ESTABLISHMENT OF A PREADIPOCYTE CELL LINE OF SPOTTED SEA BASS (LATEOLABRAX MACULATUS) AND OLEIC ACID-INDUCED DIFFERENTIATION
-
摘要:
花鲈(Lateolabrax maculatus)前脂肪细胞系为探索鱼类脂肪细胞分化和脂肪沉积的调控作用及相关分子机制提供了一种新的体外模型。研究将花鲈腹腔脂肪组织用胶原酶消化后原代培养, 再以胰酶消化后传代, 总共经过150次传代培养后, 得到花鲈前脂肪细胞系。进而, 染色体核型分析表明该细胞系长期培养仍能保持正常表型, 进一步使用线粒体cox1和cytb基因鉴定该细胞系来源于花鲈。用pEGFP-C1质粒转染细胞系, 观察到明显的绿色荧光, 表明可用于研究外源基因的表达。用不同浓度的油酸培养细胞系, 3d后细胞有明显脂滴聚集, 7d后脂滴达到最大; 油红O染色表明, 400 μmol/L油酸诱导7d后细胞即可正常分化成熟。综上所述, 实验建立了花鲈前脂肪细胞系, 该细胞系形态典型、可正常分化, 为后续研究鱼类脂肪细胞分化及脂肪沉积提供了良好的实验材料。
Abstract:The proadipocyte line of spotted sea bass (Lateolabrax maculatus) provides a new in vitro model for exploring the regulation of adipocyte differentiation and adipocyte deposition in fish and the related molecular mechanisms. This experiment aimed to establish a proadipose cell line for the spotted sea bass. Peritoneal adipose tissue was digested using collagenase and pancreatic enzyme, and after multiple passages, a preadipose cell line was successfully obtained following 150 times of culture cycles. karyotype analysis showed confirmed the maintenance of a normal phenotype in the cell line during long-term culture. Additionally, the mitochondrial cox1 and cytb genes were further used to identify the cell line as originating from the spotted seabass. The established cell lines were subjected to transfection with the pEGFP-C1 plasmid, resulting in observable green fluorescence, indicating their suitability for studying the expression of foreign genes. Furthermore, when cultured with different concentrations of oleic acid, the cell lines exhibited prominent lipid droplet aggregation after 3d, reaching its maximum accumulation after 7d. Oil red O staining demonstrated that the cells could differentiate and mature normally after 7d of induction with 400 μmol/L oleic acid. In summary, this experiment successfully established a preadipose cell line for the spotted sea bass, characterized by typical morphology and normal differentiation. This cell line serves as valuable experimental material for future studies on adipose cell differentiation and adipose deposition in fish.
-
Keywords:
- Preadipocyte /
- Cell line /
- Cell culture /
- Induction differentiation /
- Lateolabrax maculatus
-
-
图 1 花鲈前脂肪细胞系的表观形态
A. 第0代培养24h的原代细胞; B—E. 是培养24h后的第1、10、50和100代的细胞; F. 冻存前第54代细胞; G—I. 冻存1、3和6个月后复苏培养24h的细胞
Figure 1. The apparent morphology of proadipose cell line of the spotted sea bass
A. Primary cells cultured for 24h in the 0 generation; B—E. is the 1st, 10th, 50th, and 100th generation of cells cultured for 24h; F. Cryopreservation of pre-54th generation cells; G—I. Cells frozen 1, 3, and 6 months later are resuscitated and cultured for 24h
图 5 pEGFP-C1质粒转染后48h的荧光蛋白表达
A. 荧光下观察, 绿色代表荧光蛋白表达; B. 明场观察, 黑色箭头表示发出绿色荧光的细胞位置
Figure 5. Expression of fluorescent protein 48h after transfection with pEGFP-C1 plasmid
A. Fluorescent observation, green represents the expression of fluorescent protein; B. Bright field observation, red arrow indicates the location of the cell emitting green fluorescence
表 1 实时荧光定量PCR引物序列
Table 1 Primers sequence of Real-time fluorescent quantitative PCR
基因
Gene引物Primer (5′—3′) 退火温度
Tm (℃)ppar-γ ACGCCGTGGACCTGTCAGAG
CGTGATGGAGGAGGAGGAGATGG60 c/ebp α AAGATGCGCAACATGGAGAC
TCTGAAGATGCCCCGTAACG60 pgc-1α GTTCCTCCGAACTCCCAGTG
GCAACACCCCTCCAACTACA60 pgc-1β GTTCCTCCGAACTCCCAGTG
GCAACACCCCTCCAACTACA60 tfam GGTCAGACATTTCACTGGGTTG
GCGGCTCTAATGCGTGAAT60 cpt-1 CCTCAATGATACATCGGAACCC
CTGCGGCTCATCATCTAACG60 atgl CTTCCTCTCCGCAACAAGTC
TGGTGCTGTCTGGAGTGTTC60 hsl CGAAACACAGAGACGGTCCA
TCATGACATCTACCAGCCGC60 fas AAACTGAAGCCCTGTGTGCC
CACCCTGCCTATTACATTGCTC60 β-actin CAACTGGGATGACATGGAGAAG
TTGGCTTTGGGGTTCAGG60 表 2 细胞冻存后复苏存活率
Table 2 Cell resuscitation rate after cryopreservation
冻存时间(月)
Freezing time (month)细胞存活率
Cell viability (%)1 96.33±0.88a 3 95.00±2.08a 6 92.00±1.73a 注: 同列数据肩标不同小写字母表示差异显著(P<0.05), 下同Note: In the same column, values with different small letter superscripts mean significant difference (P<0.05), the same applies below 表 3 不同培养基条件下原代细胞的倍增时间
Table 3 Multiplication time of primary cells under different medium conditions
培养基
Medium细胞密度Cell density (×105 cell/well) 培养时间Δt
Cultivation time (h)倍增时间T2
Doubling time (h)起始数 N0
Starting number最终数
Final number增长数ΔN
Growth numberDMEM/F12 1.45 5.30±0.04c 3.85±0.04c 144 77.01±0.40a DMEM高糖 1.45 5.11±0.07c 3.66±0.07c 79.23±0.88a L15 1.45 4.45±0.05b 3.00±0.05b 89.03±0.79b M199 1.45 3.40±0.09a 1.95±0.09a 117.57±3.63c 表 4 不同血清浓度条件下原代细胞的倍增时间
Table 4 Multiplication time of primary cells under different serum concentrations
血清浓度
Serum concentration细胞密度Cell density (×105 cell/well) 培养时间Δt
Cultivation time (h)倍增时间T2
Doubling time (h)起始数 N0
Starting number最终数
Final number增长数ΔN
Growth number5 1.45 3.35±0.10a 1.90±0.10a 144 119.63±4.31c 10 1.45 4.16±0.24b 2.71±0.24b 95.49±5.08b 15 1.45 4.89±0.12c 3.44±0.12c 82.26±1.64a 20 1.45 5.50±0.10d 4.05±0.10c 74.95±1.02a -
[1] 任艳华, 张隽美, 卢荣华, 等. 鱼类营养代谢性疾病研究进展 [J]. 江苏农业学报, 2021, 37(6): 1623-1629. Ren Y H, Zhang J M, Lu R H, et al. Research progress on fish nutritional metabolic diseases [J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(6): 1623-1629.
[2] Naiel M A, Negm S S, Ghazanfar S, et al. The risk assessment of high-fat diet in farmed fish and its mitigation approaches: a review [J]. Journal of Animal Physiology and Animal Nutrition, 2023, 107(3): 948-969. doi: 10.1111/jpn.13759
[3] Heinonen S, Jokinen R, Rissanen A, et al. White adipose tissue mitochondrial metabolism in health and in obesity [J]. Obesity Reviews, 2020, 21(2): e12958. doi: 10.1111/obr.12958
[4] 王伟. 鸡永生化前脂肪细胞系的建立及分析 [D]. 哈尔滨: 东北农业大学, 2018. Wang W. Establishment and analysis of immortalized chicken preadipocyte cell lines [D]. Harbin: Northeast Agricultural University, 2018.
[5] Thangaraj R S, Narendrakumar L, Prasannan Geetha P, et al. Comprehensive update on inventory of finfish cell lines developed during the last decade (2010—2020) [J]. Reviews in Aquaculture, 2021, 13(4): 2248-2288. doi: 10.1111/raq.12566
[6] Sun W, Sun X, Chu W, et al. CircRNA expression profiles in human visceral preadipocytes and adipocytes [J]. Molecular Medicine Reports, 2020, 21(2): 815-821.
[7] Green H, Meuth M. An established pre-adipose cell line and its differentiation in culture [J]. Cell, 1974, 3(2): 127-133. doi: 10.1016/0092-8674(74)90116-0
[8] Cheng Y M, Hong P C, Song M M, et al. An immortal porcine preadipocyte cell strain for efficient production of cell-cultured fat [J]. Communications Biology, 2023, 6(1): 1202. doi: 10.1038/s42003-023-05583-7
[9] Korzyńska A, Zychowicz M. A method of estimation of the cell doubling time on basis of the cell culture monitoring data [J]. Biocybernetics and Biomedical Engineering, 2008, 28(4): 75-82.
[10] 范嗣刚, 黄皓, 王鹏飞, 等. 基于cox1序列的中国6个花鲈野生群体遗传多样性 [J]. 广东海洋大学学报, 2022, 42(03): 11-17. doi: 10.3969/j.issn.1673-9159.2022.03.002 Fan S G, Huang H, Wang P F, et al. Population genetic diversity of spotted sea bass (Lateolabrax maculatus) from China Based on mitochondrial cox1 gene sequence [J]. Journal of Guangdong Ocean University, 2022, 42(03): 11-17. doi: 10.3969/j.issn.1673-9159.2022.03.002
[11] 刘明月, 蒋琦辰, 杨家新. 不同海域中国花鲈的细胞色素b序列的遗传分析 [J]. 南京师大学报(自然科学版), 2010, 33(1): 102-106. Liu M Y, Jiang Q C, Yang J X. Analysis on mitochondrial DNA cytochrome b gene of Lateolabrax japonicas from different seas [J]. Journal of Nanjing Normal University (Natural Science Edition), 2010, 33(1): 102-106.
[12] 中国渔业统计年鉴编委会. 2023中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2023. Editorial Committee of China Fishery Statistical Yearbook. China Fishery Statistical Yearbook 2023 [M]. BeiJing: China Agriculture Press, 2023.
[13] 吉红, 曹艳姿, 林亚秋, 等. 草鱼前体脂肪细胞的原代培养 [J]. 水生生物学报, 2009, 33(6): 1226-1230. Ji H, Cao Y Z, Lin Y Q, et al. Primary culture of grass carp preadipocyte in vitro [J]. Acta Hydrobiologica Sinica, 2009, 33(6): 1226-1230.
[14] Salmerón C, Acerete L, Gutiérrez J, et al. Characterization and endocrine regulation of proliferation and differentiation of primary cultured preadipocytes from gilthead sea bream (Sparus aurata) [J]. Domestic Animal Endocrinology, 2013, 45(1): 1-10. doi: 10.1016/j.domaniend.2013.02.002
[15] 巩志宏, 王娜, 刘娟娟, 等. 齐口裂腹鱼鳃丝细胞系的建立、鉴定及免疫研究 [J]. 中国水产科学, 2022, 29(10): 1407-1416. Gong Z H, Wang N, Liu J J, et al. Establishment, identification, and immunological study of gill filament cell line of Schizothorax prenanti [J]. Journal of Fishery Sciences of China, 2022, 29(10): 1407-1416.
[16] Choi H J, Lee J H, Jung H J, et al. Establishment and characterization of a new cell line derived from the fin of olive flounder (Paralichthys olivaceus) [J]. Aquaculture, 2020(528): 735534. doi: 10.1016/j.aquaculture.2020.735534
[17] Chen B, Li Y, Peng W, et al. Chromosome-level assembly of the Chinese seabass (Lateolabrax maculatus) genome [J]. Frontiers in Genetics, 2019(10): 275. doi: 10.3389/fgene.2019.00275
[18] 李楠, 王佳慧, 韩春卉, 等. COI及cytb基因对河鲀鱼鱼种鉴定的适用性研究 [J]. 中国食品卫生杂志, 2018, 30(1): 6-11. Li N, Wang J H, Han C H, et al. Application of COI and cytb gene in species identification of pufferfish [J]. Chinese Journal of Food Hygiene, 2018, 30(1): 6-11.
[19] Liu J, Berry R E, Blouin M S. Molecular differentiation and phylogeny of entomopathogenic nematodes (Rhabditida: Heterorhabditidae) based on ND4 gene sequences of Mitochondrial DNA [J]. Journal of Parasitology, 1999, 85(4): 709-715. doi: 10.2307/3285747
[20] Shang Z, Guo L, Wang N, et al. Oleate promotes differentiation of chicken primary preadipocytes in vitro [J]. Bioscience Reports, 2014, 34(1): e00093. doi: 10.1042/BSR20130120
[21] Xu D, Gong Y, Xiang X J, et al. Discovery, characterization, and adipocyte differentiation regulation in perirenal adipose tissue of large yellow croaker (Larimichthys crocea) [J]. Fish Physiology and Biochemistry, 2023, 49(4): 627-639.
[22] Liu P, Ji H, Li C, et al. Morphology, mitochondrial development and adipogenic-related genes expression during adipocytes differentiation in grass carp (Ctenopharyngodon idellus) [J]. Science Bulletin, 2015, 60(14): 1241-1251. doi: 10.1007/s11434-015-0833-9
[23] 王雅文, 乔芳, 张美玲, 等. 外源性脂肪酸对罗非鱼脂肪细胞增殖与分化的影响 [J]. 水生生物学报, 2018, 42(3): 517-524. Wang Y W, Qiao F, Zhang M L, et al. Effects of exogenous fatty acid on the proliferation and differentiation of nile tilapia preadipocytes [J]. Acta Hydrobiologica Sinica., 2018, 42(3): 517-524.
[24] Kaaman M, Sparks L M, Van Harmelen V, et al. Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue [J]. Diabetologia, 2007, 50(12): 2526-2533. doi: 10.1007/s00125-007-0818-6
[25] Wilson-Fritch L, Burkart A, Bell G, et al. Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone [J]. Molecular and Cellular Biology, 2003, 23(3): 1085-1094. doi: 10.1128/MCB.23.3.1085-1094.2003
[26] Li Q, Gao Z, Chen Y, et al. The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells [J]. Protein & Cell, 2017, 8(6): 439-445.