越冬胁迫对草鱼抗氧化能力及脂肪酸组成的影响

武文一, 吉红

武文一, 吉红. 越冬胁迫对草鱼抗氧化能力及脂肪酸组成的影响[J]. 水生生物学报, 2022, 46(8): 1223-1236. DOI: 10.7541/2022.2020.213
引用本文: 武文一, 吉红. 越冬胁迫对草鱼抗氧化能力及脂肪酸组成的影响[J]. 水生生物学报, 2022, 46(8): 1223-1236. DOI: 10.7541/2022.2020.213
WU Wen-Yi, JI Hong. EFFECTS OF OVERWINTERING ON ANTIOXIDANT CAPACITY AND FATTY ACID COMPOSITION IN GRASS CARP (CTENOPHARYNGODON IDELLUS)[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(8): 1223-1236. DOI: 10.7541/2022.2020.213
Citation: WU Wen-Yi, JI Hong. EFFECTS OF OVERWINTERING ON ANTIOXIDANT CAPACITY AND FATTY ACID COMPOSITION IN GRASS CARP (CTENOPHARYNGODON IDELLUS)[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(8): 1223-1236. DOI: 10.7541/2022.2020.213

越冬胁迫对草鱼抗氧化能力及脂肪酸组成的影响

基金项目: 西北农林科技大学安康水产试验示范站建设项目(Z222020001)资助
详细信息
    作者简介:

    武文一(1991—), 男, 博士研究生; 主要从事水产动物营养与饲料研究。E-mail: wenyi1991113@163.com

    通信作者:

    吉红(1967—), 男, 博士, 教授; 主要从事水生经济动物营养与饲料学研究。E-mail: jihong@nwsuaf.edu.cn

  • 中图分类号: S965.1

EFFECTS OF OVERWINTERING ON ANTIOXIDANT CAPACITY AND FATTY ACID COMPOSITION IN GRASS CARP (CTENOPHARYNGODON IDELLUS)

Funds: Supported by the Ankang Fisheries Experimental and Demonstration Station (AFEDS) of the Northwest A & F University (Z222020001)
    Corresponding author:
  • 摘要: 为了探讨草鱼(Ctenopharyngodon idellus)越冬期间氧化应激状况及其与组织脂肪酸比例变化的关联性, 将草鱼[初始体重 (1053.33±16.11) g]分别置于室外水泥培育池, 自然越冬处理0、1周、2周、4周、8周、12周和16周后, 进行生物学性状指标, 肝胰脏、肌肉、前肠、脂肪组织和血清抗氧化能力指标及肝胰脏、肌肉、脂肪组织脂肪酸比例的测定, 同时进行了抗氧化能力指标与脂肪酸比例间的关联性分析。结果表明, 在越冬期间, 草鱼机体体重、肝胰脏重量、肥满度、肝体比、脏体比、肠体比和腹腔脂肪指数均发生显著下降(P<0.05); 但是肾指数和脾指数显著上升(P>0.05)。氧化胁迫应激最大的3个组织分别是脂肪组织、肝胰脏和肌肉。肝胰脏PUFA比例对总体脂肪酸比例产生了主要的影响(主成分载荷特征值>0.5), 肌肉C18﹕2n-6和C16﹕0比例对总体脂肪酸组成产生主要影响, 脂肪组织中的PUFA、n-6PUFA、SFA和MUFA比例对总体脂肪酸比例产生了主要影响; 关联分析表明草鱼脂肪组织中SFA在越冬期间供应能量同时, 与氧化应激乃至机体损伤显示正相关关联性, 肌肉中PUFA和MUFA比例变化分别与氧化应激, 甚至机体损伤显示主要正相关的关联性, 而肝胰脏中MUFA比例变化与氧化应激乃至机体损伤显示主要正相关的关联性。研究表明, 越冬期间草鱼机体受到了很强的氧化应激现象, 其中脂肪组织受到的应激最强烈; 肝胰脏、肌肉和脂肪组织脂肪酸比例发生了显著变化, 同时与各组织抗氧化性指标进行关联分析发现: 脂肪组织中的SFA、肝胰脏中的MUFA、肌肉中的PUFA和MUFA与氧化应激乃至机体损伤间具有较为直接的联系。研究提供的基准研究信息可用于制定有效越冬前投喂的策略, 同时在越冬期间以及越冬后的恢复阶段做出适当的管理与投喂决策, 以期改善草鱼越冬后存活率及其生产效率。
    Abstract: Grass carp Ctenopharyngodon idellus often faces the stress of overwintering in natural environment. It has been reported that fish can induce excessive production of reactive oxygen species (ROS) and cause oxidative stress during overwintering. Excessive ROS may destroy the balance and stability of antioxidant system, resulting in cell damage, nuclear apoptosis and fatty acid peroxidation. Especially during the period of overwintering, the fatty acids as the main energy supply material, have been greatly threatened and challenged because of the fatty acids maybe influenced by ROS. The most direct effect is to reduce the level of energy supply, the antioxidant capacity and immunity of the body, and increase the mortality rate, and to explore the relationship between oxidative stress and the change of fatty acid composition in tissues, In order to explore the metabolic adaptation mechanism of energy utilization of grass carp during overwintering, the initial body weight of (1053.33±16.11) g was investigated, 45 fish were randomly divided into three repetitions. When the water temperature (15℃) naturally decreased to the point that the grass carp ceased ingestion, the experiment began. When the water temperature (15℃) naturally rose to the point that the grass carp refeeding commenced, the overwintering period and our experiments were concluded. Samples were collected after 0, 1, 2, 4, 8, 12 and 16 weeks of natural overwintering. Biological indexes, antioxidant capacity of hepatopancreas, muscle, foregut, adipose tissue and serum and the fatty acid composition of hepatopancreas, muscle and adipose tissue were measured. The relationship between antioxidant capacity index and fatty acid composition was also studied association analysis. The results showed that the BW, CF, HSI, VSI, IFI and LW decreased significantly (P<0.05), while KI and SI increased significantly (P<0.05). Adipose tissue, hepatopancreas and muscle are the three tissues with the largest oxidative stress. During the overwintering period, the proportion of PUFA in hepatopancreas had a major effect on the total fatty acid composition (principal component load characteristic value >0.5), the proportion of C18﹕2n-6 and C16﹕0 in muscle had a major impact on the total fatty acid composition, and the proportion of PUFA, n-6 PUFA, SFA and MUFA in adipose tissue had a major impact on the total fatty acid composition. At the same time, association analysis showed that SFA in adipose tissue of grass carp was mainly positively correlated with oxidative stress and the fish body damage during the period of overwintering. PUFA and MUFA in muscle were positively correlated with oxidative stress and the fish body damage, while MUFA in hepatopancreas was mainly positively correlated with oxidative stress and the fish body damage. This study showed that the grass carp was subjected to strong oxidative stress during the period of overwintering, especially in adipose tissue; the fatty acid ratio of hepatopancreas, muscle and adipose tissue changed significantly, the correlation analysis with antioxidant index showed that SFA in adipose tissue, MUFA in hepatopancreas, PUFA and MUFA in muscle were related to oxidative stress have a more direct relationship between stimulation and injury. The baseline information provided in this study can be used to formulate effective feeding strategies before overwintering, and to make appropriate management and feeding decisions during the period of overwintering, and the recovery stage after overwintering and improving the survival rate and production efficiency of grass carp after overwintering.
  • 在水产养殖中, 越冬(尤其是北方地区)是一个特殊的阶段, 鱼类遭受多种越冬应激影响, 例如食物匮乏、水温低和光照[1]。鱼类的免疫反应随着季节变化而变化, 冬季鱼类的免疫功能受到抑制, 同时造成较高的氧化应激反应, 进而导致鱼类高死亡率[2]。鱼类动员机体储备的能量物质, 以度过食物短缺时期, 例如在越冬期间[3]。这种动员不仅仅包括肝胰脏, 还包括肌肉和脂肪组织中的脂质分解; 以肌肉中蛋白质为主要能量来源; 或者将肝糖原或肌糖原分解成葡萄糖作为能量底物[4]。根据本实验室的前期的研究结果, 越冬期间, 脂质动员是作为鱼类应对越冬胁迫的最重要能量供应方式之一, 自始至终从越冬开始到越冬结束维持鱼体能量之稳态[5]。有研究表明, 鱼类在长期营养匮乏胁迫下, 动员能量抵御不利应激的同时, 诱导机体产生了活性氧自由基(ROS), 长期累积造成氧化应激[6, 7]。过多的ROS会破坏机体抗氧化系统的平衡以及稳定, 造成细胞的损伤、细胞核的凋亡以及脂肪酸过氧化[8, 9]。尤其在越冬期间作为主要供能物质的脂肪酸, 其供能作用受到巨大威胁以及挑战。最直接结果就是降低供能水平, 造成机体抗氧化力以及免疫力的进一步降低, 故而提高了死亡率[10]。越冬期间造成了氧化应激的过度产生, 提高了鱼体死亡, 因此探索并解决越冬胁迫对鱼体抗氧化力乃至免疫力之间的相互作用关系具有重要的意义。

    草鱼(Ctenopharyngodon idellus)作为我国主要经济淡水鱼之一, 其产量居2019年中国养殖鱼类产量的榜首, 达553.3×107 kg [11]。由于草鱼生长迅速, 繁育技术较为成熟, 价格亲民, 营养丰富, 因此深受养殖者以及消费者的欢迎[12]。但是在越冬胁迫下面临着鱼体内ROS的过量生成, 诱导了氧化应激胁迫。而过度的氧化应激可能导致机体免疫力下降, 诱发疾病甚至死亡率的提高, 不利于草鱼水产养殖业的健康发展。为了建立有效的策略, 并指导管理决策以改善该草鱼的越冬存活率, 因而需要更好地了解越冬驱动的高度氧化应激的相互作用。因此, 本研究以草鱼为研究对象, 探索越冬条件下氧化应激对草鱼免疫和抗氧化能力的影响, 以及与机体脂肪酸组成变化之间的相互联系, 为缓解草鱼越冬期间产生过度的氧化应激的反应以及降低鱼体死亡率提供相关的理论依据。

    实验用鱼均取自西北农林科技大学安康水产试验示范站室外培育池塘, 选择同一批次养成商品规格的草鱼, 挑选大小整齐以及健壮的个体作为实验对象, 实验鱼体重(1053.33±16.11) g。同时在室外培育水泥池中驯化两周后开始实验, 驯化期间每日正常投喂商品饲料(粗蛋白28%, 粗脂肪6%)。

    实验在室外培育水泥池中进行(4 m×4 m×1 m), 选取8个实验池, 中间用隔网隔开, 上面架设遮阳网, 水深控制0.50 m左右, 水容量8 m3左右。经过2周投饲驯化后, 停食1天进行分组; 随机分为7组, 每组3个重复, 每个重复15尾鱼。当水温自然下降到草鱼停止摄食(水温: 15℃)时, 实验开始; 当水温自然升高到草鱼开始重新觅食(水温: 15℃)时实验结束, 此过程即为越冬期。实验共计7 组, 分别为饥饿0周(Week 0)、1周(Week 1)、2周(Week 2)、4周(Week 4)、8周(Week 8)、12周(Week 12)和16周(Week 16)。实验用水为曝气后井水, 流水环境, 每2周清污一次。每日定时监测水温、水质, 同时观察实验鱼鱼体的健康状况以及死亡状况。实验用水条件: pH 7.8—8.2, 溶解氧5—6 mg/L, 氨氮<0.1 mg/L, 亚硝酸盐<0.01 mg/L, 硫化物<0.05 mg/L。

    采样程序经过西北农林科技大学动物保护与利用委员会批准, 同时按照动物福利与道德规范进行执行。在各实验组饥饿处理结束后, 所有鱼均用50 mg/L MS222麻醉后, 再对其进行取样。每组实验鱼, 逐一测量体质量、体长和全长等指标, 计算肥满度。每个平行随机抽取2尾鱼进行尾静脉采血, 4℃冰箱静置2h后, 4℃离心(3000 r/min, 15min), 上层澄清透明淡黄色的血清速冻于液氮中, 而后转入–80℃冰箱保存, 用作血清抗氧化酶活性指标测定; 每个平行随机抽取2尾鱼在冰盘上进行解剖, 取其内脏团, 分离肝胰脏、肾、脾及腹腔脂肪等组织, 称重, 同时量取肠道长度, 计算脏体比、肝体比、肾指数、脾指数、腹腔脂肪指数及肠体比等指标。随后在上述分离组织中, 取部分肝胰脏、肌肉、前肠和腹腔脂肪组织速冻于液氮中, 随后转–80℃冰箱保存, 用作酶活性测量及脂肪酸的测定。

    根据以下公式, 计算肥满度、肝体比、脏体比、肠体比、肾指数、脾指数和腹腔脂肪指数:

    肥满度(Condition factor, CF, g/cm3)=鱼体重×100/体长3;

    肝体比(Hepatosomatic index, HSI)=肝胰脏重×100/鱼体重;

    脏体比(Viscerosomatic index, VSI)=内脏重×100/鱼体重;

    肠体比(Relative intestine length, RIL)=肠长×100/体长;

    肾指数(Kidney index, KI)= 肾脏重×100/鱼体重;

    脾指数(Spleen index, SI)= 脾脏重×100/鱼体重;

    腹腔脂肪指数(Intraperitoneal fat body index, IPFI)=腹腔脂肪重×100/鱼体重;

    成活率(Survival rate, SR, %)=最终鱼数×100/初始鱼数。

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    脂肪酸测定分析过程中, 脂肪提取参照Tian等[13]的方法。取组织样品大约5 g, 放置于10 mL离心管; 加入氯仿−甲醇混合液(体积比2﹕1)溶液5 mL, 高速匀浆后, 摇床震荡2h使之充分混匀, 随后再用定量滤纸过滤。加入4 mL 去离子水, 震荡混匀后在离心机上进行3000 r/min离心5min, 弃上清液及中间组织蛋白层, 下层40℃水浴蒸干。蒸干后加入1 mL正己烷(色谱纯)溶解提取出的油脂。油脂的皂化及甲酯化参照Tian等[13]的方法, 加入1 mL 氢氧化钾/甲醇溶液(0.4 mol/L), 再进行30min的甲酯化。最终加入2 mL去离子水, 震荡混匀后在离心机上进行3000 r/min离心5min, 取上层溶液–20℃保存。样品首先皂化以及甲酯化后, 使用气相色谱仪(Agilent7820a, Agilent Technologies, Santa Clara, CA, USA)进行测定。脂肪酸甲酯样品, 通过与脂肪酸甲酯混合标准品(47015-U, Sigma-Aldrich, USA)进行比较鉴定。取1 μL混合物进行上机检测。脂肪酸组成的相对值分析按面积归一化法计算, 以总脂肪酸的百分比形式呈现[14]

    所有数据均采用SPSS统计软件(19.0版, Chicago, IL, USA)的单因素方差分析和Duncan’s多重比较检验进行分析。使用Origin Pro 2017C(Northampton, MA, USA)软件, 采用协方差矩阵法(Covariance matrix)对不同组织抗氧化酶活性数据进行主成分分析(Principal component analysis, PCA)分析, 解释不同越冬时间对不同组织抗氧化能力的相对影响和差异; 同时采用协方差矩阵法(Covariance matrix)对肝胰脏、肌肉和脂肪组织脂肪酸数据进行主成分分析分析[15], 解释不同越冬时间对上述组织脂肪酸组成的相对差异。采用相关矩阵法(Correlation matrix)对肝胰脏、肌肉和脂肪组织脂肪酸与酶活性数据进行主成分分析分析[16], 解释不同越冬时间处理对肝胰脏、肌肉和脂肪组织中的抗氧化能力与脂肪酸组成的相对差异。其中, 各组织脂肪酸数据首先进行正(余)弦或对数转换, 使之方差齐性, 以适应PCA分析对线性关系的要求[17], 再进行单因素方差分析(One-way ANOVA)和Duncan’s多重比较检验; 主成分分析中的因子提取使用, 按特征值大于0.5的标准确定, 为了使因子易于解释和命名, 采用方差最大正交旋转法对其进行旋转处理。所有数据用平均值±标准差(mean±SD)的方式表示。P<0.05为差异显著。柱状图采用Prism 7 软件(Graph Pad Software Inc., San Diego, USA)进行绘制。

    随着越冬时间延长, 越冬草鱼体重、肝胰脏重量、肥满度、肝体比、脏体比、肠体比和腹腔脂肪指数等指标均呈现显著下降的趋势(P<0.05); 而肾指数和脾指数呈现显著上升的趋势(P>0.05; 表 1)。

    表  1  不同越冬时间处理对草鱼生物学性状的影响
    Table  1.  Effects of different overwintering time treatment on biometric parameters in grass carp (n=3)
    组别 Group组别 Group
    第0周
    Week 0
    第1周
    Week 1
    第2周
    Week 2
    第4周
    Week 4
    第8周
    Week 8
    第12周
    Week 12
    第16周
    Week 16
    体重 Body weight (g)1051.67±20.82e981.67±20.45de931.67±24.66d896.67±25.66c861.67±22.52bc848.33±10.72b816.67±19.83a
    肝胰脏重 Hepatopancreas
    weight (g)
    32.8±2.98c19.47±2.17b16.83±1.25b18.2±1.67b16.43±1.12ab14.69±0.94a13.34±0.88a
    肥满度 Condition
    factor (g/cm3)
    2.06±0.09c1.94±0.03bc1.92±0.07bc1.91±0.14bc1.88±0.03bc1.85±0.14ab1.71±0.08a
    肝体比 Hepatosomatic
    index
    3.11±0.63b2.94±0.37b2.86±0.01ab2.77±0.26ab2.67±0.12ab2.39±0.55ab2.13±0.43a
    脏体比 Viscerosomatic
    index
    13.62±0.27d13.44±0.46cd12.76±0.71c12.84±0.60c11.98±0.19bc11.89±0.97b9.93±0.77a
    肠体比 Relative intestine
    length
    2.06±0.18d1.96±0.09cd1.95±0.10cd1.81±0.15bcd1.70±0.29ab1.58±0.18a1.54±0.14a
    肾指数 Kidney index0.26±0.05a0.30±0.05ab0.32±0.03abc0.39±0.04bc0.40±0.09bc0.40±0.05bc0.43±0.08c
    脾指数 Spleen index0.10±0.03a0.11±0.01ab0.10±0.01a0.12±0.02ab0.12±0.01ab0.12±0.02ab0.14±0.02b
    腹腔脂肪指数
    Intraperitoneal
    fat body index
    2.63±0.54d2.37±0.20cd2.16±0.19c2.09±0.33c1.83±0.18b1.66±0.24b1.27±0.06a
    成活率 Survival rate (%)100.00100.00100.00100.00100.00100.00100.00
    注: 不同的字母表示不同处理之间的差异, 显著性P<0.05; 下同Notes: Different letters indicate differences between treatments at a significance of P<0.05. The same applies below
    下载: 导出CSV 
    | 显示表格

    图 1所示, 随着越冬时间延长, 肝胰脏、肌肉、前肠、脂肪组织和血清中抗氧化能力相关指标均发生了显著变化(图 1AE; P<0.05), 故而采用主成分分析法降低原有多个组织中抗氧化能力相关指标变量的维度, 用较少的独立公因子反映原有变量的绝大部分信息。图 2显示了经PCA处理后形成的评分图和载荷图。载荷特征值如表 2所示, 只有特征值大于1.0才被视为数据差异的重要主成分(根据Kaiser规则)。前3个公因子的特征值均大于1.0, 表明这3个公因子对PCA解释的累计方差有着重要贡献。PC1和PC2一起解释了98.96%的累计方差贡献率(方差贡献率分别为84.79%和14.17%), PC3只解释0.96%方差贡献率。因此, 3个公因子足以解释不同越冬处理下, 不同组织中不同抗氧化能力相关指标的变化。在评分图中, 不同颜色椭圆面积大小表示不同组织中抗氧化能力相关指标在不同越冬时间处理下的变化趋势, 面积越大, 表示抗氧化能力相关指标在越冬时间处理下变化程度越大, 那么该组织在越冬时间内其抗氧化能力指标体系变化越剧烈。椭圆面积由大到小依次是: 脂肪组织>肝胰脏>肌肉>前肠>血清。显示脂肪组织在越冬时间内其抗氧化能力指标体系变化程度最剧烈, 间接体现脂肪组织在越冬期间所有氧化应激程度最大; 其次是肝胰脏和肌肉, 变化最小的是前肠和血清。而载荷图显示, SOD和CAT对总体抗氧化能力的贡献中起主要影响(主成分载荷特征值绝对值大于0.5)。

    图  1  不同越冬时间处理对草鱼各组织抗氧化指标的影响
    Figure  1.  Effects of different overwintering time treatment on antioxidant indexes in tissues of grass carp (n=3)
    图  2  通过分析不同越冬时间处理下草鱼各组织中抗氧化能力, 根据选定的抗氧化酶活性含量变量(图 1)生成PCA评分图和载荷图
    A. 评分图解释了变量之间的相关性及基于分析所得得分的样本之间的聚类, 椭圆对应于95%的置信区间, 分别对应不同组织; B. 向量表示导致方差的变量, 箭头指示抗氧化酶活性变量如何促进PC1和PC2的形成; 下同
    Figure  2.  PCA score plot and loading plot are generated based on selected antioxidant capacity variables (Fig. 1) obtained by analyzing the fatty acid composition in tissue and serum of grass carp under different overwintering time treatments
    A. The score plot explains the correlation between variables and the clustering between samples based on the scores obtained from the analysis. The ellipse corresponds to the 95% confidence interval and corresponds to different organizations respectively; B. The vector represents the variable leading to the variance, and the arrow indicates how the antioxidant enzyme activity variable promotes the formation of PC1 and PC2; The same applies below
    表  2  协方差矩阵法下的显著主成分载荷特征值分析
    Table  2.  Eigen analysis of the covariance matrix loadings for significant principal components
    变量 VariablesPC1PC2PC3
    丙二醛MDA0.010.100.09
    过氧化氢酶CAT0.22–0.95–0.19
    超氧阴离子${\rm{O}}_2\cdot^{-}$0.000.020.01
    超氧化物歧化酶SOD0.940.26–0.23
    谷胱甘肽巯基转移酶GST0.27–0.140.95
    特征值 Eigen value96616.5216143.721096.24
    贡献率 Contribution rate (%)84.7914.170.96
    累计贡献率 Cumulative
    contribution rate (%)
    84.7998.9699.93
    注: 共选择5个抗氧化酶活性变量进行分析, PC1、PC2和PC3分别指主成分1、2和3, 表中的值表示负荷(指示主成分中变量关系的程度和方向), 有效载荷值(>0.5)用粗体数字表示, (+和–)符号分别表示正相关和负相关Note: A total of 5 antioxidant enzymes activity variables are selected for the analyses. PC1, PC2 and PC3 refer to principal components 1, 2 and 3, respectively. The values in the table represent loadings (indicating degree and direction of the relationship of the variables within a principal component). Significant loading values (>0.5) are indicated in bold numbers. (+ and –) signs indicate positive and negative correlations, respectively
    下载: 导出CSV 
    | 显示表格

    根据上述结果, 不同越冬时间内肝胰脏、肌肉和脂肪组织中抗氧化体系变化最剧烈, 故而选定这3种组织进行脂肪酸比例测定。随着越冬时间的增长, 肝胰脏、肌肉和脂肪组织中各类脂肪酸组成比例均产生了显著差异(P<0.05; 表 35)。通过主成分分析, 图 3中评分图表示不同越冬时间处理下草鱼肝胰脏、肌肉和脂肪组织中脂肪酸比例的变化趋势, 各组织在不同越冬时间处理下, 均表现出了较大的差异性; 在肝胰脏中, 越冬第0、第1和第4周处理组在评分图第一四象限, 越冬第2和第12周处理组在第二象限, 越冬第8和16周处理组在第三象限; 在肌肉中, 越冬第0、第1、第4和第8周处理组在评分图第三四象限, 越冬第2周处理组在第一象限, 越冬第12和第16周处理组在第二象限; 脂肪组织中, 越冬第2周处理组在第一象限, 越冬第0、第8、第12和第16周处理组在评分图第二三象限, 越冬第1和第4周处理组在评分图第四象限。表 6中, 主成分分析后, 对肝胰脏、肌肉和脂肪组织分析得出: 前3个公因子累计贡献率均超过95%, 表明可以使用上述3个主因子(PC1、PC2和PC3)较好地代表18项脂肪酸变量指标。结合图 3, 对肝胰脏、肌肉和脂肪组织载荷图进行分析可得: 肝胰脏PUFA比例变化对总体脂肪酸比例变化产生主要影响(主成分载荷特征值大于0.5), 在越冬期间, PUFA比例变化呈现显著上升(P<0.05); 肌肉C18:2n-6和C16:0比例变化对总体脂肪酸组成产生了主要影响, C18:2n-6比例变化在越冬期间呈现先显著下降而后显著上升, C16:0比例变化显著下降(P<0.05); 腹腔脂肪PUFA、n-6PUFA、SFA和MUFA比例变化对总体脂肪酸比例产生了主要影响, 越冬胁迫期间, PUFA、n-6PUFA和MUFA比例变化呈现显著下降后上升保持稳定, SFA比例变化呈现显著上升后下降保持稳定(P<0.05)。

    表  3  不同越冬时间处理对草鱼肝胰脏组织脂肪酸组成的影响
    Table  3.  Fatty acid composition of hepatopancreas in grass carp under different overwintering time treatments (% total fatty acid; mean±SD; n=3)
    脂肪酸
    Fatty acid
    组别 Group
    第0周
    Week 0
    第1周
    Week 1
    第2周
    Week 2
    第4周
    Week 4
    第8周
    Week 8
    第12周
    Week 12
    第16周
    Week 16
    C14:02.25±0.11b2.09±0.07ab1.87±0.05a3.04±0.06c2.86±0.35c1.87±0.12b2.91±0.16c
    C16:022.24±0.43bc22.26±0.69bc19.57±0.68a19.95±0.79a22.17±0.12b20.50±0.27a23.20±0.52c
    C18:09.50±0.38d7.77±0.19c6.17±0.21ab5.62±0.46a7.41±0.61c6.48±0.21b9.21±0.13d
    ∑SFA33.99±0.56c32.12±0.81b27.61±0.79a28.61±1.14a32.44±0.79b28.85±0.48a35.32±0.53d
    C16:1n-75.87±0.09c6.66±0.12d4.69±0.17a9.86±0.53f7.69±0.26e5.34±0.20b5.92±0.23c
    C18:1n-945.25±0.24e44.24±0.37e42.87±1.32d45.30±0.72e38.02±0.83c36.40±0.64b33.81±0.80a
    ∑MUFA51.12±0.31e50.91±0.26e47.56±1.46d55.16±1.25f45.70±0.88c41.74±0.82b39.72±0.57a
    C18:2n-69.36±0.51a12.22±0.95b20.48±0.92d10.34±0.24a12.65±0.18b21.08±1.01d15.00±0.35c
    C18:3n-60.34±0.05a0.40±0.03a0.59±0.04b0.35±0.04a0.55±0.16b0.66±0.03b0.69±0.12b
    C20:3n-60.68±0.19b0.64±0.03b0.82±0.06c0.33±0.09a0.30±0.07a0.22±0.02a0.32±0.03a
    C22:4n-60.16±0.03a0.15±0.01a0.20±0.05a0.33±0.05a0.64±0.40b0.34±0.03a1.15±0.03c
    ∑n-6PUFA10.54±0.35a13.42±0.96b22.09±0.99d11.36±0.26a14.14±0.19b22.30±0.98d17.16±0.26c
    C18:3n-32.57±0.11c2.11±0.10b1.60±0.12a2.64±0.25c2.39±0.14c1.47±0.03a1.36±0.18a
    C20:5n-3 EPA1.06±0.04b0.75±0.18a0.52±0.07a1.23±0.12b3.68±0.23e3.40±0.26d3.08±0.08c
    C22:6n-3 DHA0.70±0.10ab0.70±0.15ab0.61±0.06a1.00±0.19b1.65±0.10c2.26±0.30d3.35±0.32e
    ∑n-3PUFA4.34±0.08c3.55±0.37b2.73±0.16a4.87±0.15d7.72±0.27f7.11±0.07e7.80±0.36f
    ∑PUFA14.89±0.27a16.97±0.59b24.83±0.86d16.22±0.19b21.85±0.15c29.41±0.97e24.96±0.31d
    n-3/n-6∑PUFA0.41±0.02d0.27±0.05b0.12±0.02a0.43±0.02d0.55±0.02e0.32±0.02c0.45±0.02d
    合计 Total100.00100.00100.00100.00100.00100.00100.00
    下载: 导出CSV 
    | 显示表格
    表  4  不同越冬时间处理对草鱼肌肉组织脂肪酸组成的影响
    Table  4.  Fatty acid composition of muscle in grass carp under different overwintering time treatments (% total fatty acid; mean±SD; n=3)
    脂肪酸
    Fatty acid
    组别 Group
    第0周
    Week 0
    第1周
    Week 1
    第2周
    Week 2
    第4周
    Week 4
    第8周
    Week 8
    第12周
    Week 12
    第16周
    Week 16
    C14:02.33±0.15b3.25±0.11d3.57±0.08e3.68±0.26e3.63±0.13e2.85±0.07c1.63±0.09a
    C16:021.67±0.25b20.74±0.73ab21.08±0.34b22.71±0.99c23.91±0.27d21.52±0.14b19.86±0.82a
    C18:06.14±0.36a9.20±0.94d11.18±0.57e10.60±0.22e8.19±0.19c7.24±0.35b5.54±0.38a
    ∑SFA30.15±0.39b33.20±0.42d35.84±0.87ef36.99±1.23f35.73±0.31e31.61±0.55c27.03±0.51a
    C16:1n-75.77±0.27b6.50±0.14c4.71±0.28a5.95±0.52bc5.93±0.29bc4.98±0.13a5.13±0.36a
    C18:1n-939.98±0.41d35.99±0.72c30.56±0.32a30.67±1.27a33.34±0.69b36.27±0.32c40.25±0.20d
    ∑MUFA45.75±0.58d42.49±0.72c35.27±0.05a36.63±1.52a39.27±0.96b41.24±0.34c45.38±0.55d
    C18:2n-618.16±0.14b14.27±0.99a17.96±0.36b13.16±0.96a13.46±0.50a20.19±0.78c20.94±0.30c
    C18:3n-60.84±0.04c0.66±0.04bc0.64±0.19bc0.34±0.11a0.48±0.07ab0.53±0.02ab0.70±0.24bc
    C20:3n-60.55±0.06a1.22±0.27b0.81±0.05a1.30±0.25b0.63±0.22a0.74±0.06a0.71±0.06a
    C22:4n-60.56±0.08a0.55±0.14a0.83±0.05b1.41±0.22c1.23±0.15c0.54±0.11a0.61±0.08a
    ∑n-6PUFA20.10±0.03b16.71±0.76a20.25±0.55b16.21±0.59a15.81±0.66a22.00±0.63c22.96±0.19d
    C18:3n-31.37±0.051.55±0.121.60±0.081.12±0.631.16±0.101.25±0.061.30±0.12
    C20:5n-3 EPA1.36±0.17a2.87±0.20c3.67±0.08d3.59±0.16d3.62±0.29d1.88±0.13b1.83±0.33b
    C22:6n-3 DHA1.27±0.10a3.19±0.74c3.37±0.23c5.46±0.15d4.42±0.42e2.02±0.37b1.50±0.15ab
    ∑n-3PUFA4.00±0.24a7.61±1.06c8.64±0.38d10.17±0.62e9.19±0.07d5.15±0.44b4.63±0.47ab
    ∑PUFA24.10±0.21a24.32±1.03a28.89±0.89d26.38±0.31b25.00±0.73a27.14±0.21bc27.59±0.29c
    n-3/n-6∑PUFA0.20±0.01a0.46±0.07b0.43±0.01b0.63±0.06c0.58±0.02c0.23±0.03a0.20±0.02a
    合计 Total100.00100.00100.00100.00100.00100.00100.00
    下载: 导出CSV 
    | 显示表格
    表  5  不同越冬时间处理对草鱼腹腔脂肪组织脂肪酸组成的影响
    Table  5.  Fatty acid composition of adipose tissue in grass carp under different overwintering time treatments (% total fatty acid; mean±SD; n=3)
    脂肪酸
    Fatty acid
    组别 Group
    第0周
    Week 0
    第1周
    Week 1
    第2周
    Week 2
    第4周
    Week 4
    第8周
    Week 8
    第12周
    Week 12
    第16周
    Week 16
    C14:02.15±0.02b2.08±0.25b1.98±0.06b2.11±0.03b1.64±0.02a1.69±0.03a1.76±0.04a
    C16:020.00±0.42c19.65±0.22c22.05±0.08e21.36±0.29d21.04±0.36d18.37±0.04a18.97±0.31b
    C18:04.54±0.28a4.95±0.09b5.50±0.14c5.83±0.35c5.11±0.13b4.77±0.15ab4.51±0.03a
    ∑SFA26.69±0.18b26.68±0.38b29.53±0.19d29.30±0.52d27.79±0.38c24.83±0.15a25.24±0.28a
    C16:1n-76.48±0.14b7.14±0.09c5.35±0.09a6.40±0.38b5.65±0.16a5.51±0.07a7.04±0.15c
    C18:1n-943.62±0.22a44.51±0.69b43.62±0.28a46.54±0.34c43.59±0.59a43.65±0.06a44.58±0.22b
    ∑MUFA50.10±0.35b51.65±0.61c48.97±0.35a52.94±0.07d49.24±0.43a49.16±0.13a51.62±0.29c
    C18:2n-619.97±0.14d18.54±0.12b18.28±0.18b14.79±0.62a19.79±0.25cd22.54±0.11e19.41±0.14c
    C18:3n-60.43±0.12a0.53±0.06abc0.56±0.03bc0.45±0.06ab0.52±0.01abc0.71±0.04d0.57±0.03c
    C20:3n-60.19±0.05a0.60±0.06b0.56±0.15b0.47±0.06b0.54±0.11b0.56±0.04b0.59±0.05b
    C22:4n-60.21±0.08ab0.15±0.06ab0.13±0.10a0.16±0.03ab0.20±0.03ab0.26±0.04b0.22±0.01ab
    ∑n-6PUFA20.80±0.22c19.81±0.23b19.54±0.14b15.87±0.63a21.04±0.27c24.08±0.04d20.79±0.19c
    C18:3n-31.66±0.21b1.49±0.15ab1.42±0.04a1.47±0.04ab1.38±0.14a1.38±0.08a1.65±0.05b
    C20:5n-3 EPA0.20±0.06a0.20±0.09a0.39±0.21b0.27±0.02ab0.38±0.04ab0.19±0.04a0.40±0.06b
    C22:6n-3 DHA0.58±0.07c0.16±0.05a0.15±0.03a0.15±0.03a0.18±0.04a0.35±0.03b0.30±0.03b
    ∑n-3PUFA2.44±0.31b1.85±0.26a1.96±0.14a1.88±0.05a1.94±0.17a1.92±0.06a2.35±0.08b
    ∑PUFA23.24±0.18c21.67±0.47b21.5±0.20b17.76±0.59a22.97±0.28c26.00±0.02d23.14±0.11c
    n-3/n-6∑PUFA0.12±0.02c0.09±0.01ab0.10±0.01bc0.12±0.01d0.09±0.01ab0.08±0.01a0.11±0.01c
    合计 Total100.00100.00100.00100.00100.00100.00100.00
    下载: 导出CSV 
    | 显示表格
    图  3  通过分析不同越冬时间处理下草鱼肝胰脏、肌肉和脂肪组织脂肪酸组成, 根据选定的脂肪酸变量(表 35)生成PCA评分图和载荷图
    Figure  3.  PCA score plot and loading plot are generated based on selected fatty acid variables (Tab. 35) obtained by analyzing the fatty acid composition in hepatopancreas, muscle and adipose tissue of grass carp under different overwintering time treatments
    表  6  协方差矩阵法下的显著主成分载荷特征值分析
    Table  6.  Eigen analysis of the covariance matrix loadings for significant principal components
    脂肪酸 Fatty acid肝胰脏 Hepatopancreas肌肉 Muscle脂肪组织 Adipose tissue
    Factor 1Factor 2Factor 3Factor 1Factor 2Factor 3Factor 1Factor 2Factor 3
    C14:00.01–0.050.110.09–0.010.080.03–0.01–0.14
    C16:00.01–0.23–0.180.10–0.120.640.200.45–0.15
    C18:00.01–0.20–0.340.240.10–0.330.080.090.32
    ∑SFA0.03–0.48–0.410.43–0.030.390.310.540.04
    C16:1n-70.10–0.040.490.01–0.15–0.080.04–0.28–0.60
    C18:1n-90.380.41–0.28–0.47–0.26–0.040.18–0.290.60
    ∑MUFA0.480.370.21–0.46–0.41–0.120.22–0.570.00
    C18:2n-6–0.390.38–0.15–0.310.520.21–0.490.070.06
    C18:3n-6–0.010.000.00–0.010.000.01–0.010.000.05
    C20:3n-60.010.02–0.070.02–0.01–0.140.00–0.010.07
    C22:4n-6–0.02–0.040.030.04–0.010.00–0.010.000.00
    ∑n-6PUFA–0.410.35–0.18–0.270.490.07–0.510.060.18
    C18:3n-30.05–0.010.060.000.01–0.080.00–0.03–0.13
    C20:5n-3 EPA–0.08–0.130.240.110.01–0.110.000.02–0.03
    C22:6n-3 DHA–0.07–0.110.090.18–0.06–0.15–0.02–0.01–0.07
    ∑n-3PUFA–0.10–0.250.380.29–0.05–0.34–0.01–0.03–0.23
    PUFA–0.510.110.200.030.45–0.27–0.530.03–0.05
    n-3/n-6∑PUFA0.00–0.020.030.02–0.01–0.020.000.00–0.01
    特征值 Eigen value99.6231.066.5660.6714.332.0820.573.940.42
    贡献率 Contribution rate (%)71.9922.454.7477.0218.192.6481.5815.651.67
    累计贡献率 Cumulative contribution rate (%)71.9994.4499.1877.0295.2197.8581.5897.2398.90
    注: 共选择18个脂肪酸变量进行分析; SFA. 饱和脂肪酸, MUFA. 单不饱和脂肪酸, HUFA. 高不饱和脂肪酸, PUFA. 多不饱和脂肪酸Note: A total of 18 fatty acid variables are selected for the analyses. SFA. Saturated fatty acid, MUFA. Monounsaturated fatty acid, HUFA. Highly-unsaturated fatty acid, PUFA. Poly-unsaturated fatty acid
    下载: 导出CSV 
    | 显示表格

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    图  4  不同越冬时间处理对草鱼肝胰脏、肌肉和脂肪组织脂肪酸组成及抗氧化能力的主成分分析
    Figure  4.  Principal component analysis (PCA) of fatty acid composition and antioxidant capacity variables in hepatopancreas, muscle, foregut, adipose tissue and serum of grass carp under different overwintering time treatments
    表  7  相关矩阵法下的显著主成分载荷特征值分析
    Table  7.  Eigen analysis of the correlation matrix loadings for significant principal components
    变量 Variables肝胰脏 Hepatopancreas肌肉 Muscle脂肪组织 Adipose tissues
    Factor 1Factor 2Factor 3Factor 1Factor 2Factor 3Factor 1Factor 2Factor 3
    C14:00.03–0.26–0.26–0.25–0.01–0.040.140.230.15
    C16:0–0.06–0.260.33–0.170.30–0.200.270.000.28
    C18:0–0.02–0.220.46–0.23–0.210.000.30–0.060.01
    ∑SFA–0.04–0.280.34–0.26–0.01–0.090.300.010.23
    C16:1n-70.16–0.17–0.40–0.090.390.32–0.040.29–0.30
    C18:1n-90.320.120.010.250.170.140.200.16–0.35
    ∑MUFA0.320.05–0.110.280.230.190.130.25–0.39
    C18:2n-6–0.240.24–0.030.24–0.22–0.17–0.29–0.190.10
    C18:3n-6–0.290.05–0.030.19–0.040.18–0.14–0.28–0.20
    C20:3n-60.160.200.35–0.15–0.090.200.03–0.18–0.39
    C22:4n-6–0.21–0.20–0.05–0.240.08–0.16–0.20–0.030.02
    ∑n-6PUFA–0.250.23–0.020.24–0.25–0.17–0.29–0.210.06
    C18:3n-30.29–0.14–0.120.03–0.260.24–0.110.320.02
    C20:5n-3 EPA–0.24–0.21–0.15–0.27–0.130.010.010.030.03
    C22:6n-3 DHA–0.28–0.17–0.04–0.280.02–0.03–0.230.150.26
    ∑n-3PUFA–0.22–0.26–0.15–0.28–0.070.01–0.190.280.17
    ∑PUFA–0.310.11–0.070.00–0.29–0.25–0.30–0.170.08
    n-3/n-6∑PUFA–0.01–0.36–0.14–0.280.050.060.060.360.08
    MDA0.080.260.030.210.100.080.160.080.40
    CAT–0.130.21–0.27–0.140.29–0.330.16–0.310.01
    ${\rm{O}}_2\cdot^{-}$–0.030.24–0.120.120.02–0.420.23–0.240.11
    SOD–0.240.100.160.190.13–0.260.28–0.14–0.01
    GST–0.230.160.050.100.27–0.400.27–0.180.01
    特征值 Eigen value8.877.092.9712.423.182.948.875.992.66
    贡献率 Contribution rate (%)38.5430.8312.9154.0113.8012.7838.5826.0311.58
    累计贡献率 Cumulative contribution rate (%)38.5469.3782.2854.0167.8280.5938.5864.6176.19
    注: 共选择24个变量进行分析Note: A total of 24 variables are selected for the analyses
    下载: 导出CSV 
    | 显示表格

    鱼类在自然界生长过程中, 经常面临饥饿这一种自然生理胁迫。在饥饿胁迫影响下, 鱼体往往只能依靠自身的营养物质的消耗来维持机体能量的代谢平衡[18]。生物学性状是反映不同状态下鱼体营养储备消耗情况最直接量化指标[19]。本研究结果表明, 在越冬胁迫下, 草鱼的生物学性状参数中, 体重、肝胰脏重量、肥满度、肝体比、脏体比、肠体比和腹腔脂肪指数均呈现显著下降的趋势, 但是肾指数和脾指数呈现显著上升的趋势; 相比较肝胰脏质量和腹腔脂肪指数, 则在第1和第2周就出现了显著的下降。这表明在越冬期间, 肝胰脏和腹腔脂肪组织均在第一时间进行了能量动员, 供应鱼体进行了能量消耗, 这也许是鱼体为了适应氧化应激状态下, 需要能量物质进行消耗进而来维持正常生理状态的一种保护性手段[20]

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    这里选择越冬胁迫期间所受氧化应激程度最大的3个组织: 肝胰脏、肌肉和脂肪组织。在不同时间越冬胁迫处理下, 脂肪酸比例均有显著不同。这反映出了不同时间越冬胁迫下, 脂质动员出现了组织特异性。PCA分析表明, 肝胰脏中PUFA比例变化, 肌肉中C18﹕2n-6和C16﹕0比例变化, 腹腔脂肪中PUFA、n-6PUFA、SFA和MUFA比例变化对总体脂肪酸比例产生了主要影响, 脂肪酸比例种类差异较为明显[16, 31]。脂肪组织中PUFA、n-6PUFA和MUFA比例显著下降后上升保持稳定, SFA比例显著上升后下降保持稳定; 肝胰脏PUFA比例显著上升; 肌肉中C16﹕0和C18﹕2n-6比例显著下降。尤其是功能性脂肪酸的代表之一PUFA, 在肝胰脏、肌肉和脂肪组织比例变化的趋势更能体现越冬胁迫下, 组织应对越冬胁迫所表现的组织特异性, 脂肪组织中PUFA和n-6PUFA也可能进行了供能; 肝胰脏PUFA比例变化的上升, 表明鱼体为了维持某些特殊生物学功能而间接保留PUFA; 肌肉PUFA比例的变化对总脂肪酸变化贡献不大, 但C18﹕2n-6比例变化的下降可能预示着进行了供能。

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    图  5  越冬胁迫下草鱼组织中脂质过氧化与机体抗氧化能力间的关系示意图
    脂质过氧化. Lipid peroxidation; 氧化应激. Oxidation stress; 健康状态. Healthy statues
    Figure  5.  Relationship between lipid peroxidation and antioxidant capacity of grass carp under overwintering stress

    综上所述, 草鱼在越冬胁迫过程中, 生物学性状变化的结果表明了草鱼为了适应越冬胁迫下能量动员的需要采取了适应性调节, 同时, 我们证明了越冬期间所有氧化胁迫应激最大的3个组织分别是脂肪组织、肝胰脏和肌肉, 同时与越冬期间作为主要能量物质消耗的脂肪酸间进行了一种关联性分析, 确定了几种主要脂肪酸种类(肝胰脏MUFA, 肌肉PUFA、MUFA, 脂肪组织SFA)在越冬期间对氧化应激乃至机体损伤的直接相互联系。本研究提供的基准信息, 可用于制定有效的越冬胁迫期之前的投喂策略, 同时在越冬胁迫期间和越冬胁迫后的恢复阶段, 做出适当管理和精准的投喂决策, 以期改善草鱼越冬胁迫后的存活率和生产的效率。

  • 图  1   不同越冬时间处理对草鱼各组织抗氧化指标的影响

    Figure  1.   Effects of different overwintering time treatment on antioxidant indexes in tissues of grass carp (n=3)

    图  2   通过分析不同越冬时间处理下草鱼各组织中抗氧化能力, 根据选定的抗氧化酶活性含量变量(图 1)生成PCA评分图和载荷图

    A. 评分图解释了变量之间的相关性及基于分析所得得分的样本之间的聚类, 椭圆对应于95%的置信区间, 分别对应不同组织; B. 向量表示导致方差的变量, 箭头指示抗氧化酶活性变量如何促进PC1和PC2的形成; 下同

    Figure  2.   PCA score plot and loading plot are generated based on selected antioxidant capacity variables (Fig. 1) obtained by analyzing the fatty acid composition in tissue and serum of grass carp under different overwintering time treatments

    A. The score plot explains the correlation between variables and the clustering between samples based on the scores obtained from the analysis. The ellipse corresponds to the 95% confidence interval and corresponds to different organizations respectively; B. The vector represents the variable leading to the variance, and the arrow indicates how the antioxidant enzyme activity variable promotes the formation of PC1 and PC2; The same applies below

    图  3   通过分析不同越冬时间处理下草鱼肝胰脏、肌肉和脂肪组织脂肪酸组成, 根据选定的脂肪酸变量(表 35)生成PCA评分图和载荷图

    Figure  3.   PCA score plot and loading plot are generated based on selected fatty acid variables (Tab. 35) obtained by analyzing the fatty acid composition in hepatopancreas, muscle and adipose tissue of grass carp under different overwintering time treatments

    图  4   不同越冬时间处理对草鱼肝胰脏、肌肉和脂肪组织脂肪酸组成及抗氧化能力的主成分分析

    Figure  4.   Principal component analysis (PCA) of fatty acid composition and antioxidant capacity variables in hepatopancreas, muscle, foregut, adipose tissue and serum of grass carp under different overwintering time treatments

    图  5   越冬胁迫下草鱼组织中脂质过氧化与机体抗氧化能力间的关系示意图

    脂质过氧化. Lipid peroxidation; 氧化应激. Oxidation stress; 健康状态. Healthy statues

    Figure  5.   Relationship between lipid peroxidation and antioxidant capacity of grass carp under overwintering stress

    表  1   不同越冬时间处理对草鱼生物学性状的影响

    Table  1   Effects of different overwintering time treatment on biometric parameters in grass carp (n=3)

    组别 Group组别 Group
    第0周
    Week 0
    第1周
    Week 1
    第2周
    Week 2
    第4周
    Week 4
    第8周
    Week 8
    第12周
    Week 12
    第16周
    Week 16
    体重 Body weight (g)1051.67±20.82e981.67±20.45de931.67±24.66d896.67±25.66c861.67±22.52bc848.33±10.72b816.67±19.83a
    肝胰脏重 Hepatopancreas
    weight (g)
    32.8±2.98c19.47±2.17b16.83±1.25b18.2±1.67b16.43±1.12ab14.69±0.94a13.34±0.88a
    肥满度 Condition
    factor (g/cm3)
    2.06±0.09c1.94±0.03bc1.92±0.07bc1.91±0.14bc1.88±0.03bc1.85±0.14ab1.71±0.08a
    肝体比 Hepatosomatic
    index
    3.11±0.63b2.94±0.37b2.86±0.01ab2.77±0.26ab2.67±0.12ab2.39±0.55ab2.13±0.43a
    脏体比 Viscerosomatic
    index
    13.62±0.27d13.44±0.46cd12.76±0.71c12.84±0.60c11.98±0.19bc11.89±0.97b9.93±0.77a
    肠体比 Relative intestine
    length
    2.06±0.18d1.96±0.09cd1.95±0.10cd1.81±0.15bcd1.70±0.29ab1.58±0.18a1.54±0.14a
    肾指数 Kidney index0.26±0.05a0.30±0.05ab0.32±0.03abc0.39±0.04bc0.40±0.09bc0.40±0.05bc0.43±0.08c
    脾指数 Spleen index0.10±0.03a0.11±0.01ab0.10±0.01a0.12±0.02ab0.12±0.01ab0.12±0.02ab0.14±0.02b
    腹腔脂肪指数
    Intraperitoneal
    fat body index
    2.63±0.54d2.37±0.20cd2.16±0.19c2.09±0.33c1.83±0.18b1.66±0.24b1.27±0.06a
    成活率 Survival rate (%)100.00100.00100.00100.00100.00100.00100.00
    注: 不同的字母表示不同处理之间的差异, 显著性P<0.05; 下同Notes: Different letters indicate differences between treatments at a significance of P<0.05. The same applies below
    下载: 导出CSV

    表  2   协方差矩阵法下的显著主成分载荷特征值分析

    Table  2   Eigen analysis of the covariance matrix loadings for significant principal components

    变量 VariablesPC1PC2PC3
    丙二醛MDA0.010.100.09
    过氧化氢酶CAT0.22–0.95–0.19
    超氧阴离子${\rm{O}}_2\cdot^{-}$0.000.020.01
    超氧化物歧化酶SOD0.940.26–0.23
    谷胱甘肽巯基转移酶GST0.27–0.140.95
    特征值 Eigen value96616.5216143.721096.24
    贡献率 Contribution rate (%)84.7914.170.96
    累计贡献率 Cumulative
    contribution rate (%)
    84.7998.9699.93
    注: 共选择5个抗氧化酶活性变量进行分析, PC1、PC2和PC3分别指主成分1、2和3, 表中的值表示负荷(指示主成分中变量关系的程度和方向), 有效载荷值(>0.5)用粗体数字表示, (+和–)符号分别表示正相关和负相关Note: A total of 5 antioxidant enzymes activity variables are selected for the analyses. PC1, PC2 and PC3 refer to principal components 1, 2 and 3, respectively. The values in the table represent loadings (indicating degree and direction of the relationship of the variables within a principal component). Significant loading values (>0.5) are indicated in bold numbers. (+ and –) signs indicate positive and negative correlations, respectively
    下载: 导出CSV

    表  3   不同越冬时间处理对草鱼肝胰脏组织脂肪酸组成的影响

    Table  3   Fatty acid composition of hepatopancreas in grass carp under different overwintering time treatments (% total fatty acid; mean±SD; n=3)

    脂肪酸
    Fatty acid
    组别 Group
    第0周
    Week 0
    第1周
    Week 1
    第2周
    Week 2
    第4周
    Week 4
    第8周
    Week 8
    第12周
    Week 12
    第16周
    Week 16
    C14:02.25±0.11b2.09±0.07ab1.87±0.05a3.04±0.06c2.86±0.35c1.87±0.12b2.91±0.16c
    C16:022.24±0.43bc22.26±0.69bc19.57±0.68a19.95±0.79a22.17±0.12b20.50±0.27a23.20±0.52c
    C18:09.50±0.38d7.77±0.19c6.17±0.21ab5.62±0.46a7.41±0.61c6.48±0.21b9.21±0.13d
    ∑SFA33.99±0.56c32.12±0.81b27.61±0.79a28.61±1.14a32.44±0.79b28.85±0.48a35.32±0.53d
    C16:1n-75.87±0.09c6.66±0.12d4.69±0.17a9.86±0.53f7.69±0.26e5.34±0.20b5.92±0.23c
    C18:1n-945.25±0.24e44.24±0.37e42.87±1.32d45.30±0.72e38.02±0.83c36.40±0.64b33.81±0.80a
    ∑MUFA51.12±0.31e50.91±0.26e47.56±1.46d55.16±1.25f45.70±0.88c41.74±0.82b39.72±0.57a
    C18:2n-69.36±0.51a12.22±0.95b20.48±0.92d10.34±0.24a12.65±0.18b21.08±1.01d15.00±0.35c
    C18:3n-60.34±0.05a0.40±0.03a0.59±0.04b0.35±0.04a0.55±0.16b0.66±0.03b0.69±0.12b
    C20:3n-60.68±0.19b0.64±0.03b0.82±0.06c0.33±0.09a0.30±0.07a0.22±0.02a0.32±0.03a
    C22:4n-60.16±0.03a0.15±0.01a0.20±0.05a0.33±0.05a0.64±0.40b0.34±0.03a1.15±0.03c
    ∑n-6PUFA10.54±0.35a13.42±0.96b22.09±0.99d11.36±0.26a14.14±0.19b22.30±0.98d17.16±0.26c
    C18:3n-32.57±0.11c2.11±0.10b1.60±0.12a2.64±0.25c2.39±0.14c1.47±0.03a1.36±0.18a
    C20:5n-3 EPA1.06±0.04b0.75±0.18a0.52±0.07a1.23±0.12b3.68±0.23e3.40±0.26d3.08±0.08c
    C22:6n-3 DHA0.70±0.10ab0.70±0.15ab0.61±0.06a1.00±0.19b1.65±0.10c2.26±0.30d3.35±0.32e
    ∑n-3PUFA4.34±0.08c3.55±0.37b2.73±0.16a4.87±0.15d7.72±0.27f7.11±0.07e7.80±0.36f
    ∑PUFA14.89±0.27a16.97±0.59b24.83±0.86d16.22±0.19b21.85±0.15c29.41±0.97e24.96±0.31d
    n-3/n-6∑PUFA0.41±0.02d0.27±0.05b0.12±0.02a0.43±0.02d0.55±0.02e0.32±0.02c0.45±0.02d
    合计 Total100.00100.00100.00100.00100.00100.00100.00
    下载: 导出CSV

    表  4   不同越冬时间处理对草鱼肌肉组织脂肪酸组成的影响

    Table  4   Fatty acid composition of muscle in grass carp under different overwintering time treatments (% total fatty acid; mean±SD; n=3)

    脂肪酸
    Fatty acid
    组别 Group
    第0周
    Week 0
    第1周
    Week 1
    第2周
    Week 2
    第4周
    Week 4
    第8周
    Week 8
    第12周
    Week 12
    第16周
    Week 16
    C14:02.33±0.15b3.25±0.11d3.57±0.08e3.68±0.26e3.63±0.13e2.85±0.07c1.63±0.09a
    C16:021.67±0.25b20.74±0.73ab21.08±0.34b22.71±0.99c23.91±0.27d21.52±0.14b19.86±0.82a
    C18:06.14±0.36a9.20±0.94d11.18±0.57e10.60±0.22e8.19±0.19c7.24±0.35b5.54±0.38a
    ∑SFA30.15±0.39b33.20±0.42d35.84±0.87ef36.99±1.23f35.73±0.31e31.61±0.55c27.03±0.51a
    C16:1n-75.77±0.27b6.50±0.14c4.71±0.28a5.95±0.52bc5.93±0.29bc4.98±0.13a5.13±0.36a
    C18:1n-939.98±0.41d35.99±0.72c30.56±0.32a30.67±1.27a33.34±0.69b36.27±0.32c40.25±0.20d
    ∑MUFA45.75±0.58d42.49±0.72c35.27±0.05a36.63±1.52a39.27±0.96b41.24±0.34c45.38±0.55d
    C18:2n-618.16±0.14b14.27±0.99a17.96±0.36b13.16±0.96a13.46±0.50a20.19±0.78c20.94±0.30c
    C18:3n-60.84±0.04c0.66±0.04bc0.64±0.19bc0.34±0.11a0.48±0.07ab0.53±0.02ab0.70±0.24bc
    C20:3n-60.55±0.06a1.22±0.27b0.81±0.05a1.30±0.25b0.63±0.22a0.74±0.06a0.71±0.06a
    C22:4n-60.56±0.08a0.55±0.14a0.83±0.05b1.41±0.22c1.23±0.15c0.54±0.11a0.61±0.08a
    ∑n-6PUFA20.10±0.03b16.71±0.76a20.25±0.55b16.21±0.59a15.81±0.66a22.00±0.63c22.96±0.19d
    C18:3n-31.37±0.051.55±0.121.60±0.081.12±0.631.16±0.101.25±0.061.30±0.12
    C20:5n-3 EPA1.36±0.17a2.87±0.20c3.67±0.08d3.59±0.16d3.62±0.29d1.88±0.13b1.83±0.33b
    C22:6n-3 DHA1.27±0.10a3.19±0.74c3.37±0.23c5.46±0.15d4.42±0.42e2.02±0.37b1.50±0.15ab
    ∑n-3PUFA4.00±0.24a7.61±1.06c8.64±0.38d10.17±0.62e9.19±0.07d5.15±0.44b4.63±0.47ab
    ∑PUFA24.10±0.21a24.32±1.03a28.89±0.89d26.38±0.31b25.00±0.73a27.14±0.21bc27.59±0.29c
    n-3/n-6∑PUFA0.20±0.01a0.46±0.07b0.43±0.01b0.63±0.06c0.58±0.02c0.23±0.03a0.20±0.02a
    合计 Total100.00100.00100.00100.00100.00100.00100.00
    下载: 导出CSV

    表  5   不同越冬时间处理对草鱼腹腔脂肪组织脂肪酸组成的影响

    Table  5   Fatty acid composition of adipose tissue in grass carp under different overwintering time treatments (% total fatty acid; mean±SD; n=3)

    脂肪酸
    Fatty acid
    组别 Group
    第0周
    Week 0
    第1周
    Week 1
    第2周
    Week 2
    第4周
    Week 4
    第8周
    Week 8
    第12周
    Week 12
    第16周
    Week 16
    C14:02.15±0.02b2.08±0.25b1.98±0.06b2.11±0.03b1.64±0.02a1.69±0.03a1.76±0.04a
    C16:020.00±0.42c19.65±0.22c22.05±0.08e21.36±0.29d21.04±0.36d18.37±0.04a18.97±0.31b
    C18:04.54±0.28a4.95±0.09b5.50±0.14c5.83±0.35c5.11±0.13b4.77±0.15ab4.51±0.03a
    ∑SFA26.69±0.18b26.68±0.38b29.53±0.19d29.30±0.52d27.79±0.38c24.83±0.15a25.24±0.28a
    C16:1n-76.48±0.14b7.14±0.09c5.35±0.09a6.40±0.38b5.65±0.16a5.51±0.07a7.04±0.15c
    C18:1n-943.62±0.22a44.51±0.69b43.62±0.28a46.54±0.34c43.59±0.59a43.65±0.06a44.58±0.22b
    ∑MUFA50.10±0.35b51.65±0.61c48.97±0.35a52.94±0.07d49.24±0.43a49.16±0.13a51.62±0.29c
    C18:2n-619.97±0.14d18.54±0.12b18.28±0.18b14.79±0.62a19.79±0.25cd22.54±0.11e19.41±0.14c
    C18:3n-60.43±0.12a0.53±0.06abc0.56±0.03bc0.45±0.06ab0.52±0.01abc0.71±0.04d0.57±0.03c
    C20:3n-60.19±0.05a0.60±0.06b0.56±0.15b0.47±0.06b0.54±0.11b0.56±0.04b0.59±0.05b
    C22:4n-60.21±0.08ab0.15±0.06ab0.13±0.10a0.16±0.03ab0.20±0.03ab0.26±0.04b0.22±0.01ab
    ∑n-6PUFA20.80±0.22c19.81±0.23b19.54±0.14b15.87±0.63a21.04±0.27c24.08±0.04d20.79±0.19c
    C18:3n-31.66±0.21b1.49±0.15ab1.42±0.04a1.47±0.04ab1.38±0.14a1.38±0.08a1.65±0.05b
    C20:5n-3 EPA0.20±0.06a0.20±0.09a0.39±0.21b0.27±0.02ab0.38±0.04ab0.19±0.04a0.40±0.06b
    C22:6n-3 DHA0.58±0.07c0.16±0.05a0.15±0.03a0.15±0.03a0.18±0.04a0.35±0.03b0.30±0.03b
    ∑n-3PUFA2.44±0.31b1.85±0.26a1.96±0.14a1.88±0.05a1.94±0.17a1.92±0.06a2.35±0.08b
    ∑PUFA23.24±0.18c21.67±0.47b21.5±0.20b17.76±0.59a22.97±0.28c26.00±0.02d23.14±0.11c
    n-3/n-6∑PUFA0.12±0.02c0.09±0.01ab0.10±0.01bc0.12±0.01d0.09±0.01ab0.08±0.01a0.11±0.01c
    合计 Total100.00100.00100.00100.00100.00100.00100.00
    下载: 导出CSV

    表  6   协方差矩阵法下的显著主成分载荷特征值分析

    Table  6   Eigen analysis of the covariance matrix loadings for significant principal components

    脂肪酸 Fatty acid肝胰脏 Hepatopancreas肌肉 Muscle脂肪组织 Adipose tissue
    Factor 1Factor 2Factor 3Factor 1Factor 2Factor 3Factor 1Factor 2Factor 3
    C14:00.01–0.050.110.09–0.010.080.03–0.01–0.14
    C16:00.01–0.23–0.180.10–0.120.640.200.45–0.15
    C18:00.01–0.20–0.340.240.10–0.330.080.090.32
    ∑SFA0.03–0.48–0.410.43–0.030.390.310.540.04
    C16:1n-70.10–0.040.490.01–0.15–0.080.04–0.28–0.60
    C18:1n-90.380.41–0.28–0.47–0.26–0.040.18–0.290.60
    ∑MUFA0.480.370.21–0.46–0.41–0.120.22–0.570.00
    C18:2n-6–0.390.38–0.15–0.310.520.21–0.490.070.06
    C18:3n-6–0.010.000.00–0.010.000.01–0.010.000.05
    C20:3n-60.010.02–0.070.02–0.01–0.140.00–0.010.07
    C22:4n-6–0.02–0.040.030.04–0.010.00–0.010.000.00
    ∑n-6PUFA–0.410.35–0.18–0.270.490.07–0.510.060.18
    C18:3n-30.05–0.010.060.000.01–0.080.00–0.03–0.13
    C20:5n-3 EPA–0.08–0.130.240.110.01–0.110.000.02–0.03
    C22:6n-3 DHA–0.07–0.110.090.18–0.06–0.15–0.02–0.01–0.07
    ∑n-3PUFA–0.10–0.250.380.29–0.05–0.34–0.01–0.03–0.23
    PUFA–0.510.110.200.030.45–0.27–0.530.03–0.05
    n-3/n-6∑PUFA0.00–0.020.030.02–0.01–0.020.000.00–0.01
    特征值 Eigen value99.6231.066.5660.6714.332.0820.573.940.42
    贡献率 Contribution rate (%)71.9922.454.7477.0218.192.6481.5815.651.67
    累计贡献率 Cumulative contribution rate (%)71.9994.4499.1877.0295.2197.8581.5897.2398.90
    注: 共选择18个脂肪酸变量进行分析; SFA. 饱和脂肪酸, MUFA. 单不饱和脂肪酸, HUFA. 高不饱和脂肪酸, PUFA. 多不饱和脂肪酸Note: A total of 18 fatty acid variables are selected for the analyses. SFA. Saturated fatty acid, MUFA. Monounsaturated fatty acid, HUFA. Highly-unsaturated fatty acid, PUFA. Poly-unsaturated fatty acid
    下载: 导出CSV

    表  7   相关矩阵法下的显著主成分载荷特征值分析

    Table  7   Eigen analysis of the correlation matrix loadings for significant principal components

    变量 Variables肝胰脏 Hepatopancreas肌肉 Muscle脂肪组织 Adipose tissues
    Factor 1Factor 2Factor 3Factor 1Factor 2Factor 3Factor 1Factor 2Factor 3
    C14:00.03–0.26–0.26–0.25–0.01–0.040.140.230.15
    C16:0–0.06–0.260.33–0.170.30–0.200.270.000.28
    C18:0–0.02–0.220.46–0.23–0.210.000.30–0.060.01
    ∑SFA–0.04–0.280.34–0.26–0.01–0.090.300.010.23
    C16:1n-70.16–0.17–0.40–0.090.390.32–0.040.29–0.30
    C18:1n-90.320.120.010.250.170.140.200.16–0.35
    ∑MUFA0.320.05–0.110.280.230.190.130.25–0.39
    C18:2n-6–0.240.24–0.030.24–0.22–0.17–0.29–0.190.10
    C18:3n-6–0.290.05–0.030.19–0.040.18–0.14–0.28–0.20
    C20:3n-60.160.200.35–0.15–0.090.200.03–0.18–0.39
    C22:4n-6–0.21–0.20–0.05–0.240.08–0.16–0.20–0.030.02
    ∑n-6PUFA–0.250.23–0.020.24–0.25–0.17–0.29–0.210.06
    C18:3n-30.29–0.14–0.120.03–0.260.24–0.110.320.02
    C20:5n-3 EPA–0.24–0.21–0.15–0.27–0.130.010.010.030.03
    C22:6n-3 DHA–0.28–0.17–0.04–0.280.02–0.03–0.230.150.26
    ∑n-3PUFA–0.22–0.26–0.15–0.28–0.070.01–0.190.280.17
    ∑PUFA–0.310.11–0.070.00–0.29–0.25–0.30–0.170.08
    n-3/n-6∑PUFA–0.01–0.36–0.14–0.280.050.060.060.360.08
    MDA0.080.260.030.210.100.080.160.080.40
    CAT–0.130.21–0.27–0.140.29–0.330.16–0.310.01
    ${\rm{O}}_2\cdot^{-}$–0.030.24–0.120.120.02–0.420.23–0.240.11
    SOD–0.240.100.160.190.13–0.260.28–0.14–0.01
    GST–0.230.160.050.100.27–0.400.27–0.180.01
    特征值 Eigen value8.877.092.9712.423.182.948.875.992.66
    贡献率 Contribution rate (%)38.5430.8312.9154.0113.8012.7838.5826.0311.58
    累计贡献率 Cumulative contribution rate (%)38.5469.3782.2854.0167.8280.5938.5864.6176.19
    注: 共选择24个变量进行分析Note: A total of 24 variables are selected for the analyses
    下载: 导出CSV
  • [1]

    Zhou J, Li N, Wang H, et al. Effects of salinity on growth, nutrient composition, fatty acid composition and energy metabolism of Scylla paramamosain during indoor overwintering [J]. Aquaculture Research, 2020, 51(5): 1834-1843. doi: 10.1111/are.14532

    [2]

    Song H, Xu D, Tian L, et al. Overwinter mortality in yellow drum (Nibea albiflora): insights from growth and immune responses to cold and starvation stress [J]. Fish & Shellfish Immunology, 2019, 92(4): 341-347.

    [3]

    Feiner Z S, Coulter D P, Guffey S C, et al. Does overwinter temperature affect maternal body composition and egg traits in yellow perch Perca flavescens [J]? Journal of Fish Biology, 2016, 88(4): 1524-1543.

    [4]

    Houston B E, Rooke A C, Brownscombe J W, et al. Overwinter survival, energy storage and reproductive allocation in the invasive round goby (Neogobius melanostomus) from a river system [J]. Ecology of Freshwater Fish, 2014, 23(2): 224-233. doi: 10.1111/eff.12071

    [5]

    Wu W, Ji H, Yu H, et al. Effect of refeeding dietary containing different protein and lipid levels on growth performance, body composition, digestive enzyme activities and metabolic related gene expression of grass carp (Ctenopharyngodon idellus) after overwinter starvation [J]. Aquaculture, 2020(523): 735196-735207.

    [6]

    Hong Y, Huang Y, Yan G, et al. Antioxidative status, immunological responses, and heat shock protein expression in hepatopancreas of chinese mitten crab, Eriocheir sinensis under the exposure of glyphosate [J]. Fish & Shellfish Immunology, 2019(86): 840-845.

    [7]

    Omidi A, Namazi F, Jabire S, et al. The effects of starvation and refeeding on oxidative stress parameters (MDA, SOD, GPx), lipid profile, thyroid hormones and thyroid histopathology in male wistar rats [J]. International Archives of Medicine, 2016(9): 2109-2118.

    [8]

    Pajares M, Jiménez-Moreno N, Dias I H K, et al. Redox control of protein degradation [J]. Redox Biology, 2015(6): 409-420.

    [9]

    Luchetti F, Crinelli R, Cesarini E, et al. Endothelial cells, endoplasmic reticulum stress and oxysterols [J]. Redox Biology, 2017(13): 581-587.

    [10]

    Lv H, Liu Q, Wen Z, et al. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis [J]. Redox Biology, 2017(12): 311-324.

    [11] 农业部渔业局编制. 中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2000: 24-25.

    Compiled by Fishery Bureau of the Ministry of Agriculture. China Fisheries Statistics Yearbook [M]. Beijing: China Agriculture Press, 2020: 24-25.

    [12]

    Wu W, Sun J, Ji H, et al. AMP-activated protein kinase in the grass carp Ctenopharyngodon idellus: molecular characterization, tissue distribution and mRNA expression in response to overwinter starvation stress [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2020(246-247): 110457-110471.

    [13]

    Tian J J, Ji H, Wang Y F, et al. Lipid accumulation in grass carp (Ctenopharyngodon idellus) fed faba beans (Vicia faba L.) [J]. Fish Physiology and Biochemistry, 2019, 45(2): 631-642. doi: 10.1007/s10695-018-0589-7

    [14]

    Tian J, Lei C, Ji H. Influence of dietary linoleic acid (18: 2n-6) and α-linolenic acid (18: 3n-3) ratio on fatty acid composition of different tissues in freshwater fish songpu mirror carp, Cyprinus carpio [J]. Aquaculture Research, 2016, 47(12): 3811-3825. doi: 10.1111/are.12832

    [15]

    Chen Q, Jiang X, Han Q, et al. Growth, calcium content, proximate composition, and fatty acid composition of triangle sail mussel (Hyriopsis cumingii) fed five different microalgal diets [J]. Aquaculture, 2021(530): 735719-735730.

    [16]

    Nayak S, Koven W, Meiri I, et al. Dietary arachidonic acid affects immune function and fatty acid composition in cultured rabbitfish Siganus rivulatus [J]. Fish & Shellfish Immunology, 2017(68): 46-53.

    [17]

    Palma P F S, Bock C, Silva T S, et al. STC1 and PTHrP modify carbohydrate and lipid metabolism in liver of a teleost fish [J]. Scientific Reports, 2019, 9(1): 1-13. doi: 10.1038/s41598-018-37186-2

    [18]

    Yang B, Wang C, Tu Y, et al. Effects of repeated handling and air exposure on the immune response and the disease resistance of gibel carp (Carassius auratus gibelio) Over Winter [J]. Fish & Shellfish Immunology, 2015, 47(2): 933-941.

    [19]

    Sun S, Su Y, Yu H, et al. Starvation affects the intestinal microbiota structure and the expression of inflammatory-related genes of the juvenile blunt snout bream, Megalobrama amblycephala [J]. Aquaculture, 2020(517): 734764-734773.

    [20]

    Morshedi V, Kochanian P, Bahmani M, et al. Cyclical short-term starvation and refeeding provokes compensatory growth in sub-yearling siberian sturgeon, Acipenser baerii Brandt, 1869 [J]. Animal Feed Science and Technology, 2017(232): 207-214.

    [21]

    Favero G, Gimbo R Y, Montoya L N F, et al. A Fasting period during grow-out make juvenile pacu (Piaractus mesopotamicus) leaner but does not impair growth [J]. Aquaculture, 2020, 5(24): 735242-735248.

    [22]

    Chen J, Chen C, Tan Q. Ontogenic changes in the digestive enzyme activities and the effect of different starvation duration on the digestive enzyme activities of larval red swamp crayfish (Procambarus clarkii) [J]. Aquaculture Research, 2018, 49(2): 676-683. doi: 10.1111/are.13497

    [23]

    Alix M, Blondeau-Bidet E, Grousset E, et al. Effects of fasting and re-alimentation on gill and intestinal morphology and indicators of osmoregulatory capacity in genetically selected sea bass (Dicentrarchus labrax) populations with contrasting tolerance to fasting [J]. Aquaculture, 2017(468): 314-325.

    [24]

    Kuda O, Rossmeisl M, Kopecky J. Omega-3 fatty acids and adipose tissue biology [J]. Molecular Aspects of Medicine, 2018(64): 147-160.

    [25]

    Kondera E, Kościuszko A, Dmowska A, et al. Haematological and haematopoietic effects of feeding different diets and starvation in common carp Cyprinus carpio L. [J]. Journal of Applied Animal Research, 2017, 45(1): 623-628. doi: 10.1080/09712119.2016.1251926

    [26]

    Gou N, Ji H, Chang Z, et al. Effects of dietary essential fatty acid requirements on growth performance, fatty acid composition, biochemical parameters, antioxidant response and lipid related genes expression in juvenile Onychostoma macrolepis [J]. Aquaculture, 2020(528): 735590-735600.

    [27]

    Feng G, Shi X, Huang X, et al. Oxidative stress and antioxidant defenses after long-term fasting in blood of Chinese sturgeon (Acipenser sinensis) [J]. Procedia Environmental Sciences, 2011(8): 469-475.

    [28]

    Tian J, Tian J, Yang K, et al. Effect of dietary prickly ash (Zanthoxylum bungeanum) seeds (PAS) on growth, body composition, and health of juvenile jian carp (Cyprinus carpio var. jian) [J]. Aquaculture International, 2017, 25(1): 107-120. doi: 10.1007/s10499-016-0016-y

    [29]

    Shi X, Jin A, Sun J, et al. Α-lipoic acid ameliorates n-3highly-unsaturated fatty acids induced lipid peroxidation via regulating antioxidant defenses in grass carp (Ctenopharyngodon idellus) [J]. Fish & Shellfish Immunology, 2017(67): 359-367.

    [30]

    Salmerón C. Adipogenesis in fish [J]. The Journal of Experimental Biology, 2018, 221(Suppl 1): b161588- b161598.

    [31]

    Houston S J S, Karalazos V, Tinsley J, et al. The compositional and metabolic responses of gilthead seabream (Sparus aurata) to a gradient of dietary fish oil and associated n-3 long-chain pufa content [J]. British Journal of Nutrition, 2017, 118(12): 1010-1022. doi: 10.1017/S0007114517002975

    [32]

    Amigo I, Kowaltowski A J. Dietary restriction in cerebral bioenergetics and redox state [J]. Redox Biology, 2014(2): 296-304.

    [33] 邢薇, 郁欢欢, 于凤祥, 等. 饲料脂肪水平对杂交鲟幼鱼生长、饲料消化率、抗氧化水平和肌肉脂肪酸组成的影响 [J]. 水生生物学报, 2021, 45(2): 250-258. doi: 10.7541/2021.2019.256

    Xing W, Yu H H, Yu F X, et al. Effects of dietary lipid levels on growth performance, feed digestibility, antioxidant status and fillet fatty acid compositions of juvenile hybrid sturgeon [J]. Acta Hydrobiologica Sinica, 2021, 45(2): 250-258. doi: 10.7541/2021.2019.256

  • 期刊类型引用(1)

    1. 王绍,胡毅,陈开健,蔡明浪,张俊智,王赏初,朱波,符贵红. 氨基酸微量元素螯合物对草鱼生长及血清生化指标、脂质代谢和抗氧化能力的影响. 动物营养学报. 2023(12): 7942-7952 . 百度学术

    其他类型引用(3)

图(5)  /  表(7)
计量
  • 文章访问数:  1113
  • HTML全文浏览量:  457
  • PDF下载量:  56
  • 被引次数: 4
出版历程
  • 收稿日期:  2020-09-16
  • 修回日期:  2021-06-17
  • 录用日期:  2022-07-04
  • 网络出版日期:  2022-07-27
  • 发布日期:  2022-08-14

目录

/

返回文章
返回