越冬胁迫对草鱼抗氧化能力及脂肪酸组成的影响

武文一, 吉红

武文一, 吉红. 越冬胁迫对草鱼抗氧化能力及脂肪酸组成的影响[J]. 水生生物学报, 2022, 46(8): 1223-1236. DOI: 10.7541/2022.2020.213
引用本文: 武文一, 吉红. 越冬胁迫对草鱼抗氧化能力及脂肪酸组成的影响[J]. 水生生物学报, 2022, 46(8): 1223-1236. DOI: 10.7541/2022.2020.213
WU Wen-Yi, JI Hong. EFFECTS OF OVERWINTERING ON ANTIOXIDANT CAPACITY AND FATTY ACID COMPOSITION IN GRASS CARP (CTENOPHARYNGODON IDELLUS)[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(8): 1223-1236. DOI: 10.7541/2022.2020.213
Citation: WU Wen-Yi, JI Hong. EFFECTS OF OVERWINTERING ON ANTIOXIDANT CAPACITY AND FATTY ACID COMPOSITION IN GRASS CARP (CTENOPHARYNGODON IDELLUS)[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(8): 1223-1236. DOI: 10.7541/2022.2020.213

越冬胁迫对草鱼抗氧化能力及脂肪酸组成的影响

基金项目: 西北农林科技大学安康水产试验示范站建设项目(Z222020001)资助
详细信息
    作者简介:

    武文一(1991—), 男, 博士研究生; 主要从事水产动物营养与饲料研究。E-mail: wenyi1991113@163.com

    通信作者:

    吉红(1967—), 男, 博士, 教授; 主要从事水生经济动物营养与饲料学研究。E-mail: jihong@nwsuaf.edu.cn

  • 中图分类号: S965.1

EFFECTS OF OVERWINTERING ON ANTIOXIDANT CAPACITY AND FATTY ACID COMPOSITION IN GRASS CARP (CTENOPHARYNGODON IDELLUS)

Funds: Supported by the Ankang Fisheries Experimental and Demonstration Station (AFEDS) of the Northwest A & F University (Z222020001)
    Corresponding author:
  • 摘要: 为了探讨草鱼(Ctenopharyngodon idellus)越冬期间氧化应激状况及其与组织脂肪酸比例变化的关联性, 将草鱼[初始体重 (1053.33±16.11) g]分别置于室外水泥培育池, 自然越冬处理0、1周、2周、4周、8周、12周和16周后, 进行生物学性状指标, 肝胰脏、肌肉、前肠、脂肪组织和血清抗氧化能力指标及肝胰脏、肌肉、脂肪组织脂肪酸比例的测定, 同时进行了抗氧化能力指标与脂肪酸比例间的关联性分析。结果表明, 在越冬期间, 草鱼机体体重、肝胰脏重量、肥满度、肝体比、脏体比、肠体比和腹腔脂肪指数均发生显著下降(P<0.05); 但是肾指数和脾指数显著上升(P>0.05)。氧化胁迫应激最大的3个组织分别是脂肪组织、肝胰脏和肌肉。肝胰脏PUFA比例对总体脂肪酸比例产生了主要的影响(主成分载荷特征值>0.5), 肌肉C18﹕2n-6和C16﹕0比例对总体脂肪酸组成产生主要影响, 脂肪组织中的PUFA、n-6PUFA、SFA和MUFA比例对总体脂肪酸比例产生了主要影响; 关联分析表明草鱼脂肪组织中SFA在越冬期间供应能量同时, 与氧化应激乃至机体损伤显示正相关关联性, 肌肉中PUFA和MUFA比例变化分别与氧化应激, 甚至机体损伤显示主要正相关的关联性, 而肝胰脏中MUFA比例变化与氧化应激乃至机体损伤显示主要正相关的关联性。研究表明, 越冬期间草鱼机体受到了很强的氧化应激现象, 其中脂肪组织受到的应激最强烈; 肝胰脏、肌肉和脂肪组织脂肪酸比例发生了显著变化, 同时与各组织抗氧化性指标进行关联分析发现: 脂肪组织中的SFA、肝胰脏中的MUFA、肌肉中的PUFA和MUFA与氧化应激乃至机体损伤间具有较为直接的联系。研究提供的基准研究信息可用于制定有效越冬前投喂的策略, 同时在越冬期间以及越冬后的恢复阶段做出适当的管理与投喂决策, 以期改善草鱼越冬后存活率及其生产效率。
    Abstract: Grass carp Ctenopharyngodon idellus often faces the stress of overwintering in natural environment. It has been reported that fish can induce excessive production of reactive oxygen species (ROS) and cause oxidative stress during overwintering. Excessive ROS may destroy the balance and stability of antioxidant system, resulting in cell damage, nuclear apoptosis and fatty acid peroxidation. Especially during the period of overwintering, the fatty acids as the main energy supply material, have been greatly threatened and challenged because of the fatty acids maybe influenced by ROS. The most direct effect is to reduce the level of energy supply, the antioxidant capacity and immunity of the body, and increase the mortality rate, and to explore the relationship between oxidative stress and the change of fatty acid composition in tissues, In order to explore the metabolic adaptation mechanism of energy utilization of grass carp during overwintering, the initial body weight of (1053.33±16.11) g was investigated, 45 fish were randomly divided into three repetitions. When the water temperature (15℃) naturally decreased to the point that the grass carp ceased ingestion, the experiment began. When the water temperature (15℃) naturally rose to the point that the grass carp refeeding commenced, the overwintering period and our experiments were concluded. Samples were collected after 0, 1, 2, 4, 8, 12 and 16 weeks of natural overwintering. Biological indexes, antioxidant capacity of hepatopancreas, muscle, foregut, adipose tissue and serum and the fatty acid composition of hepatopancreas, muscle and adipose tissue were measured. The relationship between antioxidant capacity index and fatty acid composition was also studied association analysis. The results showed that the BW, CF, HSI, VSI, IFI and LW decreased significantly (P<0.05), while KI and SI increased significantly (P<0.05). Adipose tissue, hepatopancreas and muscle are the three tissues with the largest oxidative stress. During the overwintering period, the proportion of PUFA in hepatopancreas had a major effect on the total fatty acid composition (principal component load characteristic value >0.5), the proportion of C18﹕2n-6 and C16﹕0 in muscle had a major impact on the total fatty acid composition, and the proportion of PUFA, n-6 PUFA, SFA and MUFA in adipose tissue had a major impact on the total fatty acid composition. At the same time, association analysis showed that SFA in adipose tissue of grass carp was mainly positively correlated with oxidative stress and the fish body damage during the period of overwintering. PUFA and MUFA in muscle were positively correlated with oxidative stress and the fish body damage, while MUFA in hepatopancreas was mainly positively correlated with oxidative stress and the fish body damage. This study showed that the grass carp was subjected to strong oxidative stress during the period of overwintering, especially in adipose tissue; the fatty acid ratio of hepatopancreas, muscle and adipose tissue changed significantly, the correlation analysis with antioxidant index showed that SFA in adipose tissue, MUFA in hepatopancreas, PUFA and MUFA in muscle were related to oxidative stress have a more direct relationship between stimulation and injury. The baseline information provided in this study can be used to formulate effective feeding strategies before overwintering, and to make appropriate management and feeding decisions during the period of overwintering, and the recovery stage after overwintering and improving the survival rate and production efficiency of grass carp after overwintering.
  • 图  1   不同越冬时间处理对草鱼各组织抗氧化指标的影响

    Figure  1.   Effects of different overwintering time treatment on antioxidant indexes in tissues of grass carp (n=3)

    图  2   通过分析不同越冬时间处理下草鱼各组织中抗氧化能力, 根据选定的抗氧化酶活性含量变量(图 1)生成PCA评分图和载荷图

    A. 评分图解释了变量之间的相关性及基于分析所得得分的样本之间的聚类, 椭圆对应于95%的置信区间, 分别对应不同组织; B. 向量表示导致方差的变量, 箭头指示抗氧化酶活性变量如何促进PC1和PC2的形成; 下同

    Figure  2.   PCA score plot and loading plot are generated based on selected antioxidant capacity variables (Fig. 1) obtained by analyzing the fatty acid composition in tissue and serum of grass carp under different overwintering time treatments

    A. The score plot explains the correlation between variables and the clustering between samples based on the scores obtained from the analysis. The ellipse corresponds to the 95% confidence interval and corresponds to different organizations respectively; B. The vector represents the variable leading to the variance, and the arrow indicates how the antioxidant enzyme activity variable promotes the formation of PC1 and PC2; The same applies below

    图  3   通过分析不同越冬时间处理下草鱼肝胰脏、肌肉和脂肪组织脂肪酸组成, 根据选定的脂肪酸变量(表 35)生成PCA评分图和载荷图

    Figure  3.   PCA score plot and loading plot are generated based on selected fatty acid variables (Tab. 35) obtained by analyzing the fatty acid composition in hepatopancreas, muscle and adipose tissue of grass carp under different overwintering time treatments

    图  4   不同越冬时间处理对草鱼肝胰脏、肌肉和脂肪组织脂肪酸组成及抗氧化能力的主成分分析

    Figure  4.   Principal component analysis (PCA) of fatty acid composition and antioxidant capacity variables in hepatopancreas, muscle, foregut, adipose tissue and serum of grass carp under different overwintering time treatments

    图  5   越冬胁迫下草鱼组织中脂质过氧化与机体抗氧化能力间的关系示意图

    脂质过氧化. Lipid peroxidation; 氧化应激. Oxidation stress; 健康状态. Healthy statues

    Figure  5.   Relationship between lipid peroxidation and antioxidant capacity of grass carp under overwintering stress

    表  1   不同越冬时间处理对草鱼生物学性状的影响

    Table  1   Effects of different overwintering time treatment on biometric parameters in grass carp (n=3)

    组别 Group组别 Group
    第0周
    Week 0
    第1周
    Week 1
    第2周
    Week 2
    第4周
    Week 4
    第8周
    Week 8
    第12周
    Week 12
    第16周
    Week 16
    体重 Body weight (g)1051.67±20.82e981.67±20.45de931.67±24.66d896.67±25.66c861.67±22.52bc848.33±10.72b816.67±19.83a
    肝胰脏重 Hepatopancreas
    weight (g)
    32.8±2.98c19.47±2.17b16.83±1.25b18.2±1.67b16.43±1.12ab14.69±0.94a13.34±0.88a
    肥满度 Condition
    factor (g/cm3)
    2.06±0.09c1.94±0.03bc1.92±0.07bc1.91±0.14bc1.88±0.03bc1.85±0.14ab1.71±0.08a
    肝体比 Hepatosomatic
    index
    3.11±0.63b2.94±0.37b2.86±0.01ab2.77±0.26ab2.67±0.12ab2.39±0.55ab2.13±0.43a
    脏体比 Viscerosomatic
    index
    13.62±0.27d13.44±0.46cd12.76±0.71c12.84±0.60c11.98±0.19bc11.89±0.97b9.93±0.77a
    肠体比 Relative intestine
    length
    2.06±0.18d1.96±0.09cd1.95±0.10cd1.81±0.15bcd1.70±0.29ab1.58±0.18a1.54±0.14a
    肾指数 Kidney index0.26±0.05a0.30±0.05ab0.32±0.03abc0.39±0.04bc0.40±0.09bc0.40±0.05bc0.43±0.08c
    脾指数 Spleen index0.10±0.03a0.11±0.01ab0.10±0.01a0.12±0.02ab0.12±0.01ab0.12±0.02ab0.14±0.02b
    腹腔脂肪指数
    Intraperitoneal
    fat body index
    2.63±0.54d2.37±0.20cd2.16±0.19c2.09±0.33c1.83±0.18b1.66±0.24b1.27±0.06a
    成活率 Survival rate (%)100.00100.00100.00100.00100.00100.00100.00
    注: 不同的字母表示不同处理之间的差异, 显著性P<0.05; 下同Notes: Different letters indicate differences between treatments at a significance of P<0.05. The same applies below
    下载: 导出CSV

    表  2   协方差矩阵法下的显著主成分载荷特征值分析

    Table  2   Eigen analysis of the covariance matrix loadings for significant principal components

    变量 VariablesPC1PC2PC3
    丙二醛MDA0.010.100.09
    过氧化氢酶CAT0.22–0.95–0.19
    超氧阴离子${\rm{O}}_2\cdot^{-}$0.000.020.01
    超氧化物歧化酶SOD0.940.26–0.23
    谷胱甘肽巯基转移酶GST0.27–0.140.95
    特征值 Eigen value96616.5216143.721096.24
    贡献率 Contribution rate (%)84.7914.170.96
    累计贡献率 Cumulative
    contribution rate (%)
    84.7998.9699.93
    注: 共选择5个抗氧化酶活性变量进行分析, PC1、PC2和PC3分别指主成分1、2和3, 表中的值表示负荷(指示主成分中变量关系的程度和方向), 有效载荷值(>0.5)用粗体数字表示, (+和–)符号分别表示正相关和负相关Note: A total of 5 antioxidant enzymes activity variables are selected for the analyses. PC1, PC2 and PC3 refer to principal components 1, 2 and 3, respectively. The values in the table represent loadings (indicating degree and direction of the relationship of the variables within a principal component). Significant loading values (>0.5) are indicated in bold numbers. (+ and –) signs indicate positive and negative correlations, respectively
    下载: 导出CSV

    表  3   不同越冬时间处理对草鱼肝胰脏组织脂肪酸组成的影响

    Table  3   Fatty acid composition of hepatopancreas in grass carp under different overwintering time treatments (% total fatty acid; mean±SD; n=3)

    脂肪酸
    Fatty acid
    组别 Group
    第0周
    Week 0
    第1周
    Week 1
    第2周
    Week 2
    第4周
    Week 4
    第8周
    Week 8
    第12周
    Week 12
    第16周
    Week 16
    C14:02.25±0.11b2.09±0.07ab1.87±0.05a3.04±0.06c2.86±0.35c1.87±0.12b2.91±0.16c
    C16:022.24±0.43bc22.26±0.69bc19.57±0.68a19.95±0.79a22.17±0.12b20.50±0.27a23.20±0.52c
    C18:09.50±0.38d7.77±0.19c6.17±0.21ab5.62±0.46a7.41±0.61c6.48±0.21b9.21±0.13d
    ∑SFA33.99±0.56c32.12±0.81b27.61±0.79a28.61±1.14a32.44±0.79b28.85±0.48a35.32±0.53d
    C16:1n-75.87±0.09c6.66±0.12d4.69±0.17a9.86±0.53f7.69±0.26e5.34±0.20b5.92±0.23c
    C18:1n-945.25±0.24e44.24±0.37e42.87±1.32d45.30±0.72e38.02±0.83c36.40±0.64b33.81±0.80a
    ∑MUFA51.12±0.31e50.91±0.26e47.56±1.46d55.16±1.25f45.70±0.88c41.74±0.82b39.72±0.57a
    C18:2n-69.36±0.51a12.22±0.95b20.48±0.92d10.34±0.24a12.65±0.18b21.08±1.01d15.00±0.35c
    C18:3n-60.34±0.05a0.40±0.03a0.59±0.04b0.35±0.04a0.55±0.16b0.66±0.03b0.69±0.12b
    C20:3n-60.68±0.19b0.64±0.03b0.82±0.06c0.33±0.09a0.30±0.07a0.22±0.02a0.32±0.03a
    C22:4n-60.16±0.03a0.15±0.01a0.20±0.05a0.33±0.05a0.64±0.40b0.34±0.03a1.15±0.03c
    ∑n-6PUFA10.54±0.35a13.42±0.96b22.09±0.99d11.36±0.26a14.14±0.19b22.30±0.98d17.16±0.26c
    C18:3n-32.57±0.11c2.11±0.10b1.60±0.12a2.64±0.25c2.39±0.14c1.47±0.03a1.36±0.18a
    C20:5n-3 EPA1.06±0.04b0.75±0.18a0.52±0.07a1.23±0.12b3.68±0.23e3.40±0.26d3.08±0.08c
    C22:6n-3 DHA0.70±0.10ab0.70±0.15ab0.61±0.06a1.00±0.19b1.65±0.10c2.26±0.30d3.35±0.32e
    ∑n-3PUFA4.34±0.08c3.55±0.37b2.73±0.16a4.87±0.15d7.72±0.27f7.11±0.07e7.80±0.36f
    ∑PUFA14.89±0.27a16.97±0.59b24.83±0.86d16.22±0.19b21.85±0.15c29.41±0.97e24.96±0.31d
    n-3/n-6∑PUFA0.41±0.02d0.27±0.05b0.12±0.02a0.43±0.02d0.55±0.02e0.32±0.02c0.45±0.02d
    合计 Total100.00100.00100.00100.00100.00100.00100.00
    下载: 导出CSV

    表  4   不同越冬时间处理对草鱼肌肉组织脂肪酸组成的影响

    Table  4   Fatty acid composition of muscle in grass carp under different overwintering time treatments (% total fatty acid; mean±SD; n=3)

    脂肪酸
    Fatty acid
    组别 Group
    第0周
    Week 0
    第1周
    Week 1
    第2周
    Week 2
    第4周
    Week 4
    第8周
    Week 8
    第12周
    Week 12
    第16周
    Week 16
    C14:02.33±0.15b3.25±0.11d3.57±0.08e3.68±0.26e3.63±0.13e2.85±0.07c1.63±0.09a
    C16:021.67±0.25b20.74±0.73ab21.08±0.34b22.71±0.99c23.91±0.27d21.52±0.14b19.86±0.82a
    C18:06.14±0.36a9.20±0.94d11.18±0.57e10.60±0.22e8.19±0.19c7.24±0.35b5.54±0.38a
    ∑SFA30.15±0.39b33.20±0.42d35.84±0.87ef36.99±1.23f35.73±0.31e31.61±0.55c27.03±0.51a
    C16:1n-75.77±0.27b6.50±0.14c4.71±0.28a5.95±0.52bc5.93±0.29bc4.98±0.13a5.13±0.36a
    C18:1n-939.98±0.41d35.99±0.72c30.56±0.32a30.67±1.27a33.34±0.69b36.27±0.32c40.25±0.20d
    ∑MUFA45.75±0.58d42.49±0.72c35.27±0.05a36.63±1.52a39.27±0.96b41.24±0.34c45.38±0.55d
    C18:2n-618.16±0.14b14.27±0.99a17.96±0.36b13.16±0.96a13.46±0.50a20.19±0.78c20.94±0.30c
    C18:3n-60.84±0.04c0.66±0.04bc0.64±0.19bc0.34±0.11a0.48±0.07ab0.53±0.02ab0.70±0.24bc
    C20:3n-60.55±0.06a1.22±0.27b0.81±0.05a1.30±0.25b0.63±0.22a0.74±0.06a0.71±0.06a
    C22:4n-60.56±0.08a0.55±0.14a0.83±0.05b1.41±0.22c1.23±0.15c0.54±0.11a0.61±0.08a
    ∑n-6PUFA20.10±0.03b16.71±0.76a20.25±0.55b16.21±0.59a15.81±0.66a22.00±0.63c22.96±0.19d
    C18:3n-31.37±0.051.55±0.121.60±0.081.12±0.631.16±0.101.25±0.061.30±0.12
    C20:5n-3 EPA1.36±0.17a2.87±0.20c3.67±0.08d3.59±0.16d3.62±0.29d1.88±0.13b1.83±0.33b
    C22:6n-3 DHA1.27±0.10a3.19±0.74c3.37±0.23c5.46±0.15d4.42±0.42e2.02±0.37b1.50±0.15ab
    ∑n-3PUFA4.00±0.24a7.61±1.06c8.64±0.38d10.17±0.62e9.19±0.07d5.15±0.44b4.63±0.47ab
    ∑PUFA24.10±0.21a24.32±1.03a28.89±0.89d26.38±0.31b25.00±0.73a27.14±0.21bc27.59±0.29c
    n-3/n-6∑PUFA0.20±0.01a0.46±0.07b0.43±0.01b0.63±0.06c0.58±0.02c0.23±0.03a0.20±0.02a
    合计 Total100.00100.00100.00100.00100.00100.00100.00
    下载: 导出CSV

    表  5   不同越冬时间处理对草鱼腹腔脂肪组织脂肪酸组成的影响

    Table  5   Fatty acid composition of adipose tissue in grass carp under different overwintering time treatments (% total fatty acid; mean±SD; n=3)

    脂肪酸
    Fatty acid
    组别 Group
    第0周
    Week 0
    第1周
    Week 1
    第2周
    Week 2
    第4周
    Week 4
    第8周
    Week 8
    第12周
    Week 12
    第16周
    Week 16
    C14:02.15±0.02b2.08±0.25b1.98±0.06b2.11±0.03b1.64±0.02a1.69±0.03a1.76±0.04a
    C16:020.00±0.42c19.65±0.22c22.05±0.08e21.36±0.29d21.04±0.36d18.37±0.04a18.97±0.31b
    C18:04.54±0.28a4.95±0.09b5.50±0.14c5.83±0.35c5.11±0.13b4.77±0.15ab4.51±0.03a
    ∑SFA26.69±0.18b26.68±0.38b29.53±0.19d29.30±0.52d27.79±0.38c24.83±0.15a25.24±0.28a
    C16:1n-76.48±0.14b7.14±0.09c5.35±0.09a6.40±0.38b5.65±0.16a5.51±0.07a7.04±0.15c
    C18:1n-943.62±0.22a44.51±0.69b43.62±0.28a46.54±0.34c43.59±0.59a43.65±0.06a44.58±0.22b
    ∑MUFA50.10±0.35b51.65±0.61c48.97±0.35a52.94±0.07d49.24±0.43a49.16±0.13a51.62±0.29c
    C18:2n-619.97±0.14d18.54±0.12b18.28±0.18b14.79±0.62a19.79±0.25cd22.54±0.11e19.41±0.14c
    C18:3n-60.43±0.12a0.53±0.06abc0.56±0.03bc0.45±0.06ab0.52±0.01abc0.71±0.04d0.57±0.03c
    C20:3n-60.19±0.05a0.60±0.06b0.56±0.15b0.47±0.06b0.54±0.11b0.56±0.04b0.59±0.05b
    C22:4n-60.21±0.08ab0.15±0.06ab0.13±0.10a0.16±0.03ab0.20±0.03ab0.26±0.04b0.22±0.01ab
    ∑n-6PUFA20.80±0.22c19.81±0.23b19.54±0.14b15.87±0.63a21.04±0.27c24.08±0.04d20.79±0.19c
    C18:3n-31.66±0.21b1.49±0.15ab1.42±0.04a1.47±0.04ab1.38±0.14a1.38±0.08a1.65±0.05b
    C20:5n-3 EPA0.20±0.06a0.20±0.09a0.39±0.21b0.27±0.02ab0.38±0.04ab0.19±0.04a0.40±0.06b
    C22:6n-3 DHA0.58±0.07c0.16±0.05a0.15±0.03a0.15±0.03a0.18±0.04a0.35±0.03b0.30±0.03b
    ∑n-3PUFA2.44±0.31b1.85±0.26a1.96±0.14a1.88±0.05a1.94±0.17a1.92±0.06a2.35±0.08b
    ∑PUFA23.24±0.18c21.67±0.47b21.5±0.20b17.76±0.59a22.97±0.28c26.00±0.02d23.14±0.11c
    n-3/n-6∑PUFA0.12±0.02c0.09±0.01ab0.10±0.01bc0.12±0.01d0.09±0.01ab0.08±0.01a0.11±0.01c
    合计 Total100.00100.00100.00100.00100.00100.00100.00
    下载: 导出CSV

    表  6   协方差矩阵法下的显著主成分载荷特征值分析

    Table  6   Eigen analysis of the covariance matrix loadings for significant principal components

    脂肪酸 Fatty acid肝胰脏 Hepatopancreas肌肉 Muscle脂肪组织 Adipose tissue
    Factor 1Factor 2Factor 3Factor 1Factor 2Factor 3Factor 1Factor 2Factor 3
    C14:00.01–0.050.110.09–0.010.080.03–0.01–0.14
    C16:00.01–0.23–0.180.10–0.120.640.200.45–0.15
    C18:00.01–0.20–0.340.240.10–0.330.080.090.32
    ∑SFA0.03–0.48–0.410.43–0.030.390.310.540.04
    C16:1n-70.10–0.040.490.01–0.15–0.080.04–0.28–0.60
    C18:1n-90.380.41–0.28–0.47–0.26–0.040.18–0.290.60
    ∑MUFA0.480.370.21–0.46–0.41–0.120.22–0.570.00
    C18:2n-6–0.390.38–0.15–0.310.520.21–0.490.070.06
    C18:3n-6–0.010.000.00–0.010.000.01–0.010.000.05
    C20:3n-60.010.02–0.070.02–0.01–0.140.00–0.010.07
    C22:4n-6–0.02–0.040.030.04–0.010.00–0.010.000.00
    ∑n-6PUFA–0.410.35–0.18–0.270.490.07–0.510.060.18
    C18:3n-30.05–0.010.060.000.01–0.080.00–0.03–0.13
    C20:5n-3 EPA–0.08–0.130.240.110.01–0.110.000.02–0.03
    C22:6n-3 DHA–0.07–0.110.090.18–0.06–0.15–0.02–0.01–0.07
    ∑n-3PUFA–0.10–0.250.380.29–0.05–0.34–0.01–0.03–0.23
    PUFA–0.510.110.200.030.45–0.27–0.530.03–0.05
    n-3/n-6∑PUFA0.00–0.020.030.02–0.01–0.020.000.00–0.01
    特征值 Eigen value99.6231.066.5660.6714.332.0820.573.940.42
    贡献率 Contribution rate (%)71.9922.454.7477.0218.192.6481.5815.651.67
    累计贡献率 Cumulative contribution rate (%)71.9994.4499.1877.0295.2197.8581.5897.2398.90
    注: 共选择18个脂肪酸变量进行分析; SFA. 饱和脂肪酸, MUFA. 单不饱和脂肪酸, HUFA. 高不饱和脂肪酸, PUFA. 多不饱和脂肪酸Note: A total of 18 fatty acid variables are selected for the analyses. SFA. Saturated fatty acid, MUFA. Monounsaturated fatty acid, HUFA. Highly-unsaturated fatty acid, PUFA. Poly-unsaturated fatty acid
    下载: 导出CSV

    表  7   相关矩阵法下的显著主成分载荷特征值分析

    Table  7   Eigen analysis of the correlation matrix loadings for significant principal components

    变量 Variables肝胰脏 Hepatopancreas肌肉 Muscle脂肪组织 Adipose tissues
    Factor 1Factor 2Factor 3Factor 1Factor 2Factor 3Factor 1Factor 2Factor 3
    C14:00.03–0.26–0.26–0.25–0.01–0.040.140.230.15
    C16:0–0.06–0.260.33–0.170.30–0.200.270.000.28
    C18:0–0.02–0.220.46–0.23–0.210.000.30–0.060.01
    ∑SFA–0.04–0.280.34–0.26–0.01–0.090.300.010.23
    C16:1n-70.16–0.17–0.40–0.090.390.32–0.040.29–0.30
    C18:1n-90.320.120.010.250.170.140.200.16–0.35
    ∑MUFA0.320.05–0.110.280.230.190.130.25–0.39
    C18:2n-6–0.240.24–0.030.24–0.22–0.17–0.29–0.190.10
    C18:3n-6–0.290.05–0.030.19–0.040.18–0.14–0.28–0.20
    C20:3n-60.160.200.35–0.15–0.090.200.03–0.18–0.39
    C22:4n-6–0.21–0.20–0.05–0.240.08–0.16–0.20–0.030.02
    ∑n-6PUFA–0.250.23–0.020.24–0.25–0.17–0.29–0.210.06
    C18:3n-30.29–0.14–0.120.03–0.260.24–0.110.320.02
    C20:5n-3 EPA–0.24–0.21–0.15–0.27–0.130.010.010.030.03
    C22:6n-3 DHA–0.28–0.17–0.04–0.280.02–0.03–0.230.150.26
    ∑n-3PUFA–0.22–0.26–0.15–0.28–0.070.01–0.190.280.17
    ∑PUFA–0.310.11–0.070.00–0.29–0.25–0.30–0.170.08
    n-3/n-6∑PUFA–0.01–0.36–0.14–0.280.050.060.060.360.08
    MDA0.080.260.030.210.100.080.160.080.40
    CAT–0.130.21–0.27–0.140.29–0.330.16–0.310.01
    ${\rm{O}}_2\cdot^{-}$–0.030.24–0.120.120.02–0.420.23–0.240.11
    SOD–0.240.100.160.190.13–0.260.28–0.14–0.01
    GST–0.230.160.050.100.27–0.400.27–0.180.01
    特征值 Eigen value8.877.092.9712.423.182.948.875.992.66
    贡献率 Contribution rate (%)38.5430.8312.9154.0113.8012.7838.5826.0311.58
    累计贡献率 Cumulative contribution rate (%)38.5469.3782.2854.0167.8280.5938.5864.6176.19
    注: 共选择24个变量进行分析Note: A total of 24 variables are selected for the analyses
    下载: 导出CSV
  • [1]

    Zhou J, Li N, Wang H, et al. Effects of salinity on growth, nutrient composition, fatty acid composition and energy metabolism of Scylla paramamosain during indoor overwintering [J]. Aquaculture Research, 2020, 51(5): 1834-1843. doi: 10.1111/are.14532

    [2]

    Song H, Xu D, Tian L, et al. Overwinter mortality in yellow drum (Nibea albiflora): insights from growth and immune responses to cold and starvation stress [J]. Fish & Shellfish Immunology, 2019, 92(4): 341-347.

    [3]

    Feiner Z S, Coulter D P, Guffey S C, et al. Does overwinter temperature affect maternal body composition and egg traits in yellow perch Perca flavescens [J]? Journal of Fish Biology, 2016, 88(4): 1524-1543.

    [4]

    Houston B E, Rooke A C, Brownscombe J W, et al. Overwinter survival, energy storage and reproductive allocation in the invasive round goby (Neogobius melanostomus) from a river system [J]. Ecology of Freshwater Fish, 2014, 23(2): 224-233. doi: 10.1111/eff.12071

    [5]

    Wu W, Ji H, Yu H, et al. Effect of refeeding dietary containing different protein and lipid levels on growth performance, body composition, digestive enzyme activities and metabolic related gene expression of grass carp (Ctenopharyngodon idellus) after overwinter starvation [J]. Aquaculture, 2020(523): 735196-735207.

    [6]

    Hong Y, Huang Y, Yan G, et al. Antioxidative status, immunological responses, and heat shock protein expression in hepatopancreas of chinese mitten crab, Eriocheir sinensis under the exposure of glyphosate [J]. Fish & Shellfish Immunology, 2019(86): 840-845.

    [7]

    Omidi A, Namazi F, Jabire S, et al. The effects of starvation and refeeding on oxidative stress parameters (MDA, SOD, GPx), lipid profile, thyroid hormones and thyroid histopathology in male wistar rats [J]. International Archives of Medicine, 2016(9): 2109-2118.

    [8]

    Pajares M, Jiménez-Moreno N, Dias I H K, et al. Redox control of protein degradation [J]. Redox Biology, 2015(6): 409-420.

    [9]

    Luchetti F, Crinelli R, Cesarini E, et al. Endothelial cells, endoplasmic reticulum stress and oxysterols [J]. Redox Biology, 2017(13): 581-587.

    [10]

    Lv H, Liu Q, Wen Z, et al. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis [J]. Redox Biology, 2017(12): 311-324.

    [11] 农业部渔业局编制. 中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2000: 24-25.

    Compiled by Fishery Bureau of the Ministry of Agriculture. China Fisheries Statistics Yearbook [M]. Beijing: China Agriculture Press, 2020: 24-25.

    [12]

    Wu W, Sun J, Ji H, et al. AMP-activated protein kinase in the grass carp Ctenopharyngodon idellus: molecular characterization, tissue distribution and mRNA expression in response to overwinter starvation stress [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2020(246-247): 110457-110471.

    [13]

    Tian J J, Ji H, Wang Y F, et al. Lipid accumulation in grass carp (Ctenopharyngodon idellus) fed faba beans (Vicia faba L.) [J]. Fish Physiology and Biochemistry, 2019, 45(2): 631-642. doi: 10.1007/s10695-018-0589-7

    [14]

    Tian J, Lei C, Ji H. Influence of dietary linoleic acid (18: 2n-6) and α-linolenic acid (18: 3n-3) ratio on fatty acid composition of different tissues in freshwater fish songpu mirror carp, Cyprinus carpio [J]. Aquaculture Research, 2016, 47(12): 3811-3825. doi: 10.1111/are.12832

    [15]

    Chen Q, Jiang X, Han Q, et al. Growth, calcium content, proximate composition, and fatty acid composition of triangle sail mussel (Hyriopsis cumingii) fed five different microalgal diets [J]. Aquaculture, 2021(530): 735719-735730.

    [16]

    Nayak S, Koven W, Meiri I, et al. Dietary arachidonic acid affects immune function and fatty acid composition in cultured rabbitfish Siganus rivulatus [J]. Fish & Shellfish Immunology, 2017(68): 46-53.

    [17]

    Palma P F S, Bock C, Silva T S, et al. STC1 and PTHrP modify carbohydrate and lipid metabolism in liver of a teleost fish [J]. Scientific Reports, 2019, 9(1): 1-13. doi: 10.1038/s41598-018-37186-2

    [18]

    Yang B, Wang C, Tu Y, et al. Effects of repeated handling and air exposure on the immune response and the disease resistance of gibel carp (Carassius auratus gibelio) Over Winter [J]. Fish & Shellfish Immunology, 2015, 47(2): 933-941.

    [19]

    Sun S, Su Y, Yu H, et al. Starvation affects the intestinal microbiota structure and the expression of inflammatory-related genes of the juvenile blunt snout bream, Megalobrama amblycephala [J]. Aquaculture, 2020(517): 734764-734773.

    [20]

    Morshedi V, Kochanian P, Bahmani M, et al. Cyclical short-term starvation and refeeding provokes compensatory growth in sub-yearling siberian sturgeon, Acipenser baerii Brandt, 1869 [J]. Animal Feed Science and Technology, 2017(232): 207-214.

    [21]

    Favero G, Gimbo R Y, Montoya L N F, et al. A Fasting period during grow-out make juvenile pacu (Piaractus mesopotamicus) leaner but does not impair growth [J]. Aquaculture, 2020, 5(24): 735242-735248.

    [22]

    Chen J, Chen C, Tan Q. Ontogenic changes in the digestive enzyme activities and the effect of different starvation duration on the digestive enzyme activities of larval red swamp crayfish (Procambarus clarkii) [J]. Aquaculture Research, 2018, 49(2): 676-683. doi: 10.1111/are.13497

    [23]

    Alix M, Blondeau-Bidet E, Grousset E, et al. Effects of fasting and re-alimentation on gill and intestinal morphology and indicators of osmoregulatory capacity in genetically selected sea bass (Dicentrarchus labrax) populations with contrasting tolerance to fasting [J]. Aquaculture, 2017(468): 314-325.

    [24]

    Kuda O, Rossmeisl M, Kopecky J. Omega-3 fatty acids and adipose tissue biology [J]. Molecular Aspects of Medicine, 2018(64): 147-160.

    [25]

    Kondera E, Kościuszko A, Dmowska A, et al. Haematological and haematopoietic effects of feeding different diets and starvation in common carp Cyprinus carpio L. [J]. Journal of Applied Animal Research, 2017, 45(1): 623-628. doi: 10.1080/09712119.2016.1251926

    [26]

    Gou N, Ji H, Chang Z, et al. Effects of dietary essential fatty acid requirements on growth performance, fatty acid composition, biochemical parameters, antioxidant response and lipid related genes expression in juvenile Onychostoma macrolepis [J]. Aquaculture, 2020(528): 735590-735600.

    [27]

    Feng G, Shi X, Huang X, et al. Oxidative stress and antioxidant defenses after long-term fasting in blood of Chinese sturgeon (Acipenser sinensis) [J]. Procedia Environmental Sciences, 2011(8): 469-475.

    [28]

    Tian J, Tian J, Yang K, et al. Effect of dietary prickly ash (Zanthoxylum bungeanum) seeds (PAS) on growth, body composition, and health of juvenile jian carp (Cyprinus carpio var. jian) [J]. Aquaculture International, 2017, 25(1): 107-120. doi: 10.1007/s10499-016-0016-y

    [29]

    Shi X, Jin A, Sun J, et al. Α-lipoic acid ameliorates n-3highly-unsaturated fatty acids induced lipid peroxidation via regulating antioxidant defenses in grass carp (Ctenopharyngodon idellus) [J]. Fish & Shellfish Immunology, 2017(67): 359-367.

    [30]

    Salmerón C. Adipogenesis in fish [J]. The Journal of Experimental Biology, 2018, 221(Suppl 1): b161588- b161598.

    [31]

    Houston S J S, Karalazos V, Tinsley J, et al. The compositional and metabolic responses of gilthead seabream (Sparus aurata) to a gradient of dietary fish oil and associated n-3 long-chain pufa content [J]. British Journal of Nutrition, 2017, 118(12): 1010-1022. doi: 10.1017/S0007114517002975

    [32]

    Amigo I, Kowaltowski A J. Dietary restriction in cerebral bioenergetics and redox state [J]. Redox Biology, 2014(2): 296-304.

    [33] 邢薇, 郁欢欢, 于凤祥, 等. 饲料脂肪水平对杂交鲟幼鱼生长、饲料消化率、抗氧化水平和肌肉脂肪酸组成的影响 [J]. 水生生物学报, 2021, 45(2): 250-258. doi: 10.7541/2021.2019.256

    Xing W, Yu H H, Yu F X, et al. Effects of dietary lipid levels on growth performance, feed digestibility, antioxidant status and fillet fatty acid compositions of juvenile hybrid sturgeon [J]. Acta Hydrobiologica Sinica, 2021, 45(2): 250-258. doi: 10.7541/2021.2019.256

图(5)  /  表(7)
计量
  • 文章访问数:  1113
  • HTML全文浏览量:  457
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-16
  • 修回日期:  2021-06-17
  • 录用日期:  2022-07-04
  • 网络出版日期:  2022-07-27
  • 发布日期:  2022-08-14

目录

    /

    返回文章
    返回