饲料混合植物油替代鱼油对不同品种异育银鲫生长性能和脂肪代谢的影响

李红燕, 巫丽云, 金俊琰, 韩冬, 朱晓鸣, 刘昊昆, 杨云霞, 解绶启

李红燕, 巫丽云, 金俊琰, 韩冬, 朱晓鸣, 刘昊昆, 杨云霞, 解绶启. 饲料混合植物油替代鱼油对不同品种异育银鲫生长性能和脂肪代谢的影响[J]. 水生生物学报, 2024, 48(4): 600-609. DOI: 10.7541/2024.2022.0482
引用本文: 李红燕, 巫丽云, 金俊琰, 韩冬, 朱晓鸣, 刘昊昆, 杨云霞, 解绶启. 饲料混合植物油替代鱼油对不同品种异育银鲫生长性能和脂肪代谢的影响[J]. 水生生物学报, 2024, 48(4): 600-609. DOI: 10.7541/2024.2022.0482
LI Hong-Yan, WU Li-Yun, JIN Jun-Yan, HAN Dong, ZHU Xiao-Ming, LIU Hao-Kun, YANG Yun-Xia, XIE Shou-Qi. TOTAL REPLACEMENT OF FISH OIL BY BLENDED VEGETABLE OIL ON GROWTH PERFORMANCE AND LIPID METABOLISM IN DIFFERENT STRAINS OF GIBEL CARP (CARASSIUS GIBELIO)[J]. ACTA HYDROBIOLOGICA SINICA, 2024, 48(4): 600-609. DOI: 10.7541/2024.2022.0482
Citation: LI Hong-Yan, WU Li-Yun, JIN Jun-Yan, HAN Dong, ZHU Xiao-Ming, LIU Hao-Kun, YANG Yun-Xia, XIE Shou-Qi. TOTAL REPLACEMENT OF FISH OIL BY BLENDED VEGETABLE OIL ON GROWTH PERFORMANCE AND LIPID METABOLISM IN DIFFERENT STRAINS OF GIBEL CARP (CARASSIUS GIBELIO)[J]. ACTA HYDROBIOLOGICA SINICA, 2024, 48(4): 600-609. DOI: 10.7541/2024.2022.0482

饲料混合植物油替代鱼油对不同品种异育银鲫生长性能和脂肪代谢的影响

基金项目: 国家现代农业产业技术体系(CARS-45-09); 国家自然科学基金(32122089、U19A2041和 31972805)资助
详细信息
    作者简介:

    李红燕(1993—), 女, 博士; 主要从事鱼类生理生态学研究。 E-mail: lihongyan@prfri.ac.cn

    巫丽云(1995—), 女, 博士; 主要从事鱼类生理生态学研究。E-mail: wuliyun@ihb.ac.cn *共同第一作者

    通信作者:

    金俊琰(1983—), E-mail: jinjunyan@ihb.ac.cn

  • 中图分类号: S965.1

TOTAL REPLACEMENT OF FISH OIL BY BLENDED VEGETABLE OIL ON GROWTH PERFORMANCE AND LIPID METABOLISM IN DIFFERENT STRAINS OF GIBEL CARP (CARASSIUS GIBELIO)

Funds: Supported by the Earmarked Fund for CARS (CARS-45-09); the National Natural Science Foundation of China (32122089, U19A2041 and 31972805)
    Corresponding author:
  • 摘要:

    为研究混合植物油替代鱼油对不同品种异育银鲫(Carassius gibelio)生长和脂肪代谢的影响, 以鱼油(FO)和混合植物油(BVO, 菜籽油﹕大豆油﹕棕榈油=55%﹕25%﹕20%, 以模拟鱼油的脂肪酸组成)为饲料脂肪源, 配制等氮等脂饲料配方, 分别饲喂异育银鲫“中科3号”(5.01±0.05) g和“中科5号”(5.02±0.05) g, 养殖周期70d。在饲料脂肪源效应上, BVO组摄食率显著高于而饲料效率显著低于FO组(P<0.05)。BVO组不同品种异育银鲫肌肉srebp-1cacc的基因表达量显著升高, 并造成体脂肪的显著积累(P<0.05)。BVO组显著改变了鱼体肌肉脂肪酸组成, 分别上调和下调了肌肉Σn-6 PUFA和Σn-3 PUFA的相对含量(P<0.05)。在品种方面, 不论摄食何种脂肪源, 异育银鲫“中科5号”摄食率显著低于而饲料效率显著高于“中科3号”(P<0.05)。“中科5号”肌肉脂肪分解和脂肪酸β氧化基因hslaco3及肝脏aco3fabp1bfatp1的表达量均显著高于“中科3号”(P<0.05), 且鱼体脂肪含量显著低于“中科3号”, 表明“中科5号”可以更好地利用饲料脂肪来为机体供能。脂肪源和品种对异育银鲫特定生长率的影响存在交互作用, 但“中科5号”摄食BVO组特定生长率与“中科3号”摄食FO组无显著性差异(P>0.05), 表明了植物脂肪源在“中科5号”饲料应用中的巨大潜力。综上, 研究阐述了不同品种异育银鲫对饲料脂肪源的利用差异及分子机制, 为异育银鲫饲料脂肪源筛选和品种选育提供了理论和实践依据。

    Abstract:

    To investigate the effects of total replacement of fish oil by blended vegetable oil on the growth and lipid metabolism in different strains of gibel carp (Carassius gibelio), two iso-nitrogen and iso-lipid formulated diets were prepared using the fish oil (FO) and bended vegetable oil (BVO, rapeseed oil﹕ soybean oil﹕ palm oil=55%﹕25%﹕20%, to mimic the fatty acids profiles of fish oil) as the lipid sources. Gibel carp CAS Ⅲ [A strain: (5.01±0.05) g] and CAS V [F strain: (5.02±0.05) g] were assigned to two groups, feeding with the FO and BVO diets for 70d. Concerning the effects of lipid source, the feeding rate (FR) was significantly higher while the feed efficiency (FE) was significantly lower in the BVO group, as compared to the FO group (P<0.05). Enhanced expression levels of srebp-1c and acc were found in the muscle, leading to a significant lipid deposition in both strains of gibel carp (P<0.05). The BVO diet changed the fatty acid composition of muscle significantly, up-regulating and down-regulating the relative contents of Σn-6 PUFA and Σn-3 PUFA, respectively (P<0.05). In terms of strain effects, the F strain showed significantly lower FR but significantly higher FE than the A strain, regardless of dietary lipid sources (P<0.05). Compared to the A strain, the expression levels of hsl and aco3 in the muscle, as well as aco3, fabp1b and fatp1 in the liver of the F strain were significantly higher (P<0.05). Furthermore, the F strain had significantly lower levels of lipid content than the A strain (P<0.05), which suggested that the F stain might have better ability to utilize the dietary lipid for energy expenditure. The dietary lipid sources and strains interacted to affect the specific growth rate (SGR) of gibel carp (P<0.05), but the F strain fed the BVO diet showed no variations with the A strains fed the FO diet, implying the great potential of vegetable oils usage in the diets of the F strain. Overall, the present study demonstrated the differences on the utilization of dietary lipid sources and its related molecular mechanisms in different strains of gibel carp, which could provide information for the dietary lipid sources selection and genetic breeding in gibel carp.

  • 水产养殖为人类消费提供了近2/3的动物蛋白来源, 而水产养殖业的发展高度依赖于水产饲料业的发展。脂类是水产饲料中重要的营养素, 也是维持生物体细胞膜和亚细胞膜完整性的必需成分。脂肪作为激素的前体, 参与许多重要的生物过程, 可以促进脂溶性维生素的吸收[1]。鱼油因其富含必需长链多不饱和脂肪酸(LC-PUFAs)、二十碳五烯酸(EPA)和二十二碳六烯酸(DHA), 在鱼体脂肪代谢和抗氧化等生理生化过程中发挥重要作用, 被认为是水产饲料中的优质脂肪源[2]。然而, 目前全球鱼油产量可能不足以满足未来水产养殖的需求, 导致了饲料成本的增加[3]。另外, 鱼油的生产造成野生鱼类资源和水资源环境的破坏, 阻碍了水产养殖业的快速发展。因此, 寻找适宜的饲料脂肪源来替代鱼油, 对水产养殖可持续发展具有重要意义[4]

    与鱼油相比, 植物油具备廉价易得、产量丰富及较易储存等优势, 具有替代鱼油的潜能[5]。研究表明, 大豆油、棕榈油、菜籽油和亚麻油等多种植物油, 已被用来部分或完全替代鱼油而被广泛应用于水产饲料中[68]。在大黄鱼(Larimichthys crocea)中, 饲料亚麻籽油和豆油完全替代鱼油, 鱼体增重率和特定生长率显著降低[6]。大豆油、菜籽油和亚麻油分别完全替代鱼油导致军曹鱼(Rachycentron canadum)生长迟缓、腹部和肝脏脂肪沉积[7, 8]。植物油替代对鱼体造成不同的影响可能是不同脂肪源中脂肪酸组成差异引起的。因此, 通过多种植物油混合达到平衡的脂肪酸模式可能是提高植物脂肪源替代鱼油效果的潜在方式。

    异育银鲫(Carassius gibelio)是我国重要的大宗淡水鱼养殖品种, “中科3号”和“中科5号”是目前广泛推广的两个重要品种。前期研究表明, 胰岛素对不同品种异育银鲫脂肪代谢的调控存在显著差异[9]。此外, 不同品种异育银鲫在饲料不同糖、脂水平下, 对脂肪代谢响应存在品种差异性[10]。因此, 我们推测异育银鲫“中科3号”和“中科5号”对饲料脂肪源的利用可能存在差异。本实验以异育银鲫“中科3号”和“中科5号”为研究对象, 参考鱼油的脂肪酸组成配制混合植物油饲料, 评估不同饲料脂肪源对不同品种异育银鲫生长性能、鱼体基本组分、肌肉脂肪酸组成、血浆生化及脂肪代谢(脂肪合成、脂肪分解、脂肪酸β氧化和脂肪酸转运)的影响。本研究可为植物脂肪源替代鱼油提供数据支撑, 并为高效利用植物脂肪源的鱼类遗传选育提供理论基础。

    本实验以鱼油为基础参照, 将菜籽油、大豆油、棕榈油按照55%﹕25%﹕20%的比例调配至与鱼油相似的脂肪酸组成。分别以鱼油(FO)和混合植物油(BVO)为脂肪源, 配制两种等氮(35%)等脂(9%)饲料, 实验饲料配方见表 1。所有原料粉碎后经40目筛网过筛, 按配方比例充分混匀, 再加水搅拌后用制粒机(SLP-45, 上海渔业机械设备研究所, 中国)制备成2 mm的饲料颗粒。为防止饲料中的脂肪酸氧化, 以上饲料在烘箱50℃烘干后于−20℃冰柜中保存备用。饲料脂肪酸组成见表 2

    表  1  饲料配方和化学组成(% 干物质)
    Table  1.  Formulation and chemical composition of the experimental diets (% dry matter)
    原料 Ingredient饲料 Diet
    鱼油组 FO混合植物油 BVO
    白鱼粉White fishmeal1010
    酪蛋白Casein3434
    玉米淀粉Corn starch3030
    鱼油Fish oil70
    菜籽油Rapeseed oil03.85
    大豆油Soybean oil01.75
    棕榈油Palm oil01.4
    乙氧基喹啉Ethoxy quinoline0.020.02
    维生素预混物Vitamin premix10.390.39
    氯化胆碱Choline chloride0.110.11
    矿物盐预混物Mineral premix255
    羧甲基纤维素钠CMC33
    Carboxymethylcellulose sodium
    纤维素Cellulose10.4810.48
    化学组成Chemical composition (%)
    粗蛋白Crude protein35.4835.48
    粗脂肪Crude lipid9.329.36
    注: 1维生素预混物(mg/kg 饲料): 维生素A, 1.65; 维生素D, 0.025; 维生素E, 50; 维生素K, 10; 维生素C, 100; 硫胺素, 20; 核黄素, 20; 维生素B6, 20; 维生素B12, 0.02; 叶酸, 5; 泛酸钙, 50; 肌醇, 100; 烟酸, 100; 生物素, 0.1; 纤维素, 645.2; 2矿物盐预混物(mg/kg 饲料): 氯化钠, 500; 七水合硫酸镁, 8155.6; 二水合磷酸二氢钠, 12500.0; 磷酸二氢钾, 16000.0; 二水合磷酸氢钙, 7650.6; 七水合硫酸亚铁, 2286.2; 五水合乳酸钙, 1750.0; 七水合硫酸锌, 178.0; 一水合硫酸锰, 61.4; 五水合硫酸铜, 15.5; 七水合硫酸钴, 0.5; 碘化钾, 1.5; 玉米淀粉, 753.7Note: 1Vitamin premix (mg/kg diet): Vitamin A, 1.65; Vitamin D, 0.025; Vitamin E, 50; Vitamin K, 10; Vitamin C, 100; Thiamin, 20; Riboflavin, 20; Pyridoxine, 20; Cyanocobalamine, 0.02; Folic acid, 5; Calcium pantothenate, 50; Inositol, 100; Niacin, 100; Biotin, 0.1; Cellulose, 645.2; 2Mineral premix (mg/kg diet): NaCl, 500; MgSO4·7H2O, 8155.6; NaH2PO4·2H2O, 12500.0; KH2PO4, 16000.0; CaHPO4·H2O, 7650.6; FeSO4·7H2O, 2286.2; C6H10CaO6·5H2O, 1750.0; ZnSO4·7H2O, 178.0; MnSO4·H2O, 61.4; CuSO4·5H2O, 15.5; CoSO4·7H2O, 0.5; KI, 1.5; Corn starch, 753.7
    下载: 导出CSV 
    | 显示表格
    表  2  饲料脂肪酸组成(% 总脂肪酸)
    Table  2.  Fatty acid composition of the experimental diets (% of total fatty acids)
    脂肪酸
    Fatty acid
    饲料Diet
    鱼油组FO (%)混合植物油BVO (%)
    C14﹕011.372.03
    C15﹕01.200.34
    C16﹕015.317.27
    C17﹕00.830.19
    C18﹕00.203.69
    ΣSFA128.9113.52
    C16﹕1n-98.901.00
    C18﹕1n-925.2049.61
    C20﹕1n-91.060.11
    C22﹕1n-90.600.09
    ΣMUFA235.7650.80
    C18﹕2n-64.1324.15
    C18﹕3n-60.320.14
    C20﹕2n-60.510.27
    C20﹕4n-61.070.26
    Σn-6 PUFA36.0224.82
    C18﹕3n-31.644.80
    C20﹕5n-39.350.86
    C22﹕6n-311.691.45
    Σn-3 PUFA422.677.12
    n-3/n-6 PUFA3.770.29
    注: 1ΣSFA. 饱和脂肪酸总量; 2ΣMUFA. 单不饱和脂肪酸总量; 3Σn-6 PUFA. n-6系列多不饱和脂肪酸总量; 4Σn-3 PUFA. n-3系列多不饱和脂肪酸总量Note: 1ΣSFA. Total amounts of saturated fatty acids; 2ΣMUFA. Total amounts of monounsaturated fatty acids; 3Σn-6 PUFA. Total amounts of n-6 polyunsaturated fatty acids; 4Σn-3 PUFA. Total amounts of n-3 polyunsaturated fatty acid
    下载: 导出CSV 
    | 显示表格

    实验所需的异育银鲫“中科3号”(A strain)和“中科5号”(F strain)幼鱼均由中国科学院水生生物研究所(湖北, 武汉)提供。在正式实验前, 所有的鱼都在室内循环水养殖系统中暂养2周以适应养殖环境, 期间投喂2种饲料的等量混合物。将实验鱼饥饿24h后, 随机挑取规格相近、外观健康的不同品种异育银鲫[“中科3号”: (5.01±0.05) g和“中科5号”: (5.02±0.05) g], 称重后放入养殖缸中进行养殖实验。每缸25尾, 每个处理3个平行。养殖实验持续70d, 每天表观饱食投喂3次(8:30、13:30和18:30)。实验期间的水温为(28.99±0.47)℃, 溶氧>7 mg/L, 氨氮<0.1 mg/L, pH为6.5—7.0。光照周期为12L﹕12D (8:00—20:00光亮), 水面光照强度为2.79—3.32 μmol/(s·m2)。

    在养殖实验结束后, 将鱼饥饿8h后取样。用麻醉剂MS-222 (60 mg/L, Sigma, USA)将各处理缸中的实验鱼麻醉后计数称重, 随后进行取样。每缸随机挑选2尾鱼, 用肝素钠抗凝剂润过的无菌注射器从尾静脉取血并放入1.5 mL灭菌离心管中, 3000×g离心10min后得到血浆, 保存于−80℃用于后期分析。同时, 在冰浴条件下解剖实验鱼, 快速取得肝脏和肌肉样品, 将其放入液氮中速冻并保存在−80℃。另外, 取肌肉组织样品, 经冷冻干燥处理后用于测定脂肪酸组成。

    参照AOAC方法[11]分析实验饲料和鱼样的生化组成(水分、灰分和脂肪)。干物质在烘箱(电热恒温干燥箱, 精宏, 中国上海)于105℃干燥至恒重, 通过失重法测定; 样品在550℃下的马弗炉(马弗炉, 中国湖北)中燃烧3h至恒重, 采用失重法测定灰分; 粗脂肪分析以乙醚作为抽提液, 在索氏抽提仪(Soxtec System HT6, Tecator, Haganas, Sweden)中进行。参照Folch等[12]方法, 使用氯仿﹕甲醇=2﹕1混合试剂提取饲料和肌肉组织总脂, 用气相色谱仪来测定脂肪酸的组成和含量(7890A-5975C, Agilents Technologies Inc., Santa Clara, CA, USA)。血浆葡萄糖、甘油三酯和胆固醇含量采用商品试剂盒(Fujifilm, Wako Pure Chemical Corporation, Osaka, Japan)进行测定。血浆低密度脂蛋白胆固醇(LDL-C)和高密度脂蛋白胆固醇(HDL-C)分别采用南京建成商品试剂盒A113-1-1和A112-1-1检测(南京建成生物工程研究所, 中国南京)。

    使用TRIzol试剂(Invitrogen, Carlsbad, California, USA)从肝脏和肌肉组织中提取总RNA, 通过逆转录试剂盒M-MLV First-Strand Synthesis Kit (Invitrogen, USA)将其逆转录为cDNA。实时荧光定量在Light Cycle 480 Ⅱ(Roche, Basel, Switzerland)仪器上进行, 采用SYBR® Green Ⅰ Master (Roche, Basel, Switzerland)荧光染色剂测定肝脏和肌肉中脂肪代谢相关基因的相对表达量。选择β-actin为内参基因, 基因相对表达量分析的计算方法参照Pfaffl[13], 引物信息见表 3

    表  3  本实验所用引物序列表
    Table  3.  Primers used in the present study
    基因名称
    Gene name
    引物Primer (5′—3′)产物
    长度
    Product size (bp)
    GenBank序列号
    GenBank No.
    β-actinTTGAGCAGGAGATGGGAACCG115AB039726.2
    β-肌动蛋白GAGCCTCAGGGCAACGGAAA
    pparγGAGTGCCTGATGGTGGGCAT188XM_026220745.1
    过氧化物酶体增殖物激活受体γGCTTTGGTCAGGGGGAAGTACT
    srebp1cGGCCCTCTACTGCGTGGCACA194KX898507
    固醇调节元件结合蛋白-1cACCACCATTTGGAGTGAGGGTCAC
    aclyAGTTTGGCCACGCTGGAGCTTGT112KX898508
    腺苷三磷酸柠檬酸裂解酶CCCAGCTCATCGAAGCTCTTGG
    accGAGCTGTCTATCAGAGGAGACTTCA139KF499584
    乙酰辅酶a羧化酶GACGCTCGGCCTGCATCTTCT
    fasCCACACCATGGACCCACAGCT58KF511494
    脂肪酸合成酶CTGGGTCTTTACTGAAGGCCTCT
    hslGAAGAGTGTTTCTATGCCTACT140MH536187
    激素敏感性甘油三酯脂肪酶CCGTGAGACATTGCCCTCAT
    lplGCACACGCAGAAGCACCAAGATGT345MH536186
    脂蛋白脂酶TTAATGCGCAGTTTGCGGAC
    pparαGTTCTCAGAAGTGTTTGCGTCC113MK160995
    过氧化物酶体增殖物激活受体αGCACTCCATAGTGAAACCTGA
    cpt1aGAAGCTCATCAGGCTGTGGCCTT113KX898509
    肉毒碱棕榈酰基转移酶1aTTCCAGGAGTGAAGTCCGGAGAG
    aco3TGTGGAGGACACGGTTACCTTGC115KX898510
    乙酰辅酶 A 氧化酶3AGTTGCTGGTCTGCTGCAGAAGG
    fabp1bGATCAGTTCAAAGTGACCGTCA211MT134045
    脂肪酸结合蛋白1bCGAGAGTCAGAGTATTGACCAGT
    fatp1GATCGTTTGTTCTATATCTACACGT201MT134044
    脂肪酸转运蛋白1GTCCACTATGGCAGCCATTCCT
    下载: 导出CSV 
    | 显示表格

    所有数据使用统计软件SPSS 18.0 (SPSS Inc., Chicago, IL, USA)进行统计分析, 结果以均值±标准误(mean±SE, n=6)表示。采用双因素方差分析(Two-way ANOVA)来比较饲料(鱼油vs.混合植物油)和品种(中科3号vs.中科5号)两个因素的作用。当存在交互作用时(P<0.05), 用Student-Newman-Keuls多重比较分析各组间差异, 用小写字母a、b或c来表示各组之间差异。当不存在交互作用时(P>0.05), 用大写字母A和B表示品种间的差异, 大写字母X和Y表示饲料间的差异。

    表 4所示, 异育银鲫摄食混合植物油的摄食率均显著高于鱼油组, 但饲料效率显著降低(P<0.05)。与“中科3号”相比, “中科5号”摄食率显著降低, 但饲料效率显著增加(P<0.05)。摄食鱼油饲料组“中科5号”特定生长率显著高于其他处理组(P<0.05)。

    表  4  饲料鱼油和混合植物油对不同品种异育银鲫生长和饲料利用的影响
    Table  4.  Effects of dietary fish oil and blended vegetable oil on growth and feed utilization of two strains of gibel carp
    生长指标Growth index中科3号 A strain中科5号 F strainP P value
    鱼油FO混合植物油BVO鱼油FO混合植物油BVO品种Strain饲料Diet品种×饲料S×D
    初始体重IBW1 (g)5.02±0.065.00±0.035.01±0.045.03±0.060.8560.9240.86
    终末体重FBW2 (g)34.26±1.08a34.12±1.24a44.67±0.94b37.03±1.58a<0.0010.0130.016
    摄食率FR3 (%BW/d)2.72±0.05BX2.90±0.04BY2.36±0.05AX2.57±0.04AY<0.0010.0030.837
    特定生长率SGR4 (%/d)2.82±0.03a2.82±0.04a3.22±0.04b2.93±0.07a<0.0010.0170.017
    饲料效率FE5 (%)80.77±1.95AY75.48±1.80AX99.43±2.90BY87.41±2.29BX<0.0010.0050.177
    注: 1初始体重 IBW (g). Initial body weight; 2终末体重 FBW (g). Final body weight; 3摄食率FR (%BW/d)=100×干物质摄食量/[天数×(初始体重+终末体重)/2], Feeding rate (%BW/d)=100×dry feed intake/[days×(IBW+FBW)/2]; 4特定生长率 SGR (%/d)=100×[Ln (终末体重)–Ln (初始体重)]/天数, Specific growth rate (%/d)=100×[Ln(IBW)–Ln(FBW)]/days; 5饲料效率FE (%)=(100×鱼体平均增重)/平均摄食量, Feed efficiency (%)=(100×fresh body weight gain)/dry feed intake表中所示数据表示为平均值±标准误。当品种和饲料间存在交互作用时(P<0.05), 同一列上用小写字母(a、b或c)表示所有处理组之间的差异; 当品种和饲料间不存在交互作用时, 用大写字母A和B表示不同品种间的差异(P<0.05), 大写字母X和Y表示饲料间的差异(P<0.05); 下表同Note: Values are presented as mean±SE. Significant differences among all groups are indicated by different superscripts on each column (a, b, or c) (P<0.05). The uppercase letters A and B represent significant differences between strains; and the uppercase letters X and Y represent significant differences among diets (P<0.05). The same applies below
    下载: 导出CSV 
    | 显示表格

    表 5所示, 异育银鲫摄食混合植物油饲料组鱼体粗脂肪含量显著高于鱼油组(P<0.05)。异育银鲫“中科3号”粗脂肪含量显著高于“中科5号”, 而水分含量显著低于“中科5号”(P<0.05)。灰分含量在各处理间无显著性差异(P>0.05)。

    表  5  饲料鱼油和混合植物油对不同品种异育银鲫鱼体基本组分的影响
    Table  5.  Effects of dietary fish oil and blended vegetable oil on body composition of two strains of gibel carp
    项目Item中科3号 A strain中科5号 F strainP P value
    鱼油FO混合植物油BVO鱼油FO混合植物油BVO品种Strain饲料Diet品种×饲料S×D
    粗脂肪Crude lipid (%)8.25±0.45BX9.67±0.30BY7.49±0.14AX7.69±0.12AY<0.0010.0020.065
    水分Moisture (%)72.09±0.96A70.99±0.30A74.26±0.49B73.26±0.11B0.0040.0980.933
    灰分Ash (%)3.39±0.183.29±0.033.26±0.173.20±0.080.4300.5780.864
    下载: 导出CSV 
    | 显示表格

    表 6所示, 与混合植物油组相比, 不同品种异育银鲫摄食鱼油饲料组Σn-6 PUFA相对含量显著降低, 而Σn-3 PUFA相对含量显著增加(P<0.05)。

    表  6  饲料鱼油和混合植物油对不同品种异育银鲫肌肉脂肪酸组成的影响
    Table  6.  Effects of dietary fish oil and blended vegetable oil on fatty acids composition in the muscle of two strains of gibel carp
    脂肪酸Fatty acid鱼油 FO混合植物油 BVOPP value
    中科3号
    A strain
    中科5号
    F strain
    中科3号
    A strain
    中科5号
    F strain
    品种
    Strain
    饲料
    Diet
    品种×饲料
    S×D
    C14﹕04.18±0.21Y4.27±0.07Y1.61±0.08X1.43±0.05X0.736<0.0010.291
    C15﹕00.62±0.02AY0.72±0.02BY0.30±0.01AX0.36±0.01BX0.001<0.0010.246
    C16﹕013.00±0.27Y13.49±0.25Y9.12±0.50X9.12±0.17X0.474<0.0010.468
    C17﹕00.43±0.01Y0.53±0.02Y0.24±0.01X0.30±0.06X0.029<0.0010.527
    C18﹕05.13±0.04AY6.07±0.31BY4.26±0.29AX4.76±0.13BX0.0120.0010.349
    ΣSFA123.35±0.45Y25.08±0.53Y15.54±0.88X15.97±0.39X0.107<0.0010.308
    C16﹕1n-96.62±0.33Y6.42±0.12Y2.75±0.16X2.55±0.10X<0.0010.313<0.001
    C18﹕1n-942.98±0.77X37.00±2.55X48.45±2.42Y48.77±1.83Y0.1990.0030.157
    C20﹕1n-90.05±0.020.06±0.030.06±0.000.05±0.030.8420.9470.644
    C22﹕1n-90.43±0.18A0.72±0.07B0.43±0.19A0.89±0.06B0.0290.5770.547
    ΣMUFA250.08±0.6944.20±2.5751.70±2.3852.26±1.940.2280.0550.152
    C18﹕2n-64.14±0.47X3.24±0.02X11.62±0.69Y12.42±0.64Y0.924<0.0010.143
    C18﹕3n-60.15±0.01X0.20±0.02X0.37±0.02Y0.39±0.01Y0.046<0.0010.272
    C20﹕2n-60.30±0.06AX0.39±0.02BX0.38±0.01AY0.48±0.02BY0.0240.0430.852
    C20﹕4n-61.26±0.04AX1.48±0.15BX1.52±0.09AY1.94±0.15BY0.0250.0150.439
    Σn-6 PUFA35.86±0.48X5.32±0.19X13.89±0.80Y15.22±0.77Y0.535<0.0010.166
    C18﹕3n-30.89±0.06X0.81±0.04X1.79±0.12Y1.92±0.12Y<0.0010.790<0.001
    C20﹕5n-33.52±0.26Y3.79±0.12Y0.56±0.04X0.49±0.05X0.488<0.0010.280
    C22﹕6n-311.92±0.47AY15.37±1.47BY3.64±0.27AX4.47±0.71BX<0.0010.045<0.001
    Σn-3 PUFA416.33±0.66Y19.98±1.63Y5.99±0.42X6.88±0.88X0.054<0.0010.207
    n-3/n-6 PUFA2.84±0.33b3.74±0.18c0.43±0.01a0.45±0.04a0.039<0.0010.046
    注: 1ΣSFA. 饱和脂肪酸总量; 2ΣMUFA. 单不饱和脂肪酸总量; 3Σn-6 PUFA. n-6系列多不饱和脂肪酸总量; 4Σn-3 PUFA. n-3系列多不饱和脂肪酸总量Note: 1ΣSFA. Total amounts of saturated fatty acids; 2ΣMUFA. Total amounts of monounsaturated fatty acids; 3Σn-6 PUFA. Total amounts of n-6 polyunsaturated fatty acids; 4Σn-3 PUFA. Total amounts of n-3 polyunsaturated fatty acids
    下载: 导出CSV 
    | 显示表格

    表 7所示, 不同脂肪源饲料对“中科3号”血糖含量无显著性影响, 而“中科5号”摄食混合植物油饲料组血糖含量显著高于“中科3号”(P<0.05)。“中科3号”血浆低密度脂蛋白胆固醇含量显著高于“中科5号”(P<0.05)。不论摄食何种饲料, 不同品种异育银鲫血浆甘油三酯、胆固醇和高密度脂蛋白胆固醇含量无显著性差异(P>0.05)。

    表  7  饲料鱼油和混合植物油对两个品种异育银鲫血浆生化指标的影响
    Table  7.  Effects of dietary fish oil and blended vegetable oil on plasma biochemical indices of two strains of gibel carp
    项目Item中科3号 A strain中科5号 F strainP P value
    鱼油FO混合植物油BVO鱼油FO混合植物油BVO品种Strain饲料Diet品种×饲料S×D
    血糖Glucose (mmol/L)3.19±0.20ab2.77±0.51a2.67±0.15a3.76±0.35b0.4590.3040.027
    甘油三酯Triglycerides (mmol/L)6.90±0.697.29±0.677.64±0.326.36±1.000.8940.5380.253
    胆固醇Cholesterol (mmol/L)8.33±0.327.91±0.687.88±0.336.93±0.570.1650.1830.610
    低密度脂蛋白胆固醇LDL-C (mmol/L)3.84±0.18B4.07±0.35B3.48±0.23A3.19±0.24A0.0270.8990.320
    高密度脂蛋白胆固醇HDL-C (mmol/L)2.89±0.292.47±0.493.27±0.142.80±0.370.3240.2150.947
    下载: 导出CSV 
    | 显示表格

    不同品种异育银鲫肝脏和肌肉脂肪合成关键调控元件pparγsrebp-1c及下游靶基因aclyaccfas的基因表达量无显著性差异(图 1A)。不同品种异育银鲫摄食混合植物油饲料组肌肉srebp-1cacc基因相对表达量显著高于鱼油组(P<0.05, 图 1B)。

    图  1  饲料鱼油(FO)和混合植物油(BVO)对“中科3号”(空白柱)和“中科5号”(斜线柱)肝脏(A)和肌肉(B)脂肪合成相关基因相对表达量的影响
    Figure  1.  Effects of dietary fish oil (FO) and blended vegetable oil (BVO) on the mRNA levels of gene involved in lipogenesis in the liver (A) and muscle (B) of gibel carp A strain (blank bars) and F strain (bias bars)

    不同品种异育银鲫摄食鱼油和混合植物油饲料后肝脏(图 2A)和肌肉(图 2B)脂肪分解代谢相关基因表达结果显示, 鱼油组肝脏脂肪酸β氧化关键基因pparα表达量显著高于混合植物油组(P<0.05)。异育银鲫“中科5号”肌肉脂肪分解相关基因hsl表达量显著高于“中科3号”, 且脂肪酸β氧化相关基因aco3在肝脏和肌肉中的表达量均显著高于“中科3号”(P<0.05)。脂肪分解代谢相关基因lpl (肝脏、肌肉)和cpt1a (肝脏、肌肉)、hsl (肝脏)和pparα (肌肉)的表达量均不受品种和饲料脂肪源的影响(P>0.05)。

    图  2  饲料鱼油(FO)和混合植物油(BVO)对“中科3号”(空白柱)和“中科5号”(斜线柱)肝脏(A)和肌肉(B)脂肪分解和脂肪酸β氧化相关基因相对表达量的影响
    Figure  2.  Effects of dietary fish oil (FO) and blended vegetable oil (BVO) on the mRNA levels of gene involved in lipolysis and fatty acids β oxidation in the liver (A) and muscle (B) of gibel carp A strain (blank bars) and F strain (bias bars)

    不论摄食何种脂肪源饲料, 异育银鲫“中科5号”肝脏脂肪酸转运相关基因fabp1bfatp1的表达量均显著高于“中科3号”(图 3A)。饲料脂肪源和品种对异育银鲫肌肉fabp1bfatp1的表达均无显著性影响(图 3B)。

    图  3  饲料鱼油和混合植物油对“中科3号”(空白柱)和“中科5号”(斜线柱)肝脏(A)和肌肉(B)脂肪酸转运相关基因相对表达量的影响
    Figure  3.  Effects of dietary fish oil (FO) and blended vegetable oil (BVO) on the mRNA levels of gene involved in fatty acids transportation in the liver (A) and muscle (B) of gibel carp A strain (blank bars) and F strain (bias bars)

    本实验结果显示, 异育银鲫“中科3号”和“中科5号”摄食混合植物油饲料组摄食率显著高于鱼油组, 但饲料效率显著低于鱼油组, 表明异育银鲫对鱼油的利用优于混合植物油, 这与在鲑鳟鱼类中的研究结果一致[14, 15]。陈家林等[16]的研究结果表示, 与全鱼油组相比, 鱼油分别与椰子油、玉米油、亚麻油1﹕1的混合替代显著提高异育银鲫的生长性能, 但对饲料效率无显著影响。李新等[17]发现, 吉富罗非鱼(Oreochromis niloticus)摄食棕榈油饲料组摄食率显著高于棉籽油组, 但饲料效率无显著差异。饲料不同脂肪源对细鳞鲑(Brachymystax lenok)摄食率无显著性影响, 其中鱼油组的饲料效率最高[2]。紫苏油、菜籽油、葵花油和棕榈油完全替代鱼油对红罗非鱼(Oreochromis sp.)生长性能无显著影响, 棕榈油组的饲料转化率显著高于鱼油组[18]。因此, 鱼类对植物油的利用差异与鱼体本身(品种和规格)、脂肪源的种类和养殖条件等多种因素有关。不同品种异育银鲫摄食混合植物油饲料摄食率显著高于鱼油组, 可能是通过增加摄食来满足自身的能量需求。

    在本研究中, 不同脂肪源对不同品种异育银鲫血浆代谢物水平(血糖、甘油三酯、胆固醇、低密度脂蛋白胆固醇和高密度脂蛋白胆固醇)无显著性影响。饲料脂肪酸组成影响鱼类的脂肪合成、分解和转运等脂肪代谢过程, 肝脏作为鱼类代谢调节的中枢器官在脂肪代谢过程中发挥重要作用。在虹鳟(Oncorhynchus mykiss)中, 植物脂肪源完全替代鱼油增强了肝脏脂肪合成相关基因的表达[19]。不同品系大西洋鲑(Salmo salar)摄食鱼油和混合植物油饲料后, 肝脏长链多不饱和脂肪酸代谢存在显著差异, 表现为Lean品系肝脏脂肪合成关键基因脂肪酸合成酶的表达显著高于Fat品系[20]。混合植物油(菜籽油﹕棕榈油﹕亚麻籽油=55%﹕30%﹕15%)完全替代鱼油对虹鳟肝脏脂肪合成无显著性影响[21]。由此可见, 鱼的种类和饲料脂肪酸组成影响鱼体的脂肪代谢过程。在本实验中, 摄食混合植物油饲料组异育银鲫肌肉脂肪合成关键基因srebp1acc的表达量显著上调, 且鱼体脂肪含量显著增高, 表明不同品种异育银鲫摄食混合植物油饲料表现出更高的脂肪合成潜能。同样, 不同品系大西洋鲑在摄食混合植物油饲料后, Lean品系大西洋鲑脂肪酸合成酶的基因表达水平较鱼油组显著上调[22]。脂肪合成的增加可能和饲料中n3/n6值有关, n-3 PUFA和n-6 PUFA比例的不平衡可能是造成肝脏脂肪含量增加的原因[23]。另外, 鱼体的脂肪酸组成可以反映饲料脂肪酸组成 [24, 25]。在本实验中, 不同品种异育银鲫摄食鱼油饲料组肌肉中n-3 PUFA的含量显著高于摄食混合植物油饲料组, 而肌肉中n-6 PUFA的含量结果相反, 表现出与饲料中脂肪酸含量的一致性, 验证了肌肉脂肪酸体现饲料脂肪酸组成这一结论。

    无论摄食何种脂肪源饲料, “中科5号”摄食率显著低于“中科3号”, 而饲料效率显著高于“中科3号”, 表现出较好的饲料利用性能。“中科5号”摄食不同脂肪源饲料体脂肪含量显著低于而水分含量显著高于“中科3号”, 与不同品种异育银鲫摄食不同水平碳水化合物饲料和不同蛋白源饲料的结果一致[26, 27]。机体脂肪积累是一个复杂的生理过程, 包含脂肪的转运、摄取、合成和分解代谢过程等。在脂肪合成方面, 不同品种异育银鲫肝脏和肌肉脂肪合成相关基因均无显著差异。“中科5号”肌肉脂肪分解相关基因hsl和脂肪酸β氧化酶基因aco3的相对表达量显著高于“中科3号”, 表明“中科5号”通过脂肪分解和脂肪酸β氧化过程导致了较低的体脂肪含量。该研究结果与不同品种异育银鲫摄食不同饲料糖、脂水平的研究结果一致, 表明“中科5号”脂肪分解和脂肪酸氧化潜力优于“中科3号”[10]。另外, “中科5号”肝脏中脂肪酸转运结合蛋白fabp1b和负责脂肪酸跨膜转运的脂肪酸转运蛋白1 (fatp1)的基因表达量均显著高于“中科3号”, 表明“中科5号”肝脏组织中脂肪酸的转运摄取的潜力较强。综上所述, 异育银鲫“中科5号”对脂肪的转运、分解、脂肪酸β氧化水平均显著高于“中科3号”, 表现出对饲料脂肪更好的利用能力。

    在本实验中, 饲料脂肪源和品种对异育银鲫特定生长率的影响存在交互作用。然而, 混合植物油完全替代鱼油对“中科3号”的特定生长率无显著性负面影响, 且“中科5号”摄食混合植物油可以达到与“中科3号”摄食鱼油组一致的生长性能, 表明在“中科5号”饲料中使用植物性脂肪源存在巨大潜能。血液生化指标能够反映鱼体的生理状态。在本研究中, 异育银鲫血糖水平受到饲料脂肪源和品种的交互作用影响。与鱼油组相比, 异育银鲫“中科5号”混合植物油组的血糖含量显著高于“中科3号”, 可能是由于“中科5号”倾向于利用脂肪酸氧化分解来为机体供能, 而非依赖于血糖的分解代谢供能。另外, 品种和饲料脂肪源的交互作用也体现在肌肉脂肪酸组成上, “中科5号”摄食鱼油组n-3/n-6 PUFA显著高于其他各组, 表明“中科5号”在利用鱼油时体现出的更优质的肌肉脂肪酸组成。

    本实验探究了饲料混合植物油完全替代鱼油对不同品种异育银鲫生长和脂肪代谢的影响。与鱼油组相比, 混合植物油组显著提高了不同品种异育银鲫的摄食率, 但饲料效率有所降低, 表明植物油脂肪源对不同品种异育银鲫的饲料利用存在一定的负面影响。在饲料脂肪源效应上, 混合植物油饲料通过增强肌肉组织脂肪合成相关基因srebp-1cacc的表达来促进体脂肪的累积。在品种效应上, 不同品种异育银鲫在体脂含量和肌肉脂肪代谢上表现出品种特异性。“中科5号”体脂肪含量显著低于“中科3号”, 可能是其具有较高的肌肉脂肪分解、脂肪酸氧化及脂肪酸转运能力导致的。饲料脂肪源和品种对异育银鲫生长性能的影响存在交互作用, 但“中科5号”摄食混合植物油饲料可以达到与“中科3号”摄食鱼油组相似的特定生长率, 且具有较高的肌肉n-3/n-6 PUFA水平, 表明混合植物油在“中科5号”饲料中具有广泛应用的潜力。

  • 图  1   饲料鱼油(FO)和混合植物油(BVO)对“中科3号”(空白柱)和“中科5号”(斜线柱)肝脏(A)和肌肉(B)脂肪合成相关基因相对表达量的影响

    Figure  1.   Effects of dietary fish oil (FO) and blended vegetable oil (BVO) on the mRNA levels of gene involved in lipogenesis in the liver (A) and muscle (B) of gibel carp A strain (blank bars) and F strain (bias bars)

    图  2   饲料鱼油(FO)和混合植物油(BVO)对“中科3号”(空白柱)和“中科5号”(斜线柱)肝脏(A)和肌肉(B)脂肪分解和脂肪酸β氧化相关基因相对表达量的影响

    Figure  2.   Effects of dietary fish oil (FO) and blended vegetable oil (BVO) on the mRNA levels of gene involved in lipolysis and fatty acids β oxidation in the liver (A) and muscle (B) of gibel carp A strain (blank bars) and F strain (bias bars)

    图  3   饲料鱼油和混合植物油对“中科3号”(空白柱)和“中科5号”(斜线柱)肝脏(A)和肌肉(B)脂肪酸转运相关基因相对表达量的影响

    Figure  3.   Effects of dietary fish oil (FO) and blended vegetable oil (BVO) on the mRNA levels of gene involved in fatty acids transportation in the liver (A) and muscle (B) of gibel carp A strain (blank bars) and F strain (bias bars)

    表  1   饲料配方和化学组成(% 干物质)

    Table  1   Formulation and chemical composition of the experimental diets (% dry matter)

    原料 Ingredient饲料 Diet
    鱼油组 FO混合植物油 BVO
    白鱼粉White fishmeal1010
    酪蛋白Casein3434
    玉米淀粉Corn starch3030
    鱼油Fish oil70
    菜籽油Rapeseed oil03.85
    大豆油Soybean oil01.75
    棕榈油Palm oil01.4
    乙氧基喹啉Ethoxy quinoline0.020.02
    维生素预混物Vitamin premix10.390.39
    氯化胆碱Choline chloride0.110.11
    矿物盐预混物Mineral premix255
    羧甲基纤维素钠CMC33
    Carboxymethylcellulose sodium
    纤维素Cellulose10.4810.48
    化学组成Chemical composition (%)
    粗蛋白Crude protein35.4835.48
    粗脂肪Crude lipid9.329.36
    注: 1维生素预混物(mg/kg 饲料): 维生素A, 1.65; 维生素D, 0.025; 维生素E, 50; 维生素K, 10; 维生素C, 100; 硫胺素, 20; 核黄素, 20; 维生素B6, 20; 维生素B12, 0.02; 叶酸, 5; 泛酸钙, 50; 肌醇, 100; 烟酸, 100; 生物素, 0.1; 纤维素, 645.2; 2矿物盐预混物(mg/kg 饲料): 氯化钠, 500; 七水合硫酸镁, 8155.6; 二水合磷酸二氢钠, 12500.0; 磷酸二氢钾, 16000.0; 二水合磷酸氢钙, 7650.6; 七水合硫酸亚铁, 2286.2; 五水合乳酸钙, 1750.0; 七水合硫酸锌, 178.0; 一水合硫酸锰, 61.4; 五水合硫酸铜, 15.5; 七水合硫酸钴, 0.5; 碘化钾, 1.5; 玉米淀粉, 753.7Note: 1Vitamin premix (mg/kg diet): Vitamin A, 1.65; Vitamin D, 0.025; Vitamin E, 50; Vitamin K, 10; Vitamin C, 100; Thiamin, 20; Riboflavin, 20; Pyridoxine, 20; Cyanocobalamine, 0.02; Folic acid, 5; Calcium pantothenate, 50; Inositol, 100; Niacin, 100; Biotin, 0.1; Cellulose, 645.2; 2Mineral premix (mg/kg diet): NaCl, 500; MgSO4·7H2O, 8155.6; NaH2PO4·2H2O, 12500.0; KH2PO4, 16000.0; CaHPO4·H2O, 7650.6; FeSO4·7H2O, 2286.2; C6H10CaO6·5H2O, 1750.0; ZnSO4·7H2O, 178.0; MnSO4·H2O, 61.4; CuSO4·5H2O, 15.5; CoSO4·7H2O, 0.5; KI, 1.5; Corn starch, 753.7
    下载: 导出CSV

    表  2   饲料脂肪酸组成(% 总脂肪酸)

    Table  2   Fatty acid composition of the experimental diets (% of total fatty acids)

    脂肪酸
    Fatty acid
    饲料Diet
    鱼油组FO (%)混合植物油BVO (%)
    C14﹕011.372.03
    C15﹕01.200.34
    C16﹕015.317.27
    C17﹕00.830.19
    C18﹕00.203.69
    ΣSFA128.9113.52
    C16﹕1n-98.901.00
    C18﹕1n-925.2049.61
    C20﹕1n-91.060.11
    C22﹕1n-90.600.09
    ΣMUFA235.7650.80
    C18﹕2n-64.1324.15
    C18﹕3n-60.320.14
    C20﹕2n-60.510.27
    C20﹕4n-61.070.26
    Σn-6 PUFA36.0224.82
    C18﹕3n-31.644.80
    C20﹕5n-39.350.86
    C22﹕6n-311.691.45
    Σn-3 PUFA422.677.12
    n-3/n-6 PUFA3.770.29
    注: 1ΣSFA. 饱和脂肪酸总量; 2ΣMUFA. 单不饱和脂肪酸总量; 3Σn-6 PUFA. n-6系列多不饱和脂肪酸总量; 4Σn-3 PUFA. n-3系列多不饱和脂肪酸总量Note: 1ΣSFA. Total amounts of saturated fatty acids; 2ΣMUFA. Total amounts of monounsaturated fatty acids; 3Σn-6 PUFA. Total amounts of n-6 polyunsaturated fatty acids; 4Σn-3 PUFA. Total amounts of n-3 polyunsaturated fatty acid
    下载: 导出CSV

    表  3   本实验所用引物序列表

    Table  3   Primers used in the present study

    基因名称
    Gene name
    引物Primer (5′—3′)产物
    长度
    Product size (bp)
    GenBank序列号
    GenBank No.
    β-actinTTGAGCAGGAGATGGGAACCG115AB039726.2
    β-肌动蛋白GAGCCTCAGGGCAACGGAAA
    pparγGAGTGCCTGATGGTGGGCAT188XM_026220745.1
    过氧化物酶体增殖物激活受体γGCTTTGGTCAGGGGGAAGTACT
    srebp1cGGCCCTCTACTGCGTGGCACA194KX898507
    固醇调节元件结合蛋白-1cACCACCATTTGGAGTGAGGGTCAC
    aclyAGTTTGGCCACGCTGGAGCTTGT112KX898508
    腺苷三磷酸柠檬酸裂解酶CCCAGCTCATCGAAGCTCTTGG
    accGAGCTGTCTATCAGAGGAGACTTCA139KF499584
    乙酰辅酶a羧化酶GACGCTCGGCCTGCATCTTCT
    fasCCACACCATGGACCCACAGCT58KF511494
    脂肪酸合成酶CTGGGTCTTTACTGAAGGCCTCT
    hslGAAGAGTGTTTCTATGCCTACT140MH536187
    激素敏感性甘油三酯脂肪酶CCGTGAGACATTGCCCTCAT
    lplGCACACGCAGAAGCACCAAGATGT345MH536186
    脂蛋白脂酶TTAATGCGCAGTTTGCGGAC
    pparαGTTCTCAGAAGTGTTTGCGTCC113MK160995
    过氧化物酶体增殖物激活受体αGCACTCCATAGTGAAACCTGA
    cpt1aGAAGCTCATCAGGCTGTGGCCTT113KX898509
    肉毒碱棕榈酰基转移酶1aTTCCAGGAGTGAAGTCCGGAGAG
    aco3TGTGGAGGACACGGTTACCTTGC115KX898510
    乙酰辅酶 A 氧化酶3AGTTGCTGGTCTGCTGCAGAAGG
    fabp1bGATCAGTTCAAAGTGACCGTCA211MT134045
    脂肪酸结合蛋白1bCGAGAGTCAGAGTATTGACCAGT
    fatp1GATCGTTTGTTCTATATCTACACGT201MT134044
    脂肪酸转运蛋白1GTCCACTATGGCAGCCATTCCT
    下载: 导出CSV

    表  4   饲料鱼油和混合植物油对不同品种异育银鲫生长和饲料利用的影响

    Table  4   Effects of dietary fish oil and blended vegetable oil on growth and feed utilization of two strains of gibel carp

    生长指标Growth index中科3号 A strain中科5号 F strainP P value
    鱼油FO混合植物油BVO鱼油FO混合植物油BVO品种Strain饲料Diet品种×饲料S×D
    初始体重IBW1 (g)5.02±0.065.00±0.035.01±0.045.03±0.060.8560.9240.86
    终末体重FBW2 (g)34.26±1.08a34.12±1.24a44.67±0.94b37.03±1.58a<0.0010.0130.016
    摄食率FR3 (%BW/d)2.72±0.05BX2.90±0.04BY2.36±0.05AX2.57±0.04AY<0.0010.0030.837
    特定生长率SGR4 (%/d)2.82±0.03a2.82±0.04a3.22±0.04b2.93±0.07a<0.0010.0170.017
    饲料效率FE5 (%)80.77±1.95AY75.48±1.80AX99.43±2.90BY87.41±2.29BX<0.0010.0050.177
    注: 1初始体重 IBW (g). Initial body weight; 2终末体重 FBW (g). Final body weight; 3摄食率FR (%BW/d)=100×干物质摄食量/[天数×(初始体重+终末体重)/2], Feeding rate (%BW/d)=100×dry feed intake/[days×(IBW+FBW)/2]; 4特定生长率 SGR (%/d)=100×[Ln (终末体重)–Ln (初始体重)]/天数, Specific growth rate (%/d)=100×[Ln(IBW)–Ln(FBW)]/days; 5饲料效率FE (%)=(100×鱼体平均增重)/平均摄食量, Feed efficiency (%)=(100×fresh body weight gain)/dry feed intake表中所示数据表示为平均值±标准误。当品种和饲料间存在交互作用时(P<0.05), 同一列上用小写字母(a、b或c)表示所有处理组之间的差异; 当品种和饲料间不存在交互作用时, 用大写字母A和B表示不同品种间的差异(P<0.05), 大写字母X和Y表示饲料间的差异(P<0.05); 下表同Note: Values are presented as mean±SE. Significant differences among all groups are indicated by different superscripts on each column (a, b, or c) (P<0.05). The uppercase letters A and B represent significant differences between strains; and the uppercase letters X and Y represent significant differences among diets (P<0.05). The same applies below
    下载: 导出CSV

    表  5   饲料鱼油和混合植物油对不同品种异育银鲫鱼体基本组分的影响

    Table  5   Effects of dietary fish oil and blended vegetable oil on body composition of two strains of gibel carp

    项目Item中科3号 A strain中科5号 F strainP P value
    鱼油FO混合植物油BVO鱼油FO混合植物油BVO品种Strain饲料Diet品种×饲料S×D
    粗脂肪Crude lipid (%)8.25±0.45BX9.67±0.30BY7.49±0.14AX7.69±0.12AY<0.0010.0020.065
    水分Moisture (%)72.09±0.96A70.99±0.30A74.26±0.49B73.26±0.11B0.0040.0980.933
    灰分Ash (%)3.39±0.183.29±0.033.26±0.173.20±0.080.4300.5780.864
    下载: 导出CSV

    表  6   饲料鱼油和混合植物油对不同品种异育银鲫肌肉脂肪酸组成的影响

    Table  6   Effects of dietary fish oil and blended vegetable oil on fatty acids composition in the muscle of two strains of gibel carp

    脂肪酸Fatty acid鱼油 FO混合植物油 BVOPP value
    中科3号
    A strain
    中科5号
    F strain
    中科3号
    A strain
    中科5号
    F strain
    品种
    Strain
    饲料
    Diet
    品种×饲料
    S×D
    C14﹕04.18±0.21Y4.27±0.07Y1.61±0.08X1.43±0.05X0.736<0.0010.291
    C15﹕00.62±0.02AY0.72±0.02BY0.30±0.01AX0.36±0.01BX0.001<0.0010.246
    C16﹕013.00±0.27Y13.49±0.25Y9.12±0.50X9.12±0.17X0.474<0.0010.468
    C17﹕00.43±0.01Y0.53±0.02Y0.24±0.01X0.30±0.06X0.029<0.0010.527
    C18﹕05.13±0.04AY6.07±0.31BY4.26±0.29AX4.76±0.13BX0.0120.0010.349
    ΣSFA123.35±0.45Y25.08±0.53Y15.54±0.88X15.97±0.39X0.107<0.0010.308
    C16﹕1n-96.62±0.33Y6.42±0.12Y2.75±0.16X2.55±0.10X<0.0010.313<0.001
    C18﹕1n-942.98±0.77X37.00±2.55X48.45±2.42Y48.77±1.83Y0.1990.0030.157
    C20﹕1n-90.05±0.020.06±0.030.06±0.000.05±0.030.8420.9470.644
    C22﹕1n-90.43±0.18A0.72±0.07B0.43±0.19A0.89±0.06B0.0290.5770.547
    ΣMUFA250.08±0.6944.20±2.5751.70±2.3852.26±1.940.2280.0550.152
    C18﹕2n-64.14±0.47X3.24±0.02X11.62±0.69Y12.42±0.64Y0.924<0.0010.143
    C18﹕3n-60.15±0.01X0.20±0.02X0.37±0.02Y0.39±0.01Y0.046<0.0010.272
    C20﹕2n-60.30±0.06AX0.39±0.02BX0.38±0.01AY0.48±0.02BY0.0240.0430.852
    C20﹕4n-61.26±0.04AX1.48±0.15BX1.52±0.09AY1.94±0.15BY0.0250.0150.439
    Σn-6 PUFA35.86±0.48X5.32±0.19X13.89±0.80Y15.22±0.77Y0.535<0.0010.166
    C18﹕3n-30.89±0.06X0.81±0.04X1.79±0.12Y1.92±0.12Y<0.0010.790<0.001
    C20﹕5n-33.52±0.26Y3.79±0.12Y0.56±0.04X0.49±0.05X0.488<0.0010.280
    C22﹕6n-311.92±0.47AY15.37±1.47BY3.64±0.27AX4.47±0.71BX<0.0010.045<0.001
    Σn-3 PUFA416.33±0.66Y19.98±1.63Y5.99±0.42X6.88±0.88X0.054<0.0010.207
    n-3/n-6 PUFA2.84±0.33b3.74±0.18c0.43±0.01a0.45±0.04a0.039<0.0010.046
    注: 1ΣSFA. 饱和脂肪酸总量; 2ΣMUFA. 单不饱和脂肪酸总量; 3Σn-6 PUFA. n-6系列多不饱和脂肪酸总量; 4Σn-3 PUFA. n-3系列多不饱和脂肪酸总量Note: 1ΣSFA. Total amounts of saturated fatty acids; 2ΣMUFA. Total amounts of monounsaturated fatty acids; 3Σn-6 PUFA. Total amounts of n-6 polyunsaturated fatty acids; 4Σn-3 PUFA. Total amounts of n-3 polyunsaturated fatty acids
    下载: 导出CSV

    表  7   饲料鱼油和混合植物油对两个品种异育银鲫血浆生化指标的影响

    Table  7   Effects of dietary fish oil and blended vegetable oil on plasma biochemical indices of two strains of gibel carp

    项目Item中科3号 A strain中科5号 F strainP P value
    鱼油FO混合植物油BVO鱼油FO混合植物油BVO品种Strain饲料Diet品种×饲料S×D
    血糖Glucose (mmol/L)3.19±0.20ab2.77±0.51a2.67±0.15a3.76±0.35b0.4590.3040.027
    甘油三酯Triglycerides (mmol/L)6.90±0.697.29±0.677.64±0.326.36±1.000.8940.5380.253
    胆固醇Cholesterol (mmol/L)8.33±0.327.91±0.687.88±0.336.93±0.570.1650.1830.610
    低密度脂蛋白胆固醇LDL-C (mmol/L)3.84±0.18B4.07±0.35B3.48±0.23A3.19±0.24A0.0270.8990.320
    高密度脂蛋白胆固醇HDL-C (mmol/L)2.89±0.292.47±0.493.27±0.142.80±0.370.3240.2150.947
    下载: 导出CSV
  • [1]

    Tocher D R. Metabolism and functions of lipids and fatty acids in teleost fish [J]. Reviews in Fisheries Science, 2003, 11(2): 107-184. doi: 10.1080/713610925

    [2] 刘洋, 高坚, 曹小娟, 等. 不同脂肪源对细鳞鲑生长、脂质代谢及抗氧化性能的影响 [J]. 水生生物学报, 2018, 42(3): 533-541.

    Liu Y, Gao J, Cao X J, et al. Effects of different lipid sources on the growth, lipid metabolism and antioxidant ability of Brachymystax lenok [J]. Acta Hydrobiologica Sinica, 2018, 42(3): 533-541.

    [3]

    Betancor M B, Sprague M, Montero D, et al. Replacement of marine fish oil with de novo Omega-3 oils from transgenic Camelina sativa in feeds for gilthead sea bream (Sparus aurata L.) [J]. Lipids, 2016, 51(10): 1171-1191. doi: 10.1007/s11745-016-4191-4

    [4]

    Tocher D. Issues surrounding fish as a source of omega-3 long-chain polyunsaturated fatty acids [J]. Lipid Technology, 2009, 21(1): 13-16. doi: 10.1002/lite.200800079

    [5]

    Peng M, Xu W, Mai K S, et al. Growth performance, lipid deposition and hepatic lipid metabolism related gene expression in juvenile turbot (Scophthalmus maximus L.) fed diets with various fish oil substitution levels by soybean oil [J]. Aquaculture, 2014(433): 442-449. doi: 10.1016/j.aquaculture.2014.07.005

    [6] 李经奇, 李学山, 姬仁磊, 等. 亚麻籽油和豆油替代鱼油对大黄鱼肝脏和肌肉脂肪酸组成及Δ6Fad基因表达的影响 [J]. 水生生物学报, 2018, 42(2): 232-239.

    Li J Q, Li X S, Ji R L, et al. The effects of linseed oil and soybean oil on fatty acid composition and Δ6Fad gene expression in liver and muscle of large yellow croaker (Larimichthys crocea) [J]. Acta Hydrobiologica Sinica, 2018, 42(2): 232-239.

    [7]

    Torstensen B, Tocher D. The Effects of Fish Oil Replacement on Lipid Metabolism of Fish [M]. Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds. CRC Press, 2010: 405-437.

    [8] 王骥腾, 韩涛, 田丽霞, 等. 3种植物油源对军曹鱼生长、体组成和脂肪酸组成的影响 [J]. 浙江海洋学院学报(自然科学版), 2007, 26(3): 237-245.

    Wang J T, Han T, Tian L X, et al. Impact of three vegetable oil sources on growth, body composition and tissue fatty acid composition of juvenile cobia (Rachycentron canadum) [J]. Journal of Zhejiang Ocean University (Natural Science), 2007, 26(3): 237-245.

    [9]

    Jin J Y, Zhu X M, Han D, et al. Different regulation of insulin on glucose and lipid metabolism in 2 strains of gibel carp [J]. General and Comparative Endocrinology, 2017(246): 363-371. doi: 10.1016/j.ygcen.2017.01.012

    [10]

    Li H Y, Xu W J, Jin J Y, et al. Effects of dietary carbohydrate and lipid concentrations on growth performance, feed utilization, glucose, and lipid metabolism in two strains of gibel carp [J]. Frontiers in Veterinary Science, 2019(6): 165. doi: 10.3389/fvets.2019.00165

    [11]

    Association of Official Analytical Chemists. Official methods of Analysis of the Association of Official Analytical Chemists [M]. Washington: Association of Official Analytical Chemists, 2003: 1298.

    [12]

    Folch J, Less M, Stanley G H S. A simple method for the isolation and purification of total lipides from animal tissues [J]. Journal of Biological Chemistry, 1957, 226(1): 497-509. doi: 10.1016/S0021-9258(18)64849-5

    [13]

    Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR [J]. Nucleic Acids Research, 2001, 29(9): e45. doi: 10.1093/nar/29.9.e45

    [14]

    Greene D H S, Selivonchick D P. Effects of dietary vegetable, animal and marine lipids on muscle lipid and hematology of rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture, 1990, 89(2): 165-182. doi: 10.1016/0044-8486(90)90308-A

    [15]

    Turchini G M, Mentastia T, Frøylandb L, et al. Effects of alternative dietary lipid sources on performance, tissue chemical composition, mitochondrial fatty acid oxidation capabilities and sensory characteristics in brown trout (Salmo trutta L.) [J]. Aquaculture, 2003, 225(1-4): 251-267. doi: 10.1016/S0044-8486(03)00294-1

    [16] 陈家林, 韩冬, 朱晓鸣, 等. 不同脂肪源对异育银鲫的生长、体组成和肌肉脂肪酸的影响 [J]. 水生生物学报, 2011, 35(6): 988-997.

    Chen J L, Han D, Zhu X M, et al. Dietary lipid sources for gibel carp Carassius auratus gibelio: growth performance, tissue composition and muscle fatty acid profiles [J]. Acta Hydrobiologica Sinica, 2011, 35(6): 988-997.

    [17] 李新, 杨瑞斌, 钱雪桥, 等. 不同植物脂肪源对吉富罗非鱼生长性能、肌肉脂肪酸和生理生化指标的影响 [J]. 水生生物学报, 2016, 40(4): 672-680.

    Li X, Yang R B, Qian X Q, et al. Effect of dietary vegetable oils when fed to genetically improved farmed tilapia strain of Nile tilapia Oreochromis niloticus [J]. Acta Hydrobiologica Sinica, 2016, 40(4): 672-680.

    [18]

    Teoh C Y, Ng W K. The implications of substituting dietary fish oil with vegetable oils on the growth performance, fillet fatty acid profile and modulation of the fatty acid elongase, desaturase and oxidation activities of red hybrid tilapia, Oreochromis sp. [J]. Aquaculture, 2016(465): 311-322. doi: 10.1016/j.aquaculture.2016.09.023

    [19]

    Panserat S, Hortopan G A, Plagnes-Juan E, et al. Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver [J]. Aquaculture, 2009, 294(1/2): 123-131.

    [20]

    Morais S, Pratoomyot J, Taggart J B, et al. Genotype-specific responses in Atlantic salmon (Salmo salar) subject to dietary fish oil replacement by vegetable oil: a liver transcriptomic analysis [J]. BMC Genomics, 2011(12): 255. doi: 10.1186/1471-2164-12-255

    [21]

    Richard N, Kaushik S, Larroquet L, et al. Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss) [J]. The British Journal of Nutrition, 2006, 96(2): 299-309. doi: 10.1079/BJN20061821

    [22]

    Morais S, Silva T, Cordeiro O, et al. Effects of genotype and dietary fish oil replacement with vegetable oil on the intestinal transcriptome and proteome of Atlantic salmon (Salmo salar) [J]. BMC Genomics, 2012(13): 448. doi: 10.1186/1471-2164-13-448

    [23] 满铭叁, 隋仲敏, 周慧慧, 等. 饲料中脂肪水平及脂肪源对大菱鲆幼鱼生长和代谢的影响 [J]. 中国海洋大学学报(自然科学版), 2020, 50(10): 26-36.

    Man M S, Sui Z M, Zhou H H, et al. Effects of dietary lipid level and lipid source on the growth and metabolism of juvenile turbot (Scophthalmus maximus L.) [J]. Periodical of Ocean University of China, 2020, 50(10): 26-36.

    [24]

    Francis D S, Turchini G M, Jones P L, et al. Dietary lipid source modulates in vivo fatty acid metabolism in the freshwater fish, Murray cod (Maccullochella peelii peelii) [J]. Journal of Agricultural and Food Chemistry, 2007, 55(4): 1582-1591. doi: 10.1021/jf062153x

    [25]

    Bahurmiz O M, Ng W K. Effects of dietary palm oil source on growth, tissue fatty acid composition and nutrient digestibility of red hybrid tilapia, Oreochromis sp., raised from stocking to marketable size [J]. Aquaculture, 2007, 262(2/3/4): 382-392.

    [26]

    Song X R, Han D, Liu H K, et al. Regulations on glucose metabolism affected by dietary carbohydrate in different strains of juvenile gibel carp (Carassius gibelio) [J]. Aquaculture Research, 2019, 50(4): 1075-1086. doi: 10.1111/are.13981

    [27]

    Xu W J, Jin J Y, Zou T, et al. Growth, feed utilization and metabolic responses of three gibel carp (Carassius gibelio) strains to fishmeal and plant protein-based diets [J]. Aquaculture Nutrition, 2019, 25(2): 319-332. doi: 10.1111/anu.12855

图(3)  /  表(7)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  27
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-01
  • 修回日期:  2022-12-08
  • 网络出版日期:  2023-12-04
  • 刊出日期:  2024-04-14

目录

/

返回文章
返回