南方鲇不同组织间线粒体代谢的比较研究
COMPARATIVE STUDIES ON METABOLISM OF MITOCHONDRIA ISOLATED|FROM VARIOUS TISSUES OF SOUTHERN CATFISH, SILURUS MERIDIONALIS|CHEN
-
摘要: 采用人工繁殖的同批南方鲇(Silurus meridionalis Chen)幼鱼为研究对象,分别在7.5、10、12.5、17.5、22.5、27.5、32.5、35和37.5℃条件下测定其心脏、肾脏、肝脏、脑和白肌的线粒体呼吸率、细胞色素c氧化酶(CCO)的活性,以检测不同组织线粒体的含量及代谢特征的差异性。在27.5℃下,南方鲇心脏、肾脏、肝脏、脑和白肌线粒体状态3呼吸率分别为69.94、30.98、32.36、18.89和7.34 nmol O2/min.mg;CCO活性分别为676.54、327.46、294.34、153.23和65.73 nmol O2/min.mg。统计检验表明,状态3呼吸率和CCO活性均表现为:心脏显著高于其他4种组织(PPPPP<0.05)。在7.5℃—32.5℃范围内,南方鲇的心脏、肝脏、肾脏、脑和白肌5种组织的线粒体状态3呼吸率和CCO活性均随着温度的升高而增加,但在高温端,心脏中这两种代谢指标开始出现随温度上升而下降的趋势。在低温端(7.5℃—10℃)和高温端(35℃—37.5℃),各组织线粒体呼吸率RCR值多数小于4,在37.5℃下的心脏和7.5℃下的白肌的RCR值分别低至1.76和1.85。研究结果提示,南方鲇不同组织间线粒体含量可以由CS活性作为间接指标进行比较,而各组织间线粒体含量及其代谢能力存在较大的差异。心脏表现出高含量、高代谢能力和低的耐受高温能力;白肌为低含量、低代谢能力和低的耐受低温能力;肝脏、肾脏和脑表现为中等含量、中等活性和较高的耐受极端温度能力。Abstract: To investigate diversity of mitochondrial contents and metabolic features in various tissues, the respirationrates of mitochondria and activities of cytochrome c oxidase (CCO) in heart, kidney, liver, brain and white muscle ofsouthern catfish (Silurus meridionalis Chen) were measured at temperatures of 7.5, 10, 12.5, 17.5, 22.5, 27.5, 32.5, 35,and 37.5℃, respectively. At 27.5℃, state 3 rates were 69.94 in heart, 30.98 in kidney, 32.36 in liver, 18.89 in brain, and7.34 nmol O2 / min · mg in white muscle, respectively. And activities of CCO were 676.54 nmol O2 / min · mg in heart,compared with 327.46 in kidney, 294.34 in liver, 153.23 in brain, and 65.73 in white muscle. Statistical analysis indicatedthat either state 3 rates or activities of CCO showed the similar comparative trends among the five tissues. Eitherof the two values were significantly higher in heart than those in the other four tissues (P 0.05), and significantlylower in white muscle than those in the others (P 0.05). The two values in brain were significantly lower than those inkidney and liver, but there was no significant difference between kidney and liver. The global mitochondrial contentswere evaluated by the activity of citrate synthase (CS) in various tissues in the present study. At 27.5℃, the values were17.93 in heart, 7.20 in kidney, 8.42 in liver, 6.12 in brain, and 1.35 U / mg in white muscle, respectively. Heart presentedthe significantly highest value compared with the other four tissues, and white muscle presented the significantly lowestvalue (P 0.05). There was no significant difference for activities of CS among kidney, liver and brain. From 7.5 to32.5℃, either state 3 rates or activities of CCO increased respectively with increasing temperature in all of the five tissues.But both indexes in heart began to decline dramatically from 32.5℃ to 37.5℃. Values of the respiratory controlratio (RCR) almost were less than 4 at low (7.5℃—10℃) and high (35℃—37.5℃) temperature rang. RCR for whitemuscle at 7.5℃ and for heart at 37.5℃ presented very low values of 1.85 and 1.86, respectively. Based on the presentresults, it could be suggested that activity of CS could be used as an indirect index to compare mitochondrial contentamong various tissues in the southern catfish. And the mitochondrial content and metabolic capacity were significantlyvariable among different tissues. Heart presents with the higher mitochondrial content, higher metabolic capacity, andlower tolerable capacity against the extremely high temperatures. White muscle showed the lower mitochondrial content,lower metabolic capacity, and lower tolerable capacity against the extremely low temperature. Kidney, liver and braincharacterized by middle mitochondrial content, middle metabolic capacity of mitochondria and a higher tolerable capacityagainst the either extremely low or high temperatures.
-
-
[1] Jobling M A. Review of the physiological and nutritionalenergetics of cod, Gadus morhua L, with particular referenceto growth under farmed conditions [J]. Aquaculture, 1988, 70:1—19
[2] Xie X J, Sun R Y. The pattern of energy allocation in thesouthern catfish (Silurus meridionalis Chen) [J]. Journal ofFish Biology, 1993, 42: 197—207
[3] Mootha V K, Bunkenborg J, Olsen J V, et al. Integratedanalysis of protein composition, tissue diversity, and generegulation in mouse mitochondria [J]. Cell, 2003, 115: 629—640
[4] Moyes C D, Hood D A. Origins and consequences of mitochondrialvariation [J]. Annual Review of Physiology, 2003,65: 177—201
[5] Guderley H. Metabolic responses to low temperature in fishmuscle [J]. Biological Reviews, 2004, 79: 409—427
[6] Benard G B, Faustin E, Passerieux A, et al. Physiologicaldiversity of mitochondrial oxidative phosphorylation [J].American Journal of Physiology-Cell Physiology, 2006, 291:C1172—C1182
[7] Leary S C, Battersby B J, Moyes C D. Inter-tissue differencesin mitochondrial.enzyme activity, RNA and DNA inrainbow trout (Oncorhynchus mykiss) [J]. The Journal ofExperimental Biology, 1998, 201: 3377—3384
[8] Sugizaki M, Lucchiari P H, Malucelli M I C, et al. Respirationand oxidative phosphorylation of mitochondria fromtissues and. organs of Antarctic fish [J]. Proceedings of theNIPR Symposium on Polar Biology, 1997, 10: 145—152
[9] Barger J L, Brand M D, Barnes B M, et al. Tissue-specificdepression of mitochondrial proton leak and substrate oxidationin hibernating arctic ground squirrels [J]. AmericanJournal of Physiology, 2003, 284: R1306—1313
[10] Leverve X M, Fontaine E. Role of substrates in the regulationof mitochondrial function in situ [J]. IUBMB Life, 2001,52: 221—229
[11] Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competitionin the evolution of ATP-producing pathways [J].Science, 2001, 292: 504—507
[12] Rossignol R, Malgat M, Mazat J P, et al. Threshold effectand tissue specificity [J]. Journal of Biological Chemistry,1999, 274: 33426—33432
[13] Forner F, Foster L J, Campanaro S, et al. Quantitative proteomiccomparison of rat mitochondria from muscle, heartand liver [J]. Molecular & Cellular Proteomics, 2006, 5:608—619
[14] Battersby B J, Moyes C D. Influence of acclimation temperatureon mitochondrial DNA, RNA, and enzymes inskeletal muscle [J]. American Journal of Physiology, 1998,275: R905—R912
[15] Xie X J, Sun R Y. The daily total metabolism and specificdynamic action in the southern catfish (Silurus meridionalisChen) [J]. Acta Hydrobiologica Sinica, 1992, 16(3): 200—207 [谢小军, 孙儒泳.南方鲇的日总代谢和特殊动力作用的能量消耗.水生生物学报, 1992, 16(3):200—207] Xie X J, Sun R Y. The daily total metabolism and specificdynamic action in the southern catfish (Silurus meridionalisChen) [J]. Acta Hydrobiologica Sinica, 1992, 16(3): 200—207 [谢小军, 孙儒泳.南方鲇的日总代谢和特殊动力作用的能量消耗.水生生物学报, 1992, 16(3):200—207]
[16] Luo Y P, Xie X J. Effects of temperature on the specificdynamic action of the southern catfish, Silurus meridionalis[J]. Comparative Biochemistry and Physiology-Part A,2008, 149: 150—156
[17] Zhao Z J, Wang D H. Short photoperiod enhances thermogeniecapacity in Brandt ’s voles [J]. Physiology & Behavior,2005, 85: l43—l49
[18] Cogswell A M, Stevens R J, Hood D A. Properties of skeletalmuscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions [J]. American Journal Physiology-Cell Physiology, 1993, 264: C383—C389
[19] Yan Y L, Xie X J, Yuan L Q. Effects of temperature on oxygenconsumption rate in metabolism of mitochondria isolatedfrom liver of the Southern Catfish, Silurus meridionalis Chen[J]. Acta Hydrobiologica Sinica, 2008, 32(2): 237—243 [闫玉莲, 谢小军, 袁伦强. 温度对南方鲇肝组织离体线粒体代谢耗氧率的影响. 水生生物学报, 2008, 32(2): 237—243] Yan Y L, Xie X J, Yuan L Q. Effects of temperature on oxygenconsumption rate in metabolism of mitochondria isolatedfrom liver of the Southern Catfish, Silurus meridionalis Chen[J]. Acta Hydrobiologica Sinica, 2008, 32(2): 237—243 [闫玉莲, 谢小军, 袁伦强. 温度对南方鲇肝组织离体线粒体代谢耗氧率的影响. 水生生物学报, 2008, 32(2): 237—243]
[20] Lowry O H, Rosbrough N J, Farr A L, et al. Protein measurementwith the Folin phenol reagents [J]. Journal of BiologicalChemistry, 1951, 193: 265—275
[21] Moyes C D, Battersby B J, Leary S C. Regulation of musclemitochondrial design [J]. Journal of Experimental Biology,1998, 201: 299—307
[22] Hulbert AJ, Turner N, Hinde J, et al. How might youcompare mitochondria from different tissues and differentspecies [J]? Journal of Comparative Physiology-Part B,2006, 176(2): 93—105
[23] Moyes C D. Cardiac metabolism in high performance species[J]. Comparative Biochemistry and Physiology-Part A,1995, 113: 69—75
[24] Kadenbach B, Hüttemann M, Arnold S, et al. Mitochondrialenergy metabolism is regulated via nuclear-coded subunits ofcytochrome c oxidase [J]. Free Radical Biology and Medicine,2000, 29: 211—221
[25] Fangue N A, Richards JG, Schulte P M. Do mitochondrialproperties explain intraspecific variation in thermal tolerance[J]? Journal of Experimental Biology, 2009, 212: 514—522
[26] Lin H R. Fish Physiology [M]. Guangzhou: Higher EducationPress. 1999, 1—20 [林浩然. 鱼类生理学. 广州:高等教育出版社. 1999, 1—20] Lin H R. Fish Physiology [M]. Guangzhou: Higher EducationPress. 1999, 1—20 [林浩然. 鱼类生理学. 广州:高等教育出版社. 1999, 1—20]
[27] Mink J W, Blumenschine R J, Adams D B. Ratio of centralnervous system to body metabolism in vertebrates: its constancyand functional basis [J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology,1981, 241: R203—R212
[28] Moyes C D, West T G. Exercise metabolism of fish. In: P WHochachka and T P Mommsen (Eds.), Biochemistry andMolecular Biology of Fishes [M]. New York: Elsevier Press.1995, 367—392
[29] Johnston I A, Calvo J, Guderley H, et al. Latitudinal variationin the abundance of oxidative capacities of muscle mitochondriain perciform fishes [J]. Journal of ExperimentalBiology, 1997, 201: 1—12
[30] Guderley H, St-Pierre J, Couture P, et al. Plasticity of theproperties of mitochondria from rainbow trout red musclewith seasonal acclimatization [J]. Fish Physiology and Biochemistry,1997, 16: 531—541
-
期刊类型引用(4)
1. 孙继红,任丽媛,崔东遥,赵谭军,常亚青,湛垚垚. 中间球海胆CS基因克隆及其响应急性高温胁迫的表达模式. 南方农业学报. 2023(02): 586-597 . 百度学术
2. 李健,罗其勇,闫玉莲,谢小军. 南方鲇对水体Cd暴露的急性中毒效应. 重庆师范大学学报(自然科学版). 2018(01): 36-42 . 百度学术
3. 樊佳佳,刘小献,白俊杰,于凌云. 草鱼柠檬酸合酶基因SNP筛选及与生长性状的关联分析. 华中农业大学学报. 2014(03): 84-89 . 百度学术
4. 吴斌. 鱼类线粒体代谢研究概况. 江西水产科技. 2014(02): 46-48 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 2313
- HTML全文浏览量: 0
- PDF下载量: 483
- 被引次数: 9