HIGH DIETARY DOSES OF ORGANIC AND INORGANIC SELENIUM ON GROWTH PERFORMANCE, TISSUE SELENIUM ACCUMULATION AND BLOOD BIOCHEMICAL PARAMETERS OF GIBEL CARP (CARASSIUS AURATUS GIBELIO VAR. CAS V)
-
摘要: 为探究饲料中高剂量的有机硒和无机硒对异育银鲫(Carassius auratus gibelio var. CAS V)的生长性能、硒蓄积和血浆生化指标等方面的影响, 以硒代蛋氨酸(有机硒)和亚硒酸钠(无机硒)作为不同类型的硒源, 初始体重为(62.95±0.23) g异育银鲫为研究对象, 进行了为期90d的养殖实验。实验结果表明, 饲料中添加0、10和20 mg/kg的有机硒和无机硒对异育银鲫的存活和饲料干物质的表观消化率无显著影响; 有机硒处理组硒的表观消化率随饲料有机硒的添加量增加而显著升高(P<0.05); 饲料中添加无机硒对硒消化率无显影响(P>0.05)。在饲料中添加有机硒可以提高异育银鲫的生长(P<0.05), 在20 mg/kg 处理组中达到最高(P<0.05); 而饲料中添加10 mg/kg 无机硒处理组未显著改变异育银鲫的特定生长率(P>0.05), 但高浓度的无机硒则显著降低了其特定生长率(P<0.05)。饲料中添加有机硒显著降低了异育银鲫的肝体比, 添加10 mg/kg 无机硒显著降低异育银鲫的肝体比(P<0.05); 饲料中添加有机硒和无机硒对异育银鲫的肾体比无显著影响。饲料中添加有机硒和无机硒均显著提高了全鱼、肝脏、肾脏、肌肉、骨骼和性腺的硒含量, 其中有机硒处理组骨骼、肌肉、性腺和全鱼的硒含量显著高于无机硒处理组(P<0.05)。饲料中添加有机硒和无机硒显著提高了血浆中葡萄糖的含量, 降低了血浆总胆红素的含量以及谷丙转氨酶和谷草转氨酶的活性(P<0.05), 20 mg/kg有机硒组和10 mg/kg无机硒组血浆铁离子的含量也显著降低(P<0.05)。结果表明异育银鲫对饲料中高水平的有机硒和无机硒均有较好的耐受能力。饲料中添加高水平有机硒养殖异育银鲫90d, 未表现明显的毒性作用。饲料中添加高水平有机硒比无机硒对异育银鲫具有更好的促进生长和硒蓄积作用。Abstract: To investigate the effects of high doses of organic and inorganic selenium in feed on the growth performance, selenium accumulation and plasma biochemical parameters of gibel carp, organic selenium and inorganic selenium were used as different types of selenium sources, and gibel carp with an initial body weight of (62.95±0.23) g was used for a 90d feeding experiment. The results indicated that the addition of 0, 10 and 20 mg/kg organic and inorganic selenium to the feed did not have a significant effect on the survival rate and the digestibility of the dry matter. Moreover, the addition of organic selenium significantly increased the selenium digestibility of the organic selenium treatment group (P<0.05), while the addition of inorganic selenium to the feed had no significant effect on the selenium digestibility (P>0.05). The addition of organic selenium to the feed increased the growth of gibel carp (P<0.05), reaching the highest level in the 20 mg/kg treatment group (P<0.05). The addition of inorganic selenium to the feed significantly reduced the specific growth rate of the gibel carp (P<0.05), and there was no significant difference in the specific growth rate between the 10 mg/kg inorganic selenium treatment group and the control group (P>0.05). The addition of organic selenium to the feed had no any significant effect on the hepatosomatic index of gibel carp, while the addition of 10 mg/kg inorganic selenium significantly reduced the hepatosomatic index (P<0.05). The addition of organic and inorganic selenium to the feed had no any significant effect on the renosomatic index of gibel carp. The addition of both organic and inorganic selenium significantly increased the selenium content of whole fish, liver, kidney, muscle, bone and gonads, and the organic selenium addition group had significantly higher selenium content in bone, muscle, gonads and whole fish than the inorganic selenium addition group (P<0.05). The addition of organic selenium and inorganic selenium to the diet significantly increased the plasma glucose content, decreased the total plasma bilirubin content and reduced the activity of glutamate and ghrelin (P<0.05), and the addition of 20 mg/kg organic selenium and 10 mg/kg inorganic selenium to the diet significantly reduced the plasma iron ion content (P<0.05). The results showed that the high levels of organic and inorganic selenium in the feed were well tolerated by the gibel carp and the high levels of organic selenium in the feed had no toxic effect on the gibel carp after 90d of the feeding. High levels of dietary organic selenium boosted growth performance and selenium bioaccumulation of gibel carp.
-
-
图 1 饲料中不同含量有机硒和无机硒对异育银鲫特定生长率饲料效率(A)、饲料效率(B)和存活率(C)的影响
数据是平均值±标准差来表示(n=3); 柱状图上方不同大写字母表示有机硒处理组间有显著性差异(P<0.05); 柱状图上方不同小写字母表示无机硒处理组间有显著性差异(P<0.05); 柱状图上方*表示有机硒和无机硒处理组间有显著性差异(P<0.05); 下同
Figure 1. The effects of dietary organic selenium levels and inorganic selenium levels on specific growth rate (A), feeding efficiency (B) and survival rate (C) of gibel carp
Data are indicated as mean±SD (n=6). Bars with different catipal letters mean significant changes among groups with organic selenium supplementation (P<0.05). Bars with different lowercase letters mean significant changes among groups with inorganic selenium supplementation (P<0.05). Bars with different * mean significant changes with organic selenium and inorganic selenium supplementation in the same group (P<0.05). The same applies below
表 1 实验配方及生化组成
Table 1 Experimental formulation and biochemical composition
原料Ingredient (g/kg) Diet1 Diet2 Diet3 Diet5 Diet6 TASA鱼粉Fishmeal 30 30 30 30 30 小麦浓缩蛋白Wheat protein concentrate 200 200 200 200 200 酪蛋白Casein 200 200 200 200 200 玉米淀粉Corn starch 260 260 260 260 260 鱼油Fish oil 40 40 40 40 40 豆油Soybean oil 40 40 40 40 40 硒代蛋氨酸Selenomethionine (mg/kg) 0 24.84 49.67 — — 亚硒酸钠Sodium selenite (mg/kg) 0 — — 21.90 43.80 矿物盐预混物(不含硒)Mineral premix 50 50 50 50 50 维生素预混物Vitamin premix 3.90 3.90 3.90 3.90 3.90 氯化胆碱Choline chloride 1.10 1.10 1.10 1.10 1.10 三氧化二钇Yttrium trioxide 10 10 10 10 10 纤维素Cellulose 165 164.98 164.96 164.98 164.96 化学组成(g/kg干物质)Proximate composition (g/kg on a dry matter basis) 硒Se (mg/kg) 0.04 10.03 18.32 10.55 21.06 水分Moisture 99.79 107.71 124.76 122.06 107.78 灰分Ash 48.38 56.14 56.02 57.26 60 粗蛋白Crude protein 410.47 391.69 393.04 412.02 393 注: TASA鱼粉: 秘鲁Tecnologica de Alimentos Somos公司; 酪蛋白: 购自甘肃华羚酪蛋白股份有限公司; 小麦浓缩蛋白: 购自山东渠风食品科技有限公司; 硒代蛋氨酸: 纯度≥98.0%, 购自北京百灵威科技有限公司; 亚硒酸钠: 纯度≥97.0%, 购自上海国药集团化学试剂有限公司; 多维预混物(mg/kg 饲料): 维生素 B1, 20; 维生素 B2, 20; 维生素 B6, 20; 维生素 B12, 0.020; 叶酸, 5; 泛酸钙, 50; 肌醇, 100; 烟酸, 100; 生物素, 0.1; 纤维素, 3522; 维生素 C, 100; 维生素 A, 11; 维生素 D, 2; 维生素 E, 100; 维生素 K, 10; 多矿预混物(mg/kg 饲料): 氯化钠, 500.0; 硫酸镁, 8155.6; 磷酸二氢钠, 12500.0; 磷酸二氢钾, 16000.0; 磷酸氢钙, 7650.6; 硫酸亚铁, 2286.2; 乳酸钙, 1750.0; 硫酸锌, 178.0; 硫酸锰, 61.4; 硫酸铜 15.5; 硫酸钴, 0.91; 碘化钾, 1.5; 淀粉, 899.7Note: TASA fishmeal: Peru Tecnologica de Alimentos Somos Company, Peru; Casein: purchased from Gansu Hualing Casein Stock Co., Ltd, Gansu, China; Wheat protein concentrate: purchased from Shandong Qufeng Food Technology Co., Ltd, Weifang, Shandong, China; Selenomethionine: Purity ≥98.0%, purchased from Beijing Bailingwei Technology Co., Ltd, Beijing, China; Sodium selenite: Purity ≥97.0%, purchased from Shanghai Sinopharm Chemical Reagent Co., Ltd, Shanghai, China; Vitamin premix (mg/kg diet): Vitamin B1, 20; Vitamin B2, 20; Vitamin B6, 20; Vitamin B12, 0.02; folic acid, 5; calcium pantothenate, 50; inositol, 100; niacin, 100; biotin, 0.1; cellulose, 3522; Vitamin A, 11; Vitamin D, 2; Vitamin E, 100; Vitamin K, 10; Mineral premixes (mg/kg diet): NaCl, 500.0; MgSO4·7H2O, 8155.6; NaH2PO4·2H2O, 12500.0; KH2PO4, 16000.0; Ca(H2PO4)·2H2O, 7650.6; FeSO4·7H2O, 2286.2; C6H10CaO6·5H2O, 1750.0; ZnSO4·7H2O, 178.0; MnSO4·H2O, 61.4; CuSO4·5H2O, 15.5; CoSO4·7H2O, 0.91; KI, 1.5; Corn starch, 899.7 -
[1] Maier K J, Foe C, Ogle R S, et al. The dynamics of selenium in aquatic ecosystems [J]. Trace Substan Environ Health, 1987(21): 361-408.
[2] 王云, 魏复盛. 土壤环境元素化学 [M]. 北京: 中国环境出版社, 1995: 54-57. Wang Y, Wei F S. Elemental Chemistry of Soil Environment [M]. Beijing: China Environmental Press, 1995: 54-57.
[3] Whanger P, Xia V, Thomson C. Metabolism of different forms of selenium in humans: conference on trace elements in health and disease [J]. Journal of Trace Elements and Electrolytes in Health and Disease, 1993, 7(2): 121.
[4] Schwarz K, Foltz C M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration [J]. Journal of the American Chemical Society, 1957, 79(12): 3292-3293.
[5] 王茜, 姚继广, 杨子森, 等. 硒的作用机理及对动物免疫的影响 [J]. 黑龙江畜牧兽医, 2010(5): 23-24. [6] Jobling M. National Research Council (NRC). Nutrient requirements of fish and shrimp [J]. Aquaculture International, 2012, 20(3): 601-602. doi: 10.1007/s10499-011-9480-6
[7] 朱春峰. 有机硒和无机硒对异育银鲫生长、生理的影响 [D]. 苏州: 苏州大学, 2009. Zhu C F. Effect of dietary organic Se and inorganic Se supplement on growth performance and physiological function of the different organs in Carassius auratus gibelio [D]. Suzhou: Soochow University, 2009.
[8] Han D, Xie S, Liu M, et al. The effects of dietary selenium on growth performances, oxidative stress and tissue selenium concentration of gibel carp (Carassius auratus gibelio) [J]. Aquaculture Nutrition, 2011, 17(3): e741-e749. doi: 10.1111/j.1365-2095.2010.00841.x
[9] Zhu L, Han D, Zhu X, et al. Dietary selenium requirement for on-growing gibel carp (Carassius auratus gibelio var. CAS Ⅲ) [J]. Aquaculture Research, 2017, 48(6): 2841-2851. doi: 10.1111/are.13118
[10] Lee S, Nambi R W, Won S, et al. Dietary selenium requirement and toxicity levels in juvenile Nile tilapia, Oreochromis niloticus [J]. Aquaculture, 2016(464): 153-158. doi: 10.1016/j.aquaculture.2016.06.027
[11] Chen H, Li J, Yan L, et al. Subchronic effects of dietary selenium yeast and selenite on growth performance and the immune and antioxidant systems in Nile tilapia Oreochromis niloticus [J]. Fish & Shellfish Immunology, 2020(97): 283-293.
[12] Atencio L, Moreno I, Jos Á, et al. Effects of dietary selenium on the oxidative stress and pathological changes in tilapia (Oreochromis niloticus) exposed to a microcystin-producing cyanobacterial water bloom [J]. Toxicon, 2009, 53(2): 269-282. doi: 10.1016/j.toxicon.2008.11.011
[13] Lin Y H, Shiau S Y. Dietary selenium requirements of juvenile grouper, Epinephelus malabaricus [J]. Aquaculture, 2005, 250(1/2): 356-363.
[14] 谈枫, 梁萌青, 郑珂珂, 等. 鲈鱼(Lateolabrax japonicus)养殖中期对饲料硒的需求量 [J]. 渔业科学进展, 2015, 36(3): 93-100. doi: 10.11758/yykxjz.20150315 Tan F, Liang M Q, Zheng K K, et al. The requirement of dietary selenium at the middle growth stage of Japanese seabass (Lateolabrax japonicus) [J]. Progress in Fishery Sciences, 2015, 36(3): 93-100. doi: 10.11758/yykxjz.20150315
[15] Swain P, Das R, Das A, et al. Effects of dietary zinc oxide and selenium nanoparticles on growth performance, immune responses and enzyme activity in rohu, Labeo rohita (Hamilton) [J]. Aquaculture Nutrition, 2019, 25(2): 486-494. doi: 10.1111/anu.12874
[16] Mansour A T E, Goda A A, Omar E A, et al. Dietary supplementation of organic selenium improves growth, survival, antioxidant and immune status of meagre, Argyrosomus regius, juveniles [J]. Fish & Shellfish Immunology, 2017(68): 516-524.
[17] Le K T, Fotedar R. Dietary selenium requirement of yellowtail kingfish (Seriola lalandi) [J]. Agricultural Sciences, 2013, 4(6): 68-75. doi: 10.4236/as.2013.46A011
[18] Jaramillo F, Peng L, Gatlin D M. Selenium nutrition of hybrid striped bass (Morone chrysops×M. saxatilis) bioavailability, toxicity and interaction with vitamin E [J]. Aquaculture Nutrition, 2009, 15(2): 160-165. doi: 10.1111/j.1365-2095.2008.00579.x
[19] Allan C B, Lacourciere G M, Stadtman T C. Responsiveness of selenoproteins to dietary selenium [J]. Annual Review of Nutrition, 1999(19): 1-16. doi: 10.1146/annurev.nutr.19.1.1
[20] 异育银鲫“中科5号” [J]. 中国水产, 2018(8): 64-69. Carassius auratus gibelio var. CAS V [J]. China Fisheries, 2018(8): 64-69.
[21] AOAC C. Official methods of analysis of the Association of Analytical Chemists International [J]. Official Methods: Gaithersburg, MD, USA, 2005.
[22] Hamilton S J, Buhl K J, Faerber N L, et al. Toxicity of organic selenium in the diet to chinook salmon [J]. Environmental Toxicology and Chemistry, 1990, 9(3): 347-358. doi: 10.1002/etc.5620090310
[23] Tashjian D H, Teh S J, Sogomonyan A, et al. Bioaccumulation and chronic toxicity of dietary l-selenomethionine in juvenile white sturgeon (Acipenser transmontanus) [J]. Aquatic Toxicology, 2006, 79(4): 401-409. doi: 10.1016/j.aquatox.2006.07.008
[24] Hu J R, Huang Y H, Wang G X, et al. Deficient and excess dietary selenium levels affect growth performance, blood cells apoptosis and liver HSP70 expression in juvenile yellow catfish Pelteobagrus fulvidraco [J]. Fish Physiology and Biochemistry, 2016, 42(1): 249-261. doi: 10.1007/s10695-015-0133-y
[25] Hodson P, Hilton J W. The nutritional requirements and toxicity to fish of dietary and waterborne selenium [J]. Ecological Bulletins, 1983(35): 335-340.
[26] Gatlin D M, Wilson R P. Dietary selenium requirement of fingerling channel catfish [J]. The Journal of Nutrition, 1984, 114(3): 627-633. doi: 10.1093/jn/114.3.627
[27] Briens M, Mercier Y, Rouffineau F, et al. Comparative study of a new organic selenium source v. seleno-yeast and mineral selenium sources on muscle selenium enrichment and selenium digestibility in broiler chickens [J]. The British Journal of Nutrition, 2013, 110(4): 617-624. doi: 10.1017/S0007114512005545
[28] le K T, Fotedar R. Bioavailability of selenium from different dietary sources in yellowtail kingfish (Seriola lalandi) [J]. Aquaculture, 2014(420/421): 57-62. doi: 10.1016/j.aquaculture.2013.10.034
[29] Thiry C, Ruttens A, Pussemier L, et al. An in vitro investigation of species-dependent intestinal transport of selenium and the impact of this process on selenium bioavailability [J]. The British Journal of Nutrition, 2013, 109(12): 2126-2134. doi: 10.1017/S0007114512004412
[30] Reasbeck P G, Barbezat G O, Weber F L Jr, et al. Selenium absorption by canine jejunum [J]. Digestive Diseases and Sciences, 1985, 30(5): 489-494. doi: 10.1007/BF01318184
[31] Pacini N, Elia A C, Abete M C, et al. Antioxidant response versus selenium accumulation in the liver and kidney of the Siberian sturgeon (Acipenser baeri) [J]. Chemosphere, 2013, 93(10): 2405-2412. doi: 10.1016/j.chemosphere.2013.08.042
[32] Rathore S S, Murthy H S, Girisha S K, et al. Supplementation of nano-selenium in fish diet: Impact on selenium assimilation and immune-regulated selenoproteome expression in monosex Nile tilapia (Oreochromis niloticus) [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2021(240): 108907.
[33] Chen G, Wu J, Li C. Effect of different selenium sources on production performance and biochemical parameters of broilers [J]. Journal of Animal Physiology and Animal Nutrition, 2014, 98(4): 747-754. doi: 10.1111/jpn.12136
[34] de Riu N, Lee J W, Huang S S Y, et al. Effect of dietary selenomethionine on growth performance, tissue burden, and histopathology in green and white sturgeon [J]. Aquatic Toxicology, 2014(148): 65-73. doi: 10.1016/j.aquatox.2013.12.030
[35] Kim J H, Kang J C. The selenium accumulation and its effect on growth, and haematological parameters in red sea bream, Pagrus major, exposed to waterborne selenium [J]. Ecotoxicology and Environmental Safety, 2014(104): 96-102. doi: 10.1016/j.ecoenv.2014.02.010
[36] Lee J, Hong S, Sun J H, et al. Toxicity of dietary selenomethionine in juvenile steelhead trout, Oncorhynchus mykiss: tissue burden, growth performance, body composition, hematological parameters, and liver histopathology [J]. Chemosphere, 2019(226): 755-765. doi: 10.1016/j.chemosphere.2019.03.184
[37] Kumar N, Singh N P. Effect of dietary selenium on immuno-biochemical plasticity and resistance against Aeromonas veronii biovar sobria in fish reared under multiple stressors [J]. Fish & Shellfish Immunology, 2019(84): 38-47.
[38] Bleys J, Navas-Acien A, Guallar E. Serum selenium and diabetes in US adults [J]. Diabetes Care, 2007, 30(4): 829-834. doi: 10.2337/dc06-1726
[39] Rajpathak S, Rimm E, Morris J S, et al. Toenail selenium and cardiovascular disease in men with diabetes [J]. Journal of the American College of Nutrition, 2005, 24(4): 250-256. doi: 10.1080/07315724.2005.10719472
[40] 罗程, 王晓倩, 陈梁凯, 等. 血浆硒与糖尿病前期患病风险的关联研究 [J]. 中华预防医学杂志, 2019, 53(6): 565-569. doi: 10.3760/cma.j.issn.0253-9624.2019.06.005 Luo Cheng, Wang X Q, Chen L K, et al. Association between plasma selenium and the risk of impaired glucose regulation [J]. Chinese Journal of Preventive Medicine, 2019, 53(6): 565-569. doi: 10.3760/cma.j.issn.0253-9624.2019.06.005
[41] El-Sharawy M E, Hamouda M, Soliman A A, et al. Selenium nanoparticles are required for the optimum growth behavior, antioxidative capacity, and liver wellbeing of Striped catfish (Pangasianodon hypophthalmus) [J]. Saudi Journal of Biological Sciences, 2021, 28(12): 7241-7247. doi: 10.1016/j.sjbs.2021.08.023
[42] Jahanbakhshi A, Pourmozaffar S, Adeshina I, et al. Selenium nanoparticle and selenomethionine as feed additives: effects on growth performance, hepatic enzymes’ activity, mucosal immune parameters, liver histology, and appetite-related gene transcript in goldfish (Carassius auratus) [J]. Fish Physiology and Biochemistry, 2021, 47(2): 639-652. doi: 10.1007/s10695-021-00937-6
[43] Lin X, Yang T, Li H, et al. Interactions between different selenium compounds and essential trace elements involved in the antioxidant system of laying hens [J]. Biological Trace Element Research, 2020, 193(1): 252-260. doi: 10.1007/s12011-019-01701-x
[44] Bartfay W J, Hou D, Brittenham G M, et al. The synergistic effects of vitamin E and selenium in iron-overloaded mouse hearts [J]. The Canadian Journal of Cardiology, 1998, 14(7): 937-941.
[45] Van Dael P, Davidsson L, Munoz-Box R, et al. Selenium absorption and retention from a selenite- or selenate-fortified milk-based formula in men measured by a stable-isotope technique [J]. British Journal of Nutrition, 2001, 85(2): 157-163. doi: 10.1079/BJN2000227