EFFECTS OF OVERWINTERING ON ANTIOXIDANT CAPACITY AND FATTY ACID COMPOSITION IN GRASS CARP (CTENOPHARYNGODON IDELLUS)
-
摘要: 为了探讨草鱼(Ctenopharyngodon idellus)越冬期间氧化应激状况及其与组织脂肪酸比例变化的关联性, 将草鱼[初始体重 (1053.33±16.11) g]分别置于室外水泥培育池, 自然越冬处理0、1周、2周、4周、8周、12周和16周后, 进行生物学性状指标, 肝胰脏、肌肉、前肠、脂肪组织和血清抗氧化能力指标及肝胰脏、肌肉、脂肪组织脂肪酸比例的测定, 同时进行了抗氧化能力指标与脂肪酸比例间的关联性分析。结果表明, 在越冬期间, 草鱼机体体重、肝胰脏重量、肥满度、肝体比、脏体比、肠体比和腹腔脂肪指数均发生显著下降(P<0.05); 但是肾指数和脾指数显著上升(P>0.05)。氧化胁迫应激最大的3个组织分别是脂肪组织、肝胰脏和肌肉。肝胰脏PUFA比例对总体脂肪酸比例产生了主要的影响(主成分载荷特征值>0.5), 肌肉C18﹕2n-6和C16﹕0比例对总体脂肪酸组成产生主要影响, 脂肪组织中的PUFA、n-6PUFA、SFA和MUFA比例对总体脂肪酸比例产生了主要影响; 关联分析表明草鱼脂肪组织中SFA在越冬期间供应能量同时, 与氧化应激乃至机体损伤显示正相关关联性, 肌肉中PUFA和MUFA比例变化分别与氧化应激, 甚至机体损伤显示主要正相关的关联性, 而肝胰脏中MUFA比例变化与氧化应激乃至机体损伤显示主要正相关的关联性。研究表明, 越冬期间草鱼机体受到了很强的氧化应激现象, 其中脂肪组织受到的应激最强烈; 肝胰脏、肌肉和脂肪组织脂肪酸比例发生了显著变化, 同时与各组织抗氧化性指标进行关联分析发现: 脂肪组织中的SFA、肝胰脏中的MUFA、肌肉中的PUFA和MUFA与氧化应激乃至机体损伤间具有较为直接的联系。研究提供的基准研究信息可用于制定有效越冬前投喂的策略, 同时在越冬期间以及越冬后的恢复阶段做出适当的管理与投喂决策, 以期改善草鱼越冬后存活率及其生产效率。Abstract: Grass carp Ctenopharyngodon idellus often faces the stress of overwintering in natural environment. It has been reported that fish can induce excessive production of reactive oxygen species (ROS) and cause oxidative stress during overwintering. Excessive ROS may destroy the balance and stability of antioxidant system, resulting in cell damage, nuclear apoptosis and fatty acid peroxidation. Especially during the period of overwintering, the fatty acids as the main energy supply material, have been greatly threatened and challenged because of the fatty acids maybe influenced by ROS. The most direct effect is to reduce the level of energy supply, the antioxidant capacity and immunity of the body, and increase the mortality rate, and to explore the relationship between oxidative stress and the change of fatty acid composition in tissues, In order to explore the metabolic adaptation mechanism of energy utilization of grass carp during overwintering, the initial body weight of (1053.33±16.11) g was investigated, 45 fish were randomly divided into three repetitions. When the water temperature (15℃) naturally decreased to the point that the grass carp ceased ingestion, the experiment began. When the water temperature (15℃) naturally rose to the point that the grass carp refeeding commenced, the overwintering period and our experiments were concluded. Samples were collected after 0, 1, 2, 4, 8, 12 and 16 weeks of natural overwintering. Biological indexes, antioxidant capacity of hepatopancreas, muscle, foregut, adipose tissue and serum and the fatty acid composition of hepatopancreas, muscle and adipose tissue were measured. The relationship between antioxidant capacity index and fatty acid composition was also studied association analysis. The results showed that the BW, CF, HSI, VSI, IFI and LW decreased significantly (P<0.05), while KI and SI increased significantly (P<0.05). Adipose tissue, hepatopancreas and muscle are the three tissues with the largest oxidative stress. During the overwintering period, the proportion of PUFA in hepatopancreas had a major effect on the total fatty acid composition (principal component load characteristic value >0.5), the proportion of C18﹕2n-6 and C16﹕0 in muscle had a major impact on the total fatty acid composition, and the proportion of PUFA, n-6 PUFA, SFA and MUFA in adipose tissue had a major impact on the total fatty acid composition. At the same time, association analysis showed that SFA in adipose tissue of grass carp was mainly positively correlated with oxidative stress and the fish body damage during the period of overwintering. PUFA and MUFA in muscle were positively correlated with oxidative stress and the fish body damage, while MUFA in hepatopancreas was mainly positively correlated with oxidative stress and the fish body damage. This study showed that the grass carp was subjected to strong oxidative stress during the period of overwintering, especially in adipose tissue; the fatty acid ratio of hepatopancreas, muscle and adipose tissue changed significantly, the correlation analysis with antioxidant index showed that SFA in adipose tissue, MUFA in hepatopancreas, PUFA and MUFA in muscle were related to oxidative stress have a more direct relationship between stimulation and injury. The baseline information provided in this study can be used to formulate effective feeding strategies before overwintering, and to make appropriate management and feeding decisions during the period of overwintering, and the recovery stage after overwintering and improving the survival rate and production efficiency of grass carp after overwintering.
-
-
图 2 通过分析不同越冬时间处理下草鱼各组织中抗氧化能力, 根据选定的抗氧化酶活性含量变量(图 1)生成PCA评分图和载荷图
A. 评分图解释了变量之间的相关性及基于分析所得得分的样本之间的聚类, 椭圆对应于95%的置信区间, 分别对应不同组织; B. 向量表示导致方差的变量, 箭头指示抗氧化酶活性变量如何促进PC1和PC2的形成; 下同
Figure 2. PCA score plot and loading plot are generated based on selected antioxidant capacity variables (Fig. 1) obtained by analyzing the fatty acid composition in tissue and serum of grass carp under different overwintering time treatments
A. The score plot explains the correlation between variables and the clustering between samples based on the scores obtained from the analysis. The ellipse corresponds to the 95% confidence interval and corresponds to different organizations respectively; B. The vector represents the variable leading to the variance, and the arrow indicates how the antioxidant enzyme activity variable promotes the formation of PC1 and PC2; The same applies below
图 3 通过分析不同越冬时间处理下草鱼肝胰脏、肌肉和脂肪组织脂肪酸组成, 根据选定的脂肪酸变量(表 3—5)生成PCA评分图和载荷图
Figure 3. PCA score plot and loading plot are generated based on selected fatty acid variables (Tab. 3—5) obtained by analyzing the fatty acid composition in hepatopancreas, muscle and adipose tissue of grass carp under different overwintering time treatments
表 1 不同越冬时间处理对草鱼生物学性状的影响
Table 1 Effects of different overwintering time treatment on biometric parameters in grass carp (n=3)
组别 Group 组别 Group 第0周
Week 0第1周
Week 1第2周
Week 2第4周
Week 4第8周
Week 8第12周
Week 12第16周
Week 16体重 Body weight (g) 1051.67±20.82e 981.67±20.45de 931.67±24.66d 896.67±25.66c 861.67±22.52bc 848.33±10.72b 816.67±19.83a 肝胰脏重 Hepatopancreas
weight (g)32.8±2.98c 19.47±2.17b 16.83±1.25b 18.2±1.67b 16.43±1.12ab 14.69±0.94a 13.34±0.88a 肥满度 Condition
factor (g/cm3)2.06±0.09c 1.94±0.03bc 1.92±0.07bc 1.91±0.14bc 1.88±0.03bc 1.85±0.14ab 1.71±0.08a 肝体比 Hepatosomatic
index3.11±0.63b 2.94±0.37b 2.86±0.01ab 2.77±0.26ab 2.67±0.12ab 2.39±0.55ab 2.13±0.43a 脏体比 Viscerosomatic
index13.62±0.27d 13.44±0.46cd 12.76±0.71c 12.84±0.60c 11.98±0.19bc 11.89±0.97b 9.93±0.77a 肠体比 Relative intestine
length2.06±0.18d 1.96±0.09cd 1.95±0.10cd 1.81±0.15bcd 1.70±0.29ab 1.58±0.18a 1.54±0.14a 肾指数 Kidney index 0.26±0.05a 0.30±0.05ab 0.32±0.03abc 0.39±0.04bc 0.40±0.09bc 0.40±0.05bc 0.43±0.08c 脾指数 Spleen index 0.10±0.03a 0.11±0.01ab 0.10±0.01a 0.12±0.02ab 0.12±0.01ab 0.12±0.02ab 0.14±0.02b 腹腔脂肪指数
Intraperitoneal
fat body index2.63±0.54d 2.37±0.20cd 2.16±0.19c 2.09±0.33c 1.83±0.18b 1.66±0.24b 1.27±0.06a 成活率 Survival rate (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 注: 不同的字母表示不同处理之间的差异, 显著性P<0.05; 下同Notes: Different letters indicate differences between treatments at a significance of P<0.05. The same applies below 表 2 协方差矩阵法下的显著主成分载荷特征值分析
Table 2 Eigen analysis of the covariance matrix loadings for significant principal components
变量 Variables PC1 PC2 PC3 丙二醛MDA 0.01 0.10 0.09 过氧化氢酶CAT 0.22 –0.95 –0.19 超氧阴离子 ${\rm{O}}_2\cdot^{-}$ 0.00 0.02 0.01 超氧化物歧化酶SOD 0.94 0.26 –0.23 谷胱甘肽巯基转移酶GST 0.27 –0.14 0.95 特征值 Eigen value 96616.52 16143.72 1096.24 贡献率 Contribution rate (%) 84.79 14.17 0.96 累计贡献率 Cumulative
contribution rate (%)84.79 98.96 99.93 注: 共选择5个抗氧化酶活性变量进行分析, PC1、PC2和PC3分别指主成分1、2和3, 表中的值表示负荷(指示主成分中变量关系的程度和方向), 有效载荷值(>0.5)用粗体数字表示, (+和–)符号分别表示正相关和负相关Note: A total of 5 antioxidant enzymes activity variables are selected for the analyses. PC1, PC2 and PC3 refer to principal components 1, 2 and 3, respectively. The values in the table represent loadings (indicating degree and direction of the relationship of the variables within a principal component). Significant loading values (>0.5) are indicated in bold numbers. (+ and –) signs indicate positive and negative correlations, respectively 表 3 不同越冬时间处理对草鱼肝胰脏组织脂肪酸组成的影响
Table 3 Fatty acid composition of hepatopancreas in grass carp under different overwintering time treatments (% total fatty acid; mean±SD; n=3)
脂肪酸
Fatty acid组别 Group 第0周
Week 0第1周
Week 1第2周
Week 2第4周
Week 4第8周
Week 8第12周
Week 12第16周
Week 16C14:0 2.25±0.11b 2.09±0.07ab 1.87±0.05a 3.04±0.06c 2.86±0.35c 1.87±0.12b 2.91±0.16c C16:0 22.24±0.43bc 22.26±0.69bc 19.57±0.68a 19.95±0.79a 22.17±0.12b 20.50±0.27a 23.20±0.52c C18:0 9.50±0.38d 7.77±0.19c 6.17±0.21ab 5.62±0.46a 7.41±0.61c 6.48±0.21b 9.21±0.13d ∑SFA 33.99±0.56c 32.12±0.81b 27.61±0.79a 28.61±1.14a 32.44±0.79b 28.85±0.48a 35.32±0.53d C16:1n-7 5.87±0.09c 6.66±0.12d 4.69±0.17a 9.86±0.53f 7.69±0.26e 5.34±0.20b 5.92±0.23c C18:1n-9 45.25±0.24e 44.24±0.37e 42.87±1.32d 45.30±0.72e 38.02±0.83c 36.40±0.64b 33.81±0.80a ∑MUFA 51.12±0.31e 50.91±0.26e 47.56±1.46d 55.16±1.25f 45.70±0.88c 41.74±0.82b 39.72±0.57a C18:2n-6 9.36±0.51a 12.22±0.95b 20.48±0.92d 10.34±0.24a 12.65±0.18b 21.08±1.01d 15.00±0.35c C18:3n-6 0.34±0.05a 0.40±0.03a 0.59±0.04b 0.35±0.04a 0.55±0.16b 0.66±0.03b 0.69±0.12b C20:3n-6 0.68±0.19b 0.64±0.03b 0.82±0.06c 0.33±0.09a 0.30±0.07a 0.22±0.02a 0.32±0.03a C22:4n-6 0.16±0.03a 0.15±0.01a 0.20±0.05a 0.33±0.05a 0.64±0.40b 0.34±0.03a 1.15±0.03c ∑n-6PUFA 10.54±0.35a 13.42±0.96b 22.09±0.99d 11.36±0.26a 14.14±0.19b 22.30±0.98d 17.16±0.26c C18:3n-3 2.57±0.11c 2.11±0.10b 1.60±0.12a 2.64±0.25c 2.39±0.14c 1.47±0.03a 1.36±0.18a C20:5n-3 EPA 1.06±0.04b 0.75±0.18a 0.52±0.07a 1.23±0.12b 3.68±0.23e 3.40±0.26d 3.08±0.08c C22:6n-3 DHA 0.70±0.10ab 0.70±0.15ab 0.61±0.06a 1.00±0.19b 1.65±0.10c 2.26±0.30d 3.35±0.32e ∑n-3PUFA 4.34±0.08c 3.55±0.37b 2.73±0.16a 4.87±0.15d 7.72±0.27f 7.11±0.07e 7.80±0.36f ∑PUFA 14.89±0.27a 16.97±0.59b 24.83±0.86d 16.22±0.19b 21.85±0.15c 29.41±0.97e 24.96±0.31d n-3/n-6∑PUFA 0.41±0.02d 0.27±0.05b 0.12±0.02a 0.43±0.02d 0.55±0.02e 0.32±0.02c 0.45±0.02d 合计 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 表 4 不同越冬时间处理对草鱼肌肉组织脂肪酸组成的影响
Table 4 Fatty acid composition of muscle in grass carp under different overwintering time treatments (% total fatty acid; mean±SD; n=3)
脂肪酸
Fatty acid组别 Group 第0周
Week 0第1周
Week 1第2周
Week 2第4周
Week 4第8周
Week 8第12周
Week 12第16周
Week 16C14:0 2.33±0.15b 3.25±0.11d 3.57±0.08e 3.68±0.26e 3.63±0.13e 2.85±0.07c 1.63±0.09a C16:0 21.67±0.25b 20.74±0.73ab 21.08±0.34b 22.71±0.99c 23.91±0.27d 21.52±0.14b 19.86±0.82a C18:0 6.14±0.36a 9.20±0.94d 11.18±0.57e 10.60±0.22e 8.19±0.19c 7.24±0.35b 5.54±0.38a ∑SFA 30.15±0.39b 33.20±0.42d 35.84±0.87ef 36.99±1.23f 35.73±0.31e 31.61±0.55c 27.03±0.51a C16:1n-7 5.77±0.27b 6.50±0.14c 4.71±0.28a 5.95±0.52bc 5.93±0.29bc 4.98±0.13a 5.13±0.36a C18:1n-9 39.98±0.41d 35.99±0.72c 30.56±0.32a 30.67±1.27a 33.34±0.69b 36.27±0.32c 40.25±0.20d ∑MUFA 45.75±0.58d 42.49±0.72c 35.27±0.05a 36.63±1.52a 39.27±0.96b 41.24±0.34c 45.38±0.55d C18:2n-6 18.16±0.14b 14.27±0.99a 17.96±0.36b 13.16±0.96a 13.46±0.50a 20.19±0.78c 20.94±0.30c C18:3n-6 0.84±0.04c 0.66±0.04bc 0.64±0.19bc 0.34±0.11a 0.48±0.07ab 0.53±0.02ab 0.70±0.24bc C20:3n-6 0.55±0.06a 1.22±0.27b 0.81±0.05a 1.30±0.25b 0.63±0.22a 0.74±0.06a 0.71±0.06a C22:4n-6 0.56±0.08a 0.55±0.14a 0.83±0.05b 1.41±0.22c 1.23±0.15c 0.54±0.11a 0.61±0.08a ∑n-6PUFA 20.10±0.03b 16.71±0.76a 20.25±0.55b 16.21±0.59a 15.81±0.66a 22.00±0.63c 22.96±0.19d C18:3n-3 1.37±0.05 1.55±0.12 1.60±0.08 1.12±0.63 1.16±0.10 1.25±0.06 1.30±0.12 C20:5n-3 EPA 1.36±0.17a 2.87±0.20c 3.67±0.08d 3.59±0.16d 3.62±0.29d 1.88±0.13b 1.83±0.33b C22:6n-3 DHA 1.27±0.10a 3.19±0.74c 3.37±0.23c 5.46±0.15d 4.42±0.42e 2.02±0.37b 1.50±0.15ab ∑n-3PUFA 4.00±0.24a 7.61±1.06c 8.64±0.38d 10.17±0.62e 9.19±0.07d 5.15±0.44b 4.63±0.47ab ∑PUFA 24.10±0.21a 24.32±1.03a 28.89±0.89d 26.38±0.31b 25.00±0.73a 27.14±0.21bc 27.59±0.29c n-3/n-6∑PUFA 0.20±0.01a 0.46±0.07b 0.43±0.01b 0.63±0.06c 0.58±0.02c 0.23±0.03a 0.20±0.02a 合计 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 表 5 不同越冬时间处理对草鱼腹腔脂肪组织脂肪酸组成的影响
Table 5 Fatty acid composition of adipose tissue in grass carp under different overwintering time treatments (% total fatty acid; mean±SD; n=3)
脂肪酸
Fatty acid组别 Group 第0周
Week 0第1周
Week 1第2周
Week 2第4周
Week 4第8周
Week 8第12周
Week 12第16周
Week 16C14:0 2.15±0.02b 2.08±0.25b 1.98±0.06b 2.11±0.03b 1.64±0.02a 1.69±0.03a 1.76±0.04a C16:0 20.00±0.42c 19.65±0.22c 22.05±0.08e 21.36±0.29d 21.04±0.36d 18.37±0.04a 18.97±0.31b C18:0 4.54±0.28a 4.95±0.09b 5.50±0.14c 5.83±0.35c 5.11±0.13b 4.77±0.15ab 4.51±0.03a ∑SFA 26.69±0.18b 26.68±0.38b 29.53±0.19d 29.30±0.52d 27.79±0.38c 24.83±0.15a 25.24±0.28a C16:1n-7 6.48±0.14b 7.14±0.09c 5.35±0.09a 6.40±0.38b 5.65±0.16a 5.51±0.07a 7.04±0.15c C18:1n-9 43.62±0.22a 44.51±0.69b 43.62±0.28a 46.54±0.34c 43.59±0.59a 43.65±0.06a 44.58±0.22b ∑MUFA 50.10±0.35b 51.65±0.61c 48.97±0.35a 52.94±0.07d 49.24±0.43a 49.16±0.13a 51.62±0.29c C18:2n-6 19.97±0.14d 18.54±0.12b 18.28±0.18b 14.79±0.62a 19.79±0.25cd 22.54±0.11e 19.41±0.14c C18:3n-6 0.43±0.12a 0.53±0.06abc 0.56±0.03bc 0.45±0.06ab 0.52±0.01abc 0.71±0.04d 0.57±0.03c C20:3n-6 0.19±0.05a 0.60±0.06b 0.56±0.15b 0.47±0.06b 0.54±0.11b 0.56±0.04b 0.59±0.05b C22:4n-6 0.21±0.08ab 0.15±0.06ab 0.13±0.10a 0.16±0.03ab 0.20±0.03ab 0.26±0.04b 0.22±0.01ab ∑n-6PUFA 20.80±0.22c 19.81±0.23b 19.54±0.14b 15.87±0.63a 21.04±0.27c 24.08±0.04d 20.79±0.19c C18:3n-3 1.66±0.21b 1.49±0.15ab 1.42±0.04a 1.47±0.04ab 1.38±0.14a 1.38±0.08a 1.65±0.05b C20:5n-3 EPA 0.20±0.06a 0.20±0.09a 0.39±0.21b 0.27±0.02ab 0.38±0.04ab 0.19±0.04a 0.40±0.06b C22:6n-3 DHA 0.58±0.07c 0.16±0.05a 0.15±0.03a 0.15±0.03a 0.18±0.04a 0.35±0.03b 0.30±0.03b ∑n-3PUFA 2.44±0.31b 1.85±0.26a 1.96±0.14a 1.88±0.05a 1.94±0.17a 1.92±0.06a 2.35±0.08b ∑PUFA 23.24±0.18c 21.67±0.47b 21.5±0.20b 17.76±0.59a 22.97±0.28c 26.00±0.02d 23.14±0.11c n-3/n-6∑PUFA 0.12±0.02c 0.09±0.01ab 0.10±0.01bc 0.12±0.01d 0.09±0.01ab 0.08±0.01a 0.11±0.01c 合计 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 表 6 协方差矩阵法下的显著主成分载荷特征值分析
Table 6 Eigen analysis of the covariance matrix loadings for significant principal components
脂肪酸 Fatty acid 肝胰脏 Hepatopancreas 肌肉 Muscle 脂肪组织 Adipose tissue Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 C14:0 0.01 –0.05 0.11 0.09 –0.01 0.08 0.03 –0.01 –0.14 C16:0 0.01 –0.23 –0.18 0.10 –0.12 0.64 0.20 0.45 –0.15 C18:0 0.01 –0.20 –0.34 0.24 0.10 –0.33 0.08 0.09 0.32 ∑SFA 0.03 –0.48 –0.41 0.43 –0.03 0.39 0.31 0.54 0.04 C16:1n-7 0.10 –0.04 0.49 0.01 –0.15 –0.08 0.04 –0.28 –0.60 C18:1n-9 0.38 0.41 –0.28 –0.47 –0.26 –0.04 0.18 –0.29 0.60 ∑MUFA 0.48 0.37 0.21 –0.46 –0.41 –0.12 0.22 –0.57 0.00 C18:2n-6 –0.39 0.38 –0.15 –0.31 0.52 0.21 –0.49 0.07 0.06 C18:3n-6 –0.01 0.00 0.00 –0.01 0.00 0.01 –0.01 0.00 0.05 C20:3n-6 0.01 0.02 –0.07 0.02 –0.01 –0.14 0.00 –0.01 0.07 C22:4n-6 –0.02 –0.04 0.03 0.04 –0.01 0.00 –0.01 0.00 0.00 ∑n-6PUFA –0.41 0.35 –0.18 –0.27 0.49 0.07 –0.51 0.06 0.18 C18:3n-3 0.05 –0.01 0.06 0.00 0.01 –0.08 0.00 –0.03 –0.13 C20:5n-3 EPA –0.08 –0.13 0.24 0.11 0.01 –0.11 0.00 0.02 –0.03 C22:6n-3 DHA –0.07 –0.11 0.09 0.18 –0.06 –0.15 –0.02 –0.01 –0.07 ∑n-3PUFA –0.10 –0.25 0.38 0.29 –0.05 –0.34 –0.01 –0.03 –0.23 PUFA –0.51 0.11 0.20 0.03 0.45 –0.27 –0.53 0.03 –0.05 n-3/n-6∑PUFA 0.00 –0.02 0.03 0.02 –0.01 –0.02 0.00 0.00 –0.01 特征值 Eigen value 99.62 31.06 6.56 60.67 14.33 2.08 20.57 3.94 0.42 贡献率 Contribution rate (%) 71.99 22.45 4.74 77.02 18.19 2.64 81.58 15.65 1.67 累计贡献率 Cumulative contribution rate (%) 71.99 94.44 99.18 77.02 95.21 97.85 81.58 97.23 98.90 注: 共选择18个脂肪酸变量进行分析; SFA. 饱和脂肪酸, MUFA. 单不饱和脂肪酸, HUFA. 高不饱和脂肪酸, PUFA. 多不饱和脂肪酸Note: A total of 18 fatty acid variables are selected for the analyses. SFA. Saturated fatty acid, MUFA. Monounsaturated fatty acid, HUFA. Highly-unsaturated fatty acid, PUFA. Poly-unsaturated fatty acid 表 7 相关矩阵法下的显著主成分载荷特征值分析
Table 7 Eigen analysis of the correlation matrix loadings for significant principal components
变量 Variables 肝胰脏 Hepatopancreas 肌肉 Muscle 脂肪组织 Adipose tissues Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 C14:0 0.03 –0.26 –0.26 –0.25 –0.01 –0.04 0.14 0.23 0.15 C16:0 –0.06 –0.26 0.33 –0.17 0.30 –0.20 0.27 0.00 0.28 C18:0 –0.02 –0.22 0.46 –0.23 –0.21 0.00 0.30 –0.06 0.01 ∑SFA –0.04 –0.28 0.34 –0.26 –0.01 –0.09 0.30 0.01 0.23 C16:1n-7 0.16 –0.17 –0.40 –0.09 0.39 0.32 –0.04 0.29 –0.30 C18:1n-9 0.32 0.12 0.01 0.25 0.17 0.14 0.20 0.16 –0.35 ∑MUFA 0.32 0.05 –0.11 0.28 0.23 0.19 0.13 0.25 –0.39 C18:2n-6 –0.24 0.24 –0.03 0.24 –0.22 –0.17 –0.29 –0.19 0.10 C18:3n-6 –0.29 0.05 –0.03 0.19 –0.04 0.18 –0.14 –0.28 –0.20 C20:3n-6 0.16 0.20 0.35 –0.15 –0.09 0.20 0.03 –0.18 –0.39 C22:4n-6 –0.21 –0.20 –0.05 –0.24 0.08 –0.16 –0.20 –0.03 0.02 ∑n-6PUFA –0.25 0.23 –0.02 0.24 –0.25 –0.17 –0.29 –0.21 0.06 C18:3n-3 0.29 –0.14 –0.12 0.03 –0.26 0.24 –0.11 0.32 0.02 C20:5n-3 EPA –0.24 –0.21 –0.15 –0.27 –0.13 0.01 0.01 0.03 0.03 C22:6n-3 DHA –0.28 –0.17 –0.04 –0.28 0.02 –0.03 –0.23 0.15 0.26 ∑n-3PUFA –0.22 –0.26 –0.15 –0.28 –0.07 0.01 –0.19 0.28 0.17 ∑PUFA –0.31 0.11 –0.07 0.00 –0.29 –0.25 –0.30 –0.17 0.08 n-3/n-6∑PUFA –0.01 –0.36 –0.14 –0.28 0.05 0.06 0.06 0.36 0.08 MDA 0.08 0.26 0.03 0.21 0.10 0.08 0.16 0.08 0.40 CAT –0.13 0.21 –0.27 –0.14 0.29 –0.33 0.16 –0.31 0.01 ${\rm{O}}_2\cdot^{-}$ –0.03 0.24 –0.12 0.12 0.02 –0.42 0.23 –0.24 0.11 SOD –0.24 0.10 0.16 0.19 0.13 –0.26 0.28 –0.14 –0.01 GST –0.23 0.16 0.05 0.10 0.27 –0.40 0.27 –0.18 0.01 特征值 Eigen value 8.87 7.09 2.97 12.42 3.18 2.94 8.87 5.99 2.66 贡献率 Contribution rate (%) 38.54 30.83 12.91 54.01 13.80 12.78 38.58 26.03 11.58 累计贡献率 Cumulative contribution rate (%) 38.54 69.37 82.28 54.01 67.82 80.59 38.58 64.61 76.19 注: 共选择24个变量进行分析Note: A total of 24 variables are selected for the analyses -
[1] Zhou J, Li N, Wang H, et al. Effects of salinity on growth, nutrient composition, fatty acid composition and energy metabolism of Scylla paramamosain during indoor overwintering [J]. Aquaculture Research, 2020, 51(5): 1834-1843. doi: 10.1111/are.14532
[2] Song H, Xu D, Tian L, et al. Overwinter mortality in yellow drum (Nibea albiflora): insights from growth and immune responses to cold and starvation stress [J]. Fish & Shellfish Immunology, 2019, 92(4): 341-347.
[3] Feiner Z S, Coulter D P, Guffey S C, et al. Does overwinter temperature affect maternal body composition and egg traits in yellow perch Perca flavescens [J]? Journal of Fish Biology, 2016, 88(4): 1524-1543.
[4] Houston B E, Rooke A C, Brownscombe J W, et al. Overwinter survival, energy storage and reproductive allocation in the invasive round goby (Neogobius melanostomus) from a river system [J]. Ecology of Freshwater Fish, 2014, 23(2): 224-233. doi: 10.1111/eff.12071
[5] Wu W, Ji H, Yu H, et al. Effect of refeeding dietary containing different protein and lipid levels on growth performance, body composition, digestive enzyme activities and metabolic related gene expression of grass carp (Ctenopharyngodon idellus) after overwinter starvation [J]. Aquaculture, 2020(523): 735196-735207.
[6] Hong Y, Huang Y, Yan G, et al. Antioxidative status, immunological responses, and heat shock protein expression in hepatopancreas of chinese mitten crab, Eriocheir sinensis under the exposure of glyphosate [J]. Fish & Shellfish Immunology, 2019(86): 840-845.
[7] Omidi A, Namazi F, Jabire S, et al. The effects of starvation and refeeding on oxidative stress parameters (MDA, SOD, GPx), lipid profile, thyroid hormones and thyroid histopathology in male wistar rats [J]. International Archives of Medicine, 2016(9): 2109-2118.
[8] Pajares M, Jiménez-Moreno N, Dias I H K, et al. Redox control of protein degradation [J]. Redox Biology, 2015(6): 409-420.
[9] Luchetti F, Crinelli R, Cesarini E, et al. Endothelial cells, endoplasmic reticulum stress and oxysterols [J]. Redox Biology, 2017(13): 581-587.
[10] Lv H, Liu Q, Wen Z, et al. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis [J]. Redox Biology, 2017(12): 311-324.
[11] 农业部渔业局编制. 中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2000: 24-25. Compiled by Fishery Bureau of the Ministry of Agriculture. China Fisheries Statistics Yearbook [M]. Beijing: China Agriculture Press, 2020: 24-25.
[12] Wu W, Sun J, Ji H, et al. AMP-activated protein kinase in the grass carp Ctenopharyngodon idellus: molecular characterization, tissue distribution and mRNA expression in response to overwinter starvation stress [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2020(246-247): 110457-110471.
[13] Tian J J, Ji H, Wang Y F, et al. Lipid accumulation in grass carp (Ctenopharyngodon idellus) fed faba beans (Vicia faba L.) [J]. Fish Physiology and Biochemistry, 2019, 45(2): 631-642. doi: 10.1007/s10695-018-0589-7
[14] Tian J, Lei C, Ji H. Influence of dietary linoleic acid (18: 2n-6) and α-linolenic acid (18: 3n-3) ratio on fatty acid composition of different tissues in freshwater fish songpu mirror carp, Cyprinus carpio [J]. Aquaculture Research, 2016, 47(12): 3811-3825. doi: 10.1111/are.12832
[15] Chen Q, Jiang X, Han Q, et al. Growth, calcium content, proximate composition, and fatty acid composition of triangle sail mussel (Hyriopsis cumingii) fed five different microalgal diets [J]. Aquaculture, 2021(530): 735719-735730.
[16] Nayak S, Koven W, Meiri I, et al. Dietary arachidonic acid affects immune function and fatty acid composition in cultured rabbitfish Siganus rivulatus [J]. Fish & Shellfish Immunology, 2017(68): 46-53.
[17] Palma P F S, Bock C, Silva T S, et al. STC1 and PTHrP modify carbohydrate and lipid metabolism in liver of a teleost fish [J]. Scientific Reports, 2019, 9(1): 1-13. doi: 10.1038/s41598-018-37186-2
[18] Yang B, Wang C, Tu Y, et al. Effects of repeated handling and air exposure on the immune response and the disease resistance of gibel carp (Carassius auratus gibelio) Over Winter [J]. Fish & Shellfish Immunology, 2015, 47(2): 933-941.
[19] Sun S, Su Y, Yu H, et al. Starvation affects the intestinal microbiota structure and the expression of inflammatory-related genes of the juvenile blunt snout bream, Megalobrama amblycephala [J]. Aquaculture, 2020(517): 734764-734773.
[20] Morshedi V, Kochanian P, Bahmani M, et al. Cyclical short-term starvation and refeeding provokes compensatory growth in sub-yearling siberian sturgeon, Acipenser baerii Brandt, 1869 [J]. Animal Feed Science and Technology, 2017(232): 207-214.
[21] Favero G, Gimbo R Y, Montoya L N F, et al. A Fasting period during grow-out make juvenile pacu (Piaractus mesopotamicus) leaner but does not impair growth [J]. Aquaculture, 2020, 5(24): 735242-735248.
[22] Chen J, Chen C, Tan Q. Ontogenic changes in the digestive enzyme activities and the effect of different starvation duration on the digestive enzyme activities of larval red swamp crayfish (Procambarus clarkii) [J]. Aquaculture Research, 2018, 49(2): 676-683. doi: 10.1111/are.13497
[23] Alix M, Blondeau-Bidet E, Grousset E, et al. Effects of fasting and re-alimentation on gill and intestinal morphology and indicators of osmoregulatory capacity in genetically selected sea bass (Dicentrarchus labrax) populations with contrasting tolerance to fasting [J]. Aquaculture, 2017(468): 314-325.
[24] Kuda O, Rossmeisl M, Kopecky J. Omega-3 fatty acids and adipose tissue biology [J]. Molecular Aspects of Medicine, 2018(64): 147-160.
[25] Kondera E, Kościuszko A, Dmowska A, et al. Haematological and haematopoietic effects of feeding different diets and starvation in common carp Cyprinus carpio L. [J]. Journal of Applied Animal Research, 2017, 45(1): 623-628. doi: 10.1080/09712119.2016.1251926
[26] Gou N, Ji H, Chang Z, et al. Effects of dietary essential fatty acid requirements on growth performance, fatty acid composition, biochemical parameters, antioxidant response and lipid related genes expression in juvenile Onychostoma macrolepis [J]. Aquaculture, 2020(528): 735590-735600.
[27] Feng G, Shi X, Huang X, et al. Oxidative stress and antioxidant defenses after long-term fasting in blood of Chinese sturgeon (Acipenser sinensis) [J]. Procedia Environmental Sciences, 2011(8): 469-475.
[28] Tian J, Tian J, Yang K, et al. Effect of dietary prickly ash (Zanthoxylum bungeanum) seeds (PAS) on growth, body composition, and health of juvenile jian carp (Cyprinus carpio var. jian) [J]. Aquaculture International, 2017, 25(1): 107-120. doi: 10.1007/s10499-016-0016-y
[29] Shi X, Jin A, Sun J, et al. Α-lipoic acid ameliorates n-3highly-unsaturated fatty acids induced lipid peroxidation via regulating antioxidant defenses in grass carp (Ctenopharyngodon idellus) [J]. Fish & Shellfish Immunology, 2017(67): 359-367.
[30] Salmerón C. Adipogenesis in fish [J]. The Journal of Experimental Biology, 2018, 221(Suppl 1): b161588- b161598.
[31] Houston S J S, Karalazos V, Tinsley J, et al. The compositional and metabolic responses of gilthead seabream (Sparus aurata) to a gradient of dietary fish oil and associated n-3 long-chain pufa content [J]. British Journal of Nutrition, 2017, 118(12): 1010-1022. doi: 10.1017/S0007114517002975
[32] Amigo I, Kowaltowski A J. Dietary restriction in cerebral bioenergetics and redox state [J]. Redox Biology, 2014(2): 296-304.
[33] 邢薇, 郁欢欢, 于凤祥, 等. 饲料脂肪水平对杂交鲟幼鱼生长、饲料消化率、抗氧化水平和肌肉脂肪酸组成的影响 [J]. 水生生物学报, 2021, 45(2): 250-258. doi: 10.7541/2021.2019.256 Xing W, Yu H H, Yu F X, et al. Effects of dietary lipid levels on growth performance, feed digestibility, antioxidant status and fillet fatty acid compositions of juvenile hybrid sturgeon [J]. Acta Hydrobiologica Sinica, 2021, 45(2): 250-258. doi: 10.7541/2021.2019.256