基于几何形态测量学的磷酸三(1, 3-二氯-2-丙基)酯对鲢仔鱼形态影响研究

杨浩, 蒲艳, 高雷, 段辛斌, 刘绍平, 陈大庆, 李云

杨浩, 蒲艳, 高雷, 段辛斌, 刘绍平, 陈大庆, 李云. 基于几何形态测量学的磷酸三(1, 3-二氯-2-丙基)酯对鲢仔鱼形态影响研究[J]. 水生生物学报, 2023, 47(5): 819-826. DOI: 10.7541/2023.2022.0162
引用本文: 杨浩, 蒲艳, 高雷, 段辛斌, 刘绍平, 陈大庆, 李云. 基于几何形态测量学的磷酸三(1, 3-二氯-2-丙基)酯对鲢仔鱼形态影响研究[J]. 水生生物学报, 2023, 47(5): 819-826. DOI: 10.7541/2023.2022.0162
YANG Hao, PU Yan, GAO Lei, DUAN Xin-Bin, LIU Shao-Ping, CHEN Da-Qing, LI Yun. GEOMETRIC MORPHOMETRIC ANALYSIS OF SILVER CARP LARVAE AFTER EXPOSURE TO TDCIPP[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(5): 819-826. DOI: 10.7541/2023.2022.0162
Citation: YANG Hao, PU Yan, GAO Lei, DUAN Xin-Bin, LIU Shao-Ping, CHEN Da-Qing, LI Yun. GEOMETRIC MORPHOMETRIC ANALYSIS OF SILVER CARP LARVAE AFTER EXPOSURE TO TDCIPP[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(5): 819-826. DOI: 10.7541/2023.2022.0162

基于几何形态测量学的磷酸三(1, 3-二氯-2-丙基)酯对鲢仔鱼形态影响研究

基金项目: 国家重点研发计划(2018YFD0900903, 2018YFD0900902); 中央高校基本科研业务费专项(2362020-2020jd002); 中国水产科学研究院创新团队项目(2020TD09)资助
详细信息
    作者简介:

    杨浩(1994—), 男, 博士研究生; 研究方向为渔业资源与环境保护。E-mail: 1127343150@qq.com

    通信作者:

    李云, 博士, 教授; E-mail: aquatics@swu.edu.cn

  • 中图分类号: Q174

GEOMETRIC MORPHOMETRIC ANALYSIS OF SILVER CARP LARVAE AFTER EXPOSURE TO TDCIPP

Funds: Supported by the National Key R&D Program of China (2018YFD0900903 and 2018YFD0900902), the Fundamental Research Funds for the Central Universities (2362020-2020jd002) and the Innovation Team Project of Chinese Academy of Fishery Sciences (2020TD09)
    Corresponding author:
  • 摘要: 为了解磷酸三(1,3-二氯-2-丙基)酯(TDCIPP)对鲢仔鱼生长抑制性在外部形态上的表现性状, 研究基于几何形态测量学方法对0.05、0.5、5和50 μg/L共4个浓度组与对照组进行组间形态性状差异比较分析。利用PLYMPLUS系统获取鲢仔鱼样本图像信息并测量体长, 利用万分电子天平称量体重, 使用TPS系列软件提取坐标点数据, 并通过Morpho J软件完成主成分分析、典型变量分析及结果可视化。除0.05 μg/L浓度组外, 其他浓度组鲢仔鱼的体长、体重均显著低于对照组, 表明TDCIPP对鲢仔鱼的生长发育具有抑制效应。主成分分析和典型变量分析结果显示, 第一主成分(PC1)和第二主成分(PC2)共占总体变量的62.15%(分别为47.64%和14.51%); 第一典型变量(CV1)和第二典型变量(CV2)共占总体变量的79.48%(分别为54.55%和24.93%), 满足用于鲢仔鱼形态分析的要求。网格轮廓分析结果显示, 各浓度组鲢仔鱼平均形态均与对照组间存在显著差异(P<0.05), 并且主要表现为头部、躯干纵轴和尾部发育迟缓。
    Abstract: Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP), widely used as a kind of organophosphorus flame retardant, has been detected in the Yangtze River water environments. Many toxicological assessments have shown that TDCIPP could change morphology of fish. Silver carp (Hypophthalmichthys molitrix) lives in the Yangtze River for its entire life story, however, the effects of TDCIPP on silver carp is unclear. In order to clarify the main morphological characters of growth inhibition of silver carp larvae caused by TDCIPP, the present study analyzed the morphological traits between four environmentally relevant concentrations (0.05, 0.5, 5 and 50 μg/L) and the control group by geometric morphometric analysis. After the image information of larvae simple was obtained, the body length and body weight were measured. Then, digitization of landmarks was carried out with the TPS series software. Finally, principal component analysis (PCA), canonical variates analysis (CVA) and results visualization were carried out with Morpho J software. The body length and body weight of silver carp larvae decreased significantly under exposure to 0.5, 5 and 50 μg/L of TDCIPP compared with the control group, but no effects were observed in 0.05 μg/L. This indicated that environmentally relevant concentrations of TDCIPP induced growth inhibition in silver carp larvae. The results of PCA and CVA indicated that the first principal component (PC1) and the second principal component (PC2) together accounted for 62.15% of the overall variables (47.36% and 14.51%, respectively). The first canonical variates (CV1) and the second canonical variates (CV2) together accounted for 79.48% (54.55% and 24.93%, respectively), which satisfied the requirement of morphological analysis of silver carp larvae. The results of grid profile analysis indicated that the average morphology of silver carp larvae in different concentrations was significantly different with the control group (P<0.05), which identified by the growth retardation of the head, longitudinal axis of body and tail. As a conclusion, TDCIPP could induce the growth retardation of head, longitudinal axis of body and tail in silver carp larvae. Therefore, attentions should be paid to the environmental concentrations of TDCIPP in the Yangtze River Basin, and the ecological risk of TDCIPP to the replenishment of silver carp population resources should be assessed.
  • 图  1   鲢仔鱼的13个坐标点位置

    Figure  1.   Positions of 13 landmark of silver carp larvae

    图  2   鲢仔鱼5个实验组坐标点的普氏叠印图

    实心点表示鲢仔鱼的平均形态

    Figure  2.   The Procrustes diagram of five experimental groups of silver carp larvae

    Solid points indicate the average morphology of silver carp larvae

    图  3   不同实验组鲢仔鱼体长、体重的小提琴图

    黑色实线代表平均值; 虚线代表四分位数; **表示P<0.01; ****表示P<0.001;ns表示P > 0.05

    Figure  3.   Violin plot of body length and body weight of silver carp larvae with different experimental groups

    Solid black lines indicate the mean; dotted lines indicate the quartiles; ** indicate P<0.01; **** indicate P<0.001;ns indicate P > 0.05

    图  4   鲢仔鱼形态第一主成分和第二主成分的散点图及网格轮廓图

    A和B分别表示PC1轴的值为0.1和–0.1时的鲢仔鱼平均形态; C和D分别表示PC2轴的值为–0.12和0.12时的鲢仔鱼平均形态; E. 圆圈表示不同实验组鲢仔鱼形态均值的95%置信椭圆

    Figure  4.   The scatter plots of PC1 and PC2 for morphology and outline variation of silver carp larvae

    Mean shapes of silver carp larvae are shown for sores of 0.1 (A) and –0.1 (B) in PC1. Mean shapes of silver carp larvae are shown for sores of –0.12 (C) and 0.12 (D) in PC2; E. the circle represents 95% confidence ellipses of the mean shapes of silver carp in different experimental groups

    图  5   鲢仔鱼形态第一典型变量和第二典型变量的散点图及网格轮廓图

    A和B分别表示CV1轴的值为5.0和–4.0时的鲢仔鱼平均形态; C和D分别表示CV2轴的值为–7.0和4.0时的鲢仔鱼平均形态; E. 圆圈表示不同实验组鲢仔鱼形态均值的95%置信椭圆

    Figure  5.   The scatter plots of CV1 andCV2 for morphology and outline variation of silver carp larvae

    Mean shapes of silver carp larvae are shown for sores of 5.0 (A) and –4.0 (B) in CV1. Mean shapes of silver carp larvae are shown for sores of –7.0 (C) and 4.0 (D) in CV2; E. the circle represents 95% confidence ellipses of the mean shapes of silver carp in different experimental groups

    表  1   坐标点类型与定义

    Table  1   The landmark type and definition

    坐标点类型
    Landmark type
    定义
    Definition
    Ⅰ型坐标点
    3背鳍起点 Origin of dorsal fin
    4背鳍基部末端 Posterior end of dorsal fin base
    5尾鳍基部上端 Upper insertion of caudal fin base
    7尾鳍基部下端 Lower insertion of caudal fin base
    8臀鳍基部末端 Posterior end of anal fin base
    9臀鳍起点 Origin of anal fin
    10腹鳍起点 Origin of pelvic fin
    Ⅱ型坐标点
    2额骨 Frontal bone
    6尾柄末端 Distal tip of caudal peduncle
    11前鳃盖腹侧起点 Origin of the preopercle on the ventral
    12眼前缘 The anterior margin of the eye
    13眼后缘 The posterior margin of the eye
    Ⅲ型坐标点
    1吻端 Tip of snout
    下载: 导出CSV

    表  2   鲢仔鱼形态主成分分析

    Table  2   Principal component analysis of morphology in silver carp larvae

    主成分
    Principal
    component
    特征值
    Eigenvalue
    占总体变异
    Variance (%)
    累计总体变异
    Cumulative
    variance (%)
    PC10.0013835647.6447.64
    PC20.0004213014.5162.15
    PC30.0003131010.7872.93
    PC40.000136574.7077.63
    PC50.000112753.8881.51
    PC60.000105203.6285.13
    下载: 导出CSV

    表  3   鲢仔鱼形态典型变量分析

    Table  3   Canonical variate analysis of morphology in silver carp larvae

    典型变量
    Canonical
    variate
    特征值
    Eigenvalue
    占总体变异
    Variance (%)
    累计总体变异
    Cumulative
    variance (%)
    CV10.4067314454.5554.55
    CV20.1859240224.9379.48
    CV30.0844142511.3290.80
    CV40.068598549.20100.00
    下载: 导出CSV

    表  4   不同实验组鲢仔鱼13个坐标点矩阵基于典型变量分析计算的马氏距离和普氏距离

    Table  4   Mahalanobis and Procrustes distance computed from a canonical variates analysis of a matrix of 13 landmark of silver carp larvae

    对照组
    Control
    0.05 μg/L0.5 μg/L5 μg/L50 μg/L
    马氏距离Mahalanobis distance
    对照组Control0.0004<0.0001<0.0001<0.0001
    0.05 μg/L1.0538<0.0001<0.0001<0.0001
    0.5 μg/L1.67051.1827<0.0001<0.0001
    5 μg/L1.30861.12781.1546
    50 μg/L1.84971.56511.30841.1161
    普氏距离Procrustes distance
    对照组Control0.0299<0.00010.0008<0.0001
    0.05 μg/L0.01380.02690.41960.0006
    0.5 μg/L0.02620.01370.09900.0385
    5 μg/L0.01870.00760.01070.0036
    50 μg/L0.03220.02050.01320.0169
    注: 上三角表示P值, 下三角表示不同群体间的距离; 种群间距离显著性的P值是通过排列试验(10000个重复)计算出来的Note: Upper triangle are P-values, lower triangle are distances between populations; P-values for the significance of the interpopulation distances were computed using permutation tests (10000 replications)
    下载: 导出CSV
  • [1] 宋文, 王艺舟, 祝东梅, 等. 鲂属鱼类形态差异分析 [J]. 淡水渔业, 2013, 43(3): 21-27. doi: 10.3969/j.issn.1000-6907.2013.03.004

    Song W, Wang Y Z, Zhu D M, et al. Morphological variations among the genus Megalobrama [J]. Freshwater Fisheries, 2013, 43(3): 21-27. doi: 10.3969/j.issn.1000-6907.2013.03.004

    [2] 王贺崐元, 汤永涛, 李国刚, 等. 高原裸裂尻鱼头部轮廓形状及其变异的几何形态测量分析 [J]. 水生生物学报, 2017, 41(1): 182-193. doi: 10.7541/2017.23

    Wang H, Tang Y T, Li G G, et al. Geometric morphometrics of the cephalic contour and its morphological variations among Schizopygopsis stoliczkai (Teleostei: Cyprinidae) [J]. Acta Hydrobiologica Sinica, 2017, 41(1): 182-193. doi: 10.7541/2017.23

    [3] 林仪菲, 匡天旭, 侯琅, 等. 珠江流域(歺又鱼)和南方拟(歺又鱼)的几何形态分析 [J]. 淡水渔业, 2020, 50(6): 23-29. doi: 10.3969/j.issn.1000-6907.2020.06.004

    Lin Y F, Kuang T X, Hou L, et al. Geometric morphometrics analysis on Hemiculter leucisculus and Pseudohemiculter dispar in the Pearl River Basin [J]. Freshwater Fisheries, 2020, 50(6): 23-29. doi: 10.3969/j.issn.1000-6907.2020.06.004

    [4] 陈新军, 方舟, 苏杭, 等. 几何形态测量学在水生动物中的应用及其进展 [J]. 水产学报, 2013, 37(12): 1873-1885. doi: 10.3724/SP.J.1231.2013.38772

    Chen X J, Fang Z, Su H, et al. Review and application of geometric morphometrics in aquatic animals [J]. Journal of Fisheries of China, 2013, 37(12): 1873-1885. doi: 10.3724/SP.J.1231.2013.38772

    [5] 孟秋, 高雷, 汪登强, 等. 长江中游监利江段鱼类早期资源及生态调度对鱼类繁殖的影响 [J]. 中国水产科学, 2020, 27(7): 824-833.

    Meng Q, Gao L, Wang D Q, et al. The early-stage fish resources and effects of ecological regulation on fish reproduction at the Jianli section of the Yangtze River [J]. Journal of Fishery Sciences of China, 2020, 27(7): 824-833.

    [6] 董春燕, 李君轶, 张辉, 等. 长江中游鱼类资源量的估算 [J]. 动物学杂志, 2021, 56(1): 73-79. doi: 10.13859/j.cjz.202101009

    Dong C Y, Li J Y, Zhang H, et al. Estimation of fish resources in middle reaches of Yangtze River [J]. Chinese Journal of Zoology, 2021, 56(1): 73-79. doi: 10.13859/j.cjz.202101009

    [7]

    Le Bihanic F, Clérandeau C, Cormier B, et al. Organic contaminants sorbed to microplastics affect marine medaka fish early life stages development [J]. Marine Pollution Bulletin, 2020(154): 111059.

    [8] 许二学. 锌、汞、铬对鳜、鲢胚胎急性毒性效应研究 [D]. 合肥: 安徽农业大学, 2013: 19-30.

    Xu E X. Study of acute toxic effect of Zn, Hg and Cr on Siniperca chuatsi and Hypophthalmichthys molitrix embryos [D]. Hefei: Anhui Agricultural University, 2013: 19-30.

    [9] 吴凡, 杜开开, 柳凌, 等. 气体过饱和对草鱼和鲢受精卵、仔鱼和幼鱼的影响 [J]. 淡水渔业, 2020, 50(4): 91-98. doi: 10.3969/j.issn.1000-6907.2020.04.013

    Wu F, Du K K, Liu L, et al. Effects of gas supersaturation on eggs, larvae and juveniles of Ctenopharyngodon idella and Hypophthalmichthys molitrix [J]. Freshwater Fisheries, 2020, 50(4): 91-98. doi: 10.3969/j.issn.1000-6907.2020.04.013

    [10] 唐丽君, 张筱帆, 张堂林, 等. 水温对鲢早期发育的影响 [J]. 华中农业大学学报, 2014, 33(1): 92-96.

    Tang L J, Zhang X F, Zhang T L, et al. Effects of water temperature on early development ofsilver carp Hypophthalmichthys molitrix [J]. Journal of Huazhong Agricultural University, 201, 33(1): 92-96.

    [11]

    Zhao H, Zhao F, Liu J, et al. Trophic transfer of organophosphorus flame retardants in a lake food web [J]. Environmental Pollution, 2018(242): 1887-1893.

    [12] 巴家文, 邓华堂, 段辛斌, 等. 应用稳定性同位素(δ13C、δ15N)技术研究长江中游干流主要鱼类的营养级 [J]. 动物学杂志, 2015, 50(4): 537-546.

    Ba J W, Deng H T, Duan X B, et al. Trophic level analysis on main fish species in the middle reaches of Yangtze River by δ13C and δ15N analysis [J]. Chinese Journal of Zoology, 2015, 50(4): 537-546.

    [13]

    De Boer J, Stapleton H M. Toward fire safety without chemical risk [J]. Science, 2019, 364(6437): 231-232. doi: 10.1126/science.aax2054

    [14]

    Wang C, Chen H, Li H, et al. Review of emerging contaminant tris(1, 3-dichloro-2-propyl) phosphate: environmental occurrence, exposure, and risks to organisms and human health [J]. Environment International, 2020(143): 105946.

    [15]

    Van Der Veen I, De Boer J. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067

    [16]

    Robinson S A, Young S D, Brinovcar C, et al. Ecotoxicity assessment and bioconcentration of a highly brominated organophosphate ester flame retardant in two amphibian species [J]. Chemosphere, 2020(260): 127631.

    [17]

    Zhang Y, Yi X E, Huang K, et al. Tris(1, 3-dichloro-2-propyl) phosphate reduces growth hormone expression via binding to growth hormone releasing hormone receptors and inhibits the growth of crucian carp [J]. Environmental Science & Technology, 2021, 55(12): 8108-8118.

    [18]

    Zhu Y, Lin D, Yang D, et al. Environmentally relevant concentrations of the flame retardant tris(1, 3-dichloro-2-propyl) phosphate change morphology of female zebrafish [J]. Chemosphere, 2018(212): 358-364.

    [19]

    Zhu Y, Su G, Yang D, et al. Time-dependent inhibitory effects of Tris(1, 3-dichloro-2-propyl) phosphate on growth and transcription of genes involved in the GH/IGF axis, but not the HPT axis, in female zebrafish [J]. Environmental Pollution, 2017(229): 470-478.

    [20] 张秀霞, 朱巧莹, 赵俊. 利用几何形态测量学方法分析唐鱼群体的形态变异 [J]. 水产学报, 2017, 41(9): 1365-1373.

    Zhang X X, Zhu Q Y, Zhao J. Geometric morphometrics analysis of body-form variability in populations of Tanichthys albonubes [J]. Journal of Fisheries of China, 2017, 41(9): 1365-1373.

    [21]

    Li H, Yuan S, Su G, et al. Whole-life-stage characterization in the basic biology of Daphnia magna and effects of TDCIPP on growth, reproduction, survival, and transcription of genes [J]. Environmental Science & Technology, 2017, 51(23): 13967-13975.

    [22]

    Zhu Y, Zhang J, Liu Y, et al. Environmentally relevant concentrations of the flame retardant tris(1, 3-dichloro-2-propyl) phosphate inhibit the growth and reproduction of earthworms in soil [J]. Environmental Science & Technology Letters, 2019, 6(5): 277-282.

    [23] 王超, 方舟, 陈新军. 基于几何形态测量法的剑尖枪乌贼角质颚形态变化研究 [J]. 渔业科学进展, 2021(42): 1-13. doi: 10.19663/j.issn2095-9869.20210722001

    Wang C, Fang Z, Chen X J. Beak morphology variation of Uroteuthis edulis based on geometric morphometrics [J]. Progress in Fishery Sciences, 2021(42): 1-13. doi: 10.19663/j.issn2095-9869.20210722001

    [24]

    Yu H X, Tang W Q, Li S F. Morphological changes of silver and bighead carp in the Yangtze River over the past 50 years [J]. Zoological Research, 2010, 31(6): 651-656.

    [25] 梁宏伟, 李忠, 罗相忠, 等. 长丰鲢与长江鲢形态差异与判别分析 [J]. 水生生物学报, 2015, 39(5): 1059-1064. doi: 10.7541/2015.139

    Liang H W, Li Z, Luo X Z, et al. Morphological differences and discriminant analysis between Changfeng and Yangtze River silver carp [J]. Acta Hydrobiologica Sinica, 2015, 39(5): 1059-1064. doi: 10.7541/2015.139

    [26] 吴新燕, 梁宏伟, 罗相忠, 等. 不同月龄长丰鲢形态性状对体质量的影响 [J]. 南方水产科学, 2021, 17(3): 62-69. doi: 10.12131/20200265

    Wu X Y, Liang H W, Luo X Z, et al. Effects of morphological traits on body mass of Changfeng silver carp (Hypophthalmichthys molitrix) at different ages [J]. South China Fisheries Science, 2021, 17(3): 62-69. doi: 10.12131/20200265

    [27]

    Rhyu D, Lee H, Tanguay R L, et al. Tris(1, 3-dichloro-2-propyl) phosphate (TDCIPP) disrupts zebrafish tail fin development [J]. Ecotoxicology and Environmental Safety, 2019(182): 109449. doi: 10.1016/j.ecoenv.2019.109449

    [28]

    Vagner M, Zambonino-Infante J L, Mazurais D. Fish facing global change: are early stages the lifeline [J]? Marine Environmental Research, 2019(147): 159-178.

    [29]

    Weiner J. Allocation, plasticity and allometry in plants [J]. Perspectives in Plant Ecology, Evolution and Systematics, 2004, 6(4): 207-215. doi: 10.1078/1433-8319-00083

    [30] 王新安, 马爱军. 化学感觉和机械感觉与鱼类摄食行为关系的研究进展 [J]. 海洋水产研究, 2007(6): 107-108.

    Wang X A, Ma A J. The progress of studies on the relationship between feeding behavior and chemical or mechanical sense in fish [J]. Progress in Fishery Sciences, 2007(6): 104-108.

    [31]

    Ramler D, Palandačić A, Delmastro G B, et al. Morphological divergence of lake and stream Phoxinus of Northern Italy and the Danube basin based on geometric morphometric analysis [J]. Ecology and Evolution, 2017, 7(2): 572-584. doi: 10.1002/ece3.2648

    [32]

    Svozil D P, Baumgartner L J, Fulton C J, et al. Morphological predictors of swimming speed performance in river and reservoir populations of Australian smelt Retropinna semoni [J]. Journal of Fish Biology, 2020, 97(6): 1632-1643. doi: 10.1111/jfb.14494

    [33]

    Islam M D S, Ueno M, Yamashita Y. Growth-dependent survival mechanisms during the early life of a temperate seabass (Lateolabrax japonicus): field test of the “growth–mortality” hypothesis [J]. Fisheries Oceanography, 2010, 19(3): 230-242. doi: 10.1111/j.1365-2419.2010.00539.x

    [34]

    He M J, Lu J F, Wei S Q. Organophosphate esters in biota, water, and air from an agricultural area of Chongqing, Western China: concentrations, composition profiles, partition and human exposure [J]. Environmental Pollution, 2019(244): 388-397. doi: 10.1016/j.envpol.2018.10.085

图(5)  /  表(4)
计量
  • 文章访问数:  2704
  • HTML全文浏览量:  1338
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-17
  • 修回日期:  2022-07-11
  • 网络出版日期:  2022-07-31
  • 发布日期:  2023-05-14

目录

    /

    返回文章
    返回