, 47(7): 1157-1167. Deng J Y, Gao X Y, Shan H, et al. The measurement of photosynthetic paramenters of submersed macrophytes with aims to explore the plant distribution depth in Erhai Lake [J]. Acta Hydrobiologica Sinica, 2023, 47(7): 1157-1167.
[18] Fu F, Huang S, Yuan J, et al. Effect evaluation of remediation in three typical rivers with Vallisneria natans under different pollution and spatial characterization of functional microorganisms [J]. Ecological Engineering, 2021(171): 106353. doi: 10.1016/j.ecoleng.2021.106353
[19] Yang F, Xiao K, Pan H, et al. Chloroplast: the emerging battlefield in plant–microbe interactions [J]. Frontiers in Plant Science, 2021(12): 637853. doi: 10.3389/fpls.2021.637853
[20] Fu H, Yuan G, Cao T, et al. An alternative mechanism for shade adaptation: implication of allometric responses of three submersed macrophytes to water depth [J]. Ecological Research, 2012, 27(6): 1087-1094. doi: 10.1007/s11284-012-0991-z
[21] Van T K, Wheeler G S, Center T D. Competition between Hydrilla verticillata and Vallisneria americana as influenced by soil fertility [J]. Aquatic Botany, 1999, 62(4): 225-233. doi: 10.1016/S0304-3770(98)00100-4
[22] Zhang X, Zhen W, Jensen H S, et al. The combined effects of macrophytes (Vallisneria denseserrulata) and a lanthanum-modified bentonite on water quality of shallow eutrophic lakes: a mesocosm study [J]. Environmental Pollution, 2021(277): 116720. doi: 10.1016/j.envpol.2021.116720
[23] 刘梅, 原居林, 练青平等. 池塘内循环流水养殖模式对养殖塘上覆水-沉积物-间隙水磷时空分布特征及释放通量的影响 [J]. 水生生物学报, 2021, 45(5): 1045-1056. Liu M, Yuan J L, Lian Q P, et al. Effects of inner-circulation pond aquaculture on distribution and release flux of phosphorus in the overlaying-sediment-interstitial water [J]. Acta Hydrobiologica Sinica, 2021, 45(5): 1045-1056.
[24] Saha A, Vijaykumar M E, Das B K, et al. Geochemical distribution and forms of phosphorus in the surface sediment of Netravathi-Gurupur estuary, southwestern coast of India [J]. Marine Pollution Bulletin, 2023(187): 114543. doi: 10.1016/j.marpolbul.2022.114543
[25] Gower S T, Kucharik C J, Norman J M. Direct and indirect estimation of leaf area index, f APAR, and net primary production of terrestrial ecosystems [J]. Remote Sensing of Environment, 1999, 70(1): 29-51. doi: 10.1016/S0034-4257(99)00056-5
[26] Boot R G A, Mensink M. Size and morphology of root systems of perennial grasses from contrasting habitats as affected by nitrogen supply [J]. Plant and Soil, 1990, 129(2): 291-299. doi: 10.1007/BF00032425
[27] Miyashita A, Tateno M. A novel index of leaf RGR predicts tree shade tolerance [J]. Functional Ecology, 2014, 28(6): 1321-1329. doi: 10.1111/1365-2435.12290
[28] Jia J, Li C, Chang Z. Soil texture rather than water potential determines the root: shoot ratio in ryegrass and alfalfa [J]. Journal of Soil Science and Plant Nutrition, 2023, 23(1): 1297-1305. doi: 10.1007/s42729-022-01121-2
[29] Korlyakov K A, Nokhrin D Y. Specific surface area and biomass of zoophytos in different waterbodies of the southern trans-Ural region [J]. Inland Water Biology, 2011, 4(3): 327-331. doi: 10.1134/S199508291102009X
[30] Li Y, Wang L, Chao C, et al. Submerged macrophytes successfully restored a subtropical aquacultural lake by controlling its internal phosphorus loading [J]. Environmental Pollution, 2021(268): 115949. doi: 10.1016/j.envpol.2020.115949
[31] Su H, Chen J, Wu Y, et al. Morphological traits of submerged macrophytes reveal specific positive feedbacks to water clarity in freshwater ecosystems [J]. Science of the Total Environment, 2019(684): 578-586. doi: 10.1016/j.scitotenv.2019.05.267
[32] Long Y, Hu X, Jiang J, et al. Phosphorus sorption-Desorption behaviors in the sediments cultured with Hydrilla verticillata and Scripus triqueter as revealed by phosphorus fraction and dissolved organic matter [J]. Chemosphere, 2021(271): 129549. doi: 10.1016/j.chemosphere.2021.129549
[33] Riis T, Tank J L, Reisinger A J, et al. Riverine macrophytes control seasonal nutrient uptake via both physical and biological pathways [J]. Freshwater Biology, 2020, 65(2): 178-192. doi: 10.1111/fwb.13412
[34] Wang J, Zhang S, Que T, et al. Mitigation of eutrophication in a shallow lake: the influences of submerged macrophytes on phosphorus and bacterial community structure in sediments [J]. Sustainability, 2021, 13(17): 9833. doi: 10.3390/su13179833
[35] Ni M, Liang X, Hou L, et al. Submerged macrophytes regulate diurnal nitrous oxide emissions from a shallow eutrophic lake: A case study of Lake Wuliangsuhai in the temperate arid region of China [J]. Science of the Total Environment, 2022(811): 152451. doi: 10.1016/j.scitotenv.2021.152451
[36] Carpenter S R, Lodge D M. Effects of submersed macrophytes on ecosystem processes [J]. Aquatic Botany, 1986(26): 341-370. doi: 10.1016/0304-3770(86)90031-8
[37] 杨春艳, 施择, 焦聪颖, 等. 2013—2020年泸沽湖溶解氧随时间变化规律及主要影响因素分析 [J]. 中国环境监测, 2022, 38(4): 139-145. Yang C, Shi Z, Jiao C, et al. Analysis of temporal variation of dissolved oxygen and its main influencing factors in the Lugu Lake from 2013 to 2020 [J]. Environmental Monitoring in China, 2022, 38(4): 139-145.
[38] Sharma A, Devi I. A sustainable biosorption technique for treatment of industrial wastewater using snail shell dust (Bellamya bengalensis) [J]. Environmental Monitoring and Assessment, 2023, 195(3): 1-14.
[39] Benson B B, Krause D Jr. The concentration and isotopic fractionation of gases dissolved in freshwater in equilibrium with the atmosphere. 1. Oxygen [J]. Limnology and Oceanography, 1980, 25(4): 662-671. doi: 10.4319/lo.1980.25.4.0662
[40] 胡鹏, 杨庆, 杨泽凡, 等. 水体中溶解氧含量与其物理影响因素的实验研究 [J]. 水利学报, 2019, 50(6): 679-686. Hu P, Yang Q, Yang Z, et al. Experimental study on dissolved oxygen content in water and its physical infuence factors [J]. Journal of Hydraulic Engineering, 2019, 50(6): 679-686.
[41] Frodge J D, Thomas G L, Pauley G B. Effects of canopy formation by floating and submergent aquatic macrophytes on the water quality of two shallow Pacific Northwest Lakes [J]. Aquatic Botany, 1990, 38(2/3): 231-248.
[42] 张宇, 杨平恒, 王建力等. 小型人工湖泊水体地球化学冬夏昼夜变化对比研究——以西南大学崇德湖为例 [J]. 西南大学学报(自然科学版)., 2016, 38(6): 92-98. Zhang Y, Yang P H, Wang J L, et al. Diurnal variations and hydrochemical comparisons of Anartificial Lake in winter and summer, a case of Chongde Lake in Southwest University [J]. Journal of Southwest University (Natural Science Edition), 2016, 38(6): 92-98.
[43] Atapaththu K S S, Parveen M, Asaeda T, et al. Growth and oxidative stress response of aquatic macrophyte Myriophyllum spicatum to sediment anoxia [J]. Fundamental and Applied Limnology, 2018, 191(4): 289-298. doi: 10.1127/fal/2018/1070
[44] 文帅龙, 刘静静, 戴家如, 等. 铁(氢)氧化物介导的溶解性有机质、无机磷的固定及相互作用研究进展 [J]. 湖泊科学, 2022, 34(5): 1428-1440. doi: 10.18307/2022.0502 Wen S L, Liu J J, Dai J R, et al. Iron(hydr) oxides mediated immobilization and interaction of dissolved organic matter and inorganic phosphate: a review [J]. Journal of Lake Sciences, 2022, 34(5): 1428-1440. doi: 10.18307/2022.0502
[45] 钟志清, 邱受亮, 钱坤, 等. 声环境、饮用水及地表水中金属离子的调查研究——以江西中医药大学为例 [J]. 生物灾害科学, 2021, 44(3): 321-326. Zhong Z, Qiu S, Qian K, et al. Study of acoustic environment as well as metal ions of drinking water and surface water in Jiangxi university of Chinese medicine [J]. Biological Disaster Science, 2021, 44(3): 321-326.
[46] Carignan R, Kalff J. Phosphorus sources for aquatic weeds: water or sediments [J]? Science, 1980, 207(4434): 987-989. doi: 10.1126/science.207.4434.987
[47] 李小艳, 王荣坤, 曾正明, 等. 邛海浅水湖带及其附近人工湿地中沉水植物底质以上植株中氮和磷含量 [J]. 湿地科学, 2019, 17(6): 663-669. Li X Y, Wang R K, Zeng Z M, et al. Nitrogen and phosphorus contents of submerged plants above substrate in shallow region of Qionghai Lake and around constructed wetlands [J]. Wetland Science, 2019, 17(6): 663-669.
[48] 李诗琦, 施学峰, 李俊锋, 等. 常熟新建水源地湖泊轮叶黑藻和穗状狐尾藻的生长差异及对水环境的影响 [J]. 水生生物学报, 2023, 47(7): 1139-1147. Li S Q, Shi X F, Li J F, et al. Growth differences between Hydrilla verticillata and Myriophyllum spicatum and the effects on water environment in newly built water supply lakes in Changshu city [J]. Acta Hydrobiologica Sinica, 2023, 47(7): 1139-1147.
[49] Limmer M A, Evans A E, Seyfferth A L. A new method to capture the spatial and temporal heterogeneity of aquatic plant iron root plaque in situ [J]. Environmental Science & Technology, 2021, 55(2): 912-918.
[50] Zhao Y, Chang L, Li Y, et al. High-gravity photocatalytic degradation of tetracycline hydrochloride under simulated sunlight [J]. Journal of Water Process Engineering, 2023(53): 103753. doi: 10.1016/j.jwpe.2023.103753
[51] Tang H, Ma Z, Qin Y, et al. Pilot-scale study of step-feed anaerobic coupled four-stage micro-oxygen gradient aeration process for treating digested swine wastewater with low carbon/nitrogen ratios [J]. Bioresource Technology, 2023(380): 129087. doi: 10.1016/j.biortech.2023.129087
[52] 昂正强, 孙晓健, 曹新益等. 不同沉水植物叶片附着细菌群落多样性及网络结构差异 [J]. 湖泊科学, 2022, 34(4): 1234-1249. doi: 10.18307/2022.0416 Ang Z Q, Sun X J, Cao X Y, et al. Diversity and network structure of epiphytic bacterial communities on different submerged macrophytes [J]. Journal of Lake Sciences, 2022, 34(4): 1234-1249. doi: 10.18307/2022.0416