THEORETICAL FRAMEWORK OF FUNCTIONAL ZONING FOR ECOLOGICAL WATERWAYS AND ITS PRACTICE IN THE YANGTZE RIVER
-
摘要:
长江“生态航道”建设在支持区域经济发展、河流生态与航运效益协同方面具有重要意义, 同时也为全球河流治理的生态化转型提供了参考路径。文章系统回顾了“生态航道”理念的发展历程与长江流域的实践经验, 基于河流功能视角重新阐释了“航道”的概念, 提出其应被视为基于航运需求划定的功能区而非河流实体。结合长江航道整治的实践, 文章分析了当前建设中存在的生态措施缺乏系统性规划和评估体系的复杂化两个核心问题, 并从功能区划的科学性、技术体系的生态性和评估框架的高效性三个方面提出优化路径。文章提出, 通过强化航运功能与生态功能的动态平衡、优化功能区划与技术协同设计, 以及构建聚焦河流生态功能的精简评估体系, 可实现航运效益与生态保护的协调发展。文章为长江“生态航道”的可持续建设提供系统化理论依据, 并为国际河流航道生态化发展提供借鉴。
Abstract:The construction of ecological waterways in the Yangtze River plays a pivotal role in fostering regional economic growth while harmonizing river ecology and navigation efficiency. It also serves as a valuable model for the global ecological transformation of river management. This paper systematically reviews the evolution of the ecological waterway concept and its practical implementation in the Yangtze River Basin. From a river functionality perspective, it redefines the “waterway” as a functional zone delineated based on navigation needs, rather than as a physical river entity. Building on insights from Yangtze River waterway regulation projects, the study identifies two primary challenges in current ecological waterway development: the lack of systematic planning for ecological measures and the complexity of evaluation frameworks. To address these issues, the paper proposes optimization strategies in three key areas: enhancing the scientific precision of functional zoning, integrating ecological principles into technical systems, and streamlining evaluation frameworks to focus on core ecological functions of rivers. By promoting a dynamic balance between navigation and ecological functions, refining zoning and technical coordination, and establishing concise and targeted assessment frameworks, the study highlights pathways to achieve a sustainable alignment of navigation efficiency and ecological preservation. This research provides a robust theoretical foundation for the sustainable development of ecological waterways in the Yangtze River and offers actionable insights for advancing ecological river management worldwide.
-
-
表 1 “生态航道”理念下的航道整治工程实践
Table 1 Implementation of waterway regulation projects within the framework of “Ecological Waterway” concept
案例名称Case 工程技术措施Main characteristics and measures 生态效果Ecological effect 长江下游南京段12.5 m深水航道[6] 淤积土吹填上滩形成陆域, 保育自然滩涂, 促进滩涂植被生长, 筑建丁坝, 抛填扭王字块 确保了长江口滩槽河势稳定, 扩大了滩涂生态面积, 增强了长江口深水航道及两侧滩槽格局稳定性[21], 并成功形成了人工牡蛎礁生态系统 长江中游武汉至安庆段航道[7] 开展河流局部生态修复, 实施生态护岸, 建设湿地与生态涵养试验区, 铺设透水框架和鱼巢等生态友好型结构 保证了河势稳定, 提高了护岸绿化率, 改善了滩面生境, 透水框架与鱼巢排有助于底沙沉积和有机质富集, 从而提供了更为稳定的鱼类栖息地[22] 长江中游荆江河段航道[23] 实施大面积生态固滩工程, 设置深槽护底带、护滩(底)带、高滩守护带等, 广泛采用透水框架和鱼巢砖等生态友好型结构 保障了浅水河槽及洲滩稳定, 成功形成了良好的洲滩湿地, 并被交通运输部评为“全国内河航道生态环保示范工程” 长江上游朝天门至涪陵段航道[8] 采用环保清礁工艺清除碍航礁石, 弃渣不再抛填于鱼类栖息的深潭, 而是堆砌成水下浅梗以重新营造鱼类生境 成功营造4个适应长江上游鱼类的生境区, 面积约100万m2, 并增设了人工鱼礁, 有利于底栖生物和底层鱼类的生态恢复[24] 长江上游重庆至宜宾段航道(规划建设)[25] 拟结合航道疏浚工程修复历史采砂破坏的洲滩, 建设鱼骨坝群并采用疏浚土回填固滩; 清礁石料等将用于鱼类生境营造 旨在解决上游洲滩清水冲刷问题, 通过回淤恢复原有滩貌、稳定河势并避免串沟, 从而对洲滩的鱼类栖息地的恢复起到积极作用 -
[1] 刘怀汉, 刘奇, 雷国平, 等. 长江生态航道技术研究进展与展望 [J]. 人民长江, 2020, 51(1): 11-15.] Liu H H, Liu Q, Lei G P, et al. Research progress and prospect of ecological waterway technology in Yangtze River [J]. Yangtze River, 2020, 51(1): 11-15. [
[2] 陈晓佳, 徐玮, 安虎森. 交通结构、市场规模与经济增长 [J]. 世界经济, 2021, 44(6): 72-96.] Chen X J, Xu W, An H S. Transportation structure, market size and economic growth [J]. The Journal of World Economy, 2021, 44(6): 72-96. [
[3] Jing M, Zheng W. Economic development advantages of low-carbon economy under waterway transportation [J]. IOP Conference Series: Materials Science and Engineering, 2020, 780(6): 062029. doi: 10.1088/1757-899X/780/6/062029
[4] 李欣桐, 王远铭, 梁瑞峰, 等. 河流系统生态完整性评估的回顾与展望 [J]. 中国环境科学, 2024, 44(4): 2256-2272.] Li X T, Wang Y M, Liang R F, et al. A review and prospect for ecological integrity assessment of river systems [J]. China Environmental Science, 2024, 44(4): 2256-2272. [
[5] 李明, 刘奇. 生态航道建设理论与实践研究 [J]. 中国水运(下半月), 2021, 21(2): 80-82.] Li M, Liu Q. Study on theory and practice of ecological waterway construction [J]. China Water Transport, 2021, 21(2): 80-82. [
[6] Li P, Xue J, Xia W, et al. Health assessment of the waterway from Chongqing to Yibin in the Upper Yangtze River, China [J]. Water, 2022, 14(19): 3007. doi: 10.3390/w14193007
[7] 楼飞, 季岚, 李蕙, 等. 长江口规划生态航道建设方向研究 [J]. 水运工程, 2023(1): 75-81.] Lou F, Ji L, Li H, et al. Construction direction of planned ecological channel in the Yangtze River Estuary [J]. Port & Waterway Engineering, 2023(1): 75-81. [
[8] 叶丽娟, 王珂, 刘绍平, 等. 莲花洲港航道工程的生态修复效果初步研究 [J]. 水生态学杂志, 2023, 44(5): 25-32.] Ye L J, Wang K, Liu S P, et al. Effect of ecological restoration on the Lianhuazhou port channel [J]. Journal of Hydroecology, 2023, 44(5): 25-32. [
[9] 朱彬华, 刘作飞, 杜新文, 等. 三峡水库变动回水区渣角滩养护疏浚效果评估与策略优化 [J/OL]. 重庆交通大学学报(自然科学版), 1-7 [2024-12-11].] Zhu B H, Liu Z F, Du X W, et al. Evaluation of the maintenance and dredging effects and strategy optimization for zhajiao beach in the fluctuating backwater area of the Three Gorges Reservoir [J/OL]. Journal of Chongqing Jiaotong University (Natural Science), 1-7 [2024-12-11]. [
[10] Pan B, Yuan J, Zhang X, et al. A review of ecological restoration techniques in fluvial rivers [J]. International Journal of Sediment Research, 2016, 31(2): 110-119. doi: 10.1016/j.ijsrc.2016.03.001
[11] Li P, Li D, Sun X, et al. Application of ecological restoration technologies for the improvement of biodiversity and ecosystem in the river [J]. Water, 2022, 14(9): 1402. doi: 10.3390/w14091402
[12] 王永兴, 周俊伟. 内河生态航道建设综述 [J]. 水运工程, 2022(9): 106-111.] Wang Y X, Zhou J W. Overview of ecological inland waterway engineering [J]. Port & Waterway Engineering, 2022(9): 106-111. [
[13] Anderson E P, Jackson S, Tharme R E, et al. Understanding rivers and their social relations: a critical step to advance environmental water management [J]. WIREs Water, 2019, 6(6). DOI: 10.1002/wat2.1381.
[14] 吴宸晖, 鞠茂森. 河流生态修复的国际经验及对长江大保护的启示 [J]. 水资源保护, 2021, 37(3): 136-144.] Wu C H, Ju M S. International experience of river ecological restoration and its enlightenment to the Yangtze River Protection [J]. Water Resources Protection, 2021, 37(3): 136-144. [
[15] Jian L, Wang P, Wang M, et al. Experimental study on hydraulic characteristics of new ecological slope protection structure [J]. Marine Georesources & Geotechnology, 2022, 40(12): 1508-1519.
[16] Liu M, Luo Y, Li F, et al. Experimental research on erosion characteristics of ecological slopes under the scouring of non-directional inflow [J]. Sustainability, 2023, 15(20): 14688. doi: 10.3390/su152014688
[17] Yunping Y, Ming L, Wanli L, et al. Relationship between potential waterway depth improvement and evolution of the Jingjiang Reach of the Yangtze River in China [J]. Journal of Geographical Sciences, 2023, 33(3): 547-575. doi: 10.1007/s11442-023-2096-8
[18] 刘立平, 黄建宇, 喻龙, 等. 赣江丰城龙头山枢纽以下航段航道整治工程水下疏浚清礁施工工艺研究 [J]. 中国水运, 2023(12): 83-86.] Liu L P, Huang J Y, Yu L, et al. Study on underwater dredging and reef cleaning construction technology of waterway regulation project below Longtoushan junction in Fengcheng, Ganjiang River [J]. China Water Transport, 2023(12): 83-86. [
[19] 李永, 卢红伟, 李克锋, 等. 考虑齐口裂腹鱼产卵需求的山区河流生态基流过程确定 [J]. 长江流域资源与环境, 2015, 24(5): 809-815.] Li Y, Lu H W, Li K F, et al. Determination of ecological base flow process of mountainous rivers by taking into account the prenant’s schizothoracin’s spawning requirements.J]. Resources and Environment in the Yangtze Basin, 2015, 24(5): 809-815. [
[20] Zhang X, Zhang X, Zhang Z, et al. Measures, methods and cases of river ecological restoration [J]. IOP Conference Series: Earth and Environmental Science, 2020, 601(1): 012025. doi: 10.1088/1755-1315/601/1/012025
[21] Jun C, Fan Z. Beach and trough stability study of the Xiyang Sea area of Jiangsu Province [J]. IOP Conference Series: Earth and Environmental Science, 2019, 304(2): 022049. doi: 10.1088/1755-1315/304/2/022049
[22] Liu J, Yang Z, Li M, et al. Evaluating the concrete grade-control structures built by modified fish-nest bricks in the river restoration: a lab-based case study [J]. Journal of Environmental Management, 2022(314): 115056. doi: 10.1016/j.jenvman.2022.115056
[23] Qu G, Zhao Z, Zheng C. Study on the stretching mechanism of the lower reach of the distribution estuary of Alluvial River after lateral by pass flow-taking Jingjiang reach of the Yangtze River as an example [J]. IOP Conference Series: Earth and Environmental Science, 2019, 376(1): 012050. doi: 10.1088/1755-1315/376/1/012050
[24] Kraufvelin P, Bergström L, Sundqvist F, et al. Rapid re-establishment of top-down control at a no-take artificial reef [J]. Ambio, 2023, 52(3): 556-570. doi: 10.1007/s13280-022-01799-9
[25] 李晋鹏, 宣昊, 王学霞, 等. 长江深水航道整治生态护岸工程实施效果综合评估 [J]. 人民长江, 2022, 53(10): 211-217.] Li J P, Xuan H, Wang X X, et al. Comprehensive evaluation on implement effect of ecological riverbank project in deepwaterway regulation of Yangtze River [J]. Yangtze River, 2022, 53(10): 211-217. [
[26] 严忠平. 昌江水运经济发展模式探讨 [J]. 水利经济, 2008, 26(1): 37-39.] Yan Z P. Development modes of water transportation economy of Changjiang River of Jiangxi Province [J]. Journal of Economics of Water Resources, 2008, 26(1): 37-39. [
[27] 严登华, 窦鹏, 崔保山, 等. 内河生态航道建设理论框架及关键问题 [J]. 北京师范大学学报(自然科学版), 2018, 54(6): 755-763.] Yan D H, Dou P, Cui B S, et al. Theoretical frame work and key issue in ecological inland waterway construction.J]. Journal of Beijing Normal University (Natural Science), 2018, 54(6): 755-763. [
[28] 刘均卫. 长江生态航道发展探析 [J]. 长江流域资源与环境, 2015, 24(S1): 9-14.] Liu J W. Analysis on the development of ecological waterway in Yangtze River [J]. Resources and Environment in the Yangtze Basin, 2015, 24(S1): 9-14. [
[29] Bączyk A, Wagner M, Okruszko T, et al. Influence of technical maintenance measures on ecological status of agricultural lowland rivers–Systematic review and implications for river management [J]. Science of the Total Environment, 2018(627): 189-199. doi: 10.1016/j.scitotenv.2018.01.235
[30] Li S. Channel regulation engineering plan for Reach in Xijiang River [J]. IOP Conference Series: Earth and Environmental Science, 2021, 643(1): 012119. doi: 10.1088/1755-1315/643/1/012119
[31] Liu P, Wang N, Lei X. Structural design of the waterway regulation project of Dongbei waterway in the lower reaches of Yangtze River [J]. IOP Conference Series: Earth and Environmental Science, 2019, 283(1): 012031. doi: 10.1088/1755-1315/283/1/012031
[32] Yang D L, Dou X P, Zhang X Z, et al. Hydrodynamic effect of the regulation project of Yangtze River deepwater channel downstream of Nanjing [J]. China Ocean Engineering, 2013, 27(6): 767-779. doi: 10.1007/s13344-013-0063-3
[33] 刘念, 李天宏, 匡舒雅. 长江中下游武安段生态航道评价 [J]. 北京大学学报(自然科学版), 2021, 57(3): 489-495.] Liu N, Li T H, Kuang S Y. Ecological waterway assessment of Wuhan-Anqing reach of the Yangtze River [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(3): 489-495. [
[34] 朱孔贤, 蒋敏, 黎礼刚, 等. 生态航道层次分析评价指标体系初探 [J]. 中国水运 航道科技, 2016(2): 10-14.] Zhu K X, Jiang M, Li L G, et al. Preliminary study on the evaluation index system of ecological waterway analytic hierarchy process [J]. China Water Transportation (Science & Technology for Waterway), 2016(2): 10-14. [
[35] Skinner S, Addai A, Decker S, et al. The ecological success of river restoration in Newfoundland and Labrador, Canada: lessons learned [J]. Ecology and Society, 2023, 28(3): art20. doi: 10.5751/ES-14379-280320
[36] 李文杰, 李伟明, 杨胜发, 等. 航道承载力内涵及评价方法研究——以长江上游航道为例 [J]. 重庆交通大学学报(自然科学版), 2019, 38(10): 74-80.] Li W J, Li W M, Yang S F, et al. Connotation of waterway bearing capacity and its evaluation method-taking the Upper Yangtze River as an example [J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(10): 74-80. [
[37] Wang Y, Chen X, Borthwick A G L, et al. Sustainability of global golden inland waterways [J]. Nature Communications, 2020, 11(1): 1553. doi: 10.1038/s41467-020-15354-1
[38] 倪晋仁, 刘怀汉, 谷祖鹏. 长江“黄金航道” 整治技术研究与示范 [J]. 中国环境管理, 2017, 9(6): 112-113.] Ni J R, Liu H H, Gu Z P. Research and demonstration on regulation technology of “golden waterway” in the Yangtze River [J]. Chinese Journal of Environmental Management, 2017, 9(6): 112-113. [
[39] Spear M J, Harris B S, Bookout T A, et al. Reduction of large vessel traffic improves water quality and alters fish habitat-use throughout a large river [J]. Science of the Total Environment, 2024(946): 172705. doi: 10.1016/j.scitotenv.2024.172705
[40] 吴佳宁, 王刚. 河流生态功能区划研究进展 [J]. 水利水电技术, 2013, 44(9): 25-30.] Wu J N, Wang G. Progress of research on river eco-functional zoning.J]. Water Resources and Hydropower Engineering, 2013, 44(9): 25-30. [
[41] 倪晋仁, 刘元元. 论河流生态修复 [J]. 水利学报, 2006, 37(9): 1029-1037.] Ni J R, Liu Y Y. Ecological rehabilitation of damaged river system [J]. Journal of Hydraulic Engineering, 2006, 37(9): 1029-1037. [
[42] 黎明政, 马琴, 陈林, 等. 三峡水库产漂流性卵鱼类繁殖现状及水文需求研究 [J]. 水生生物学报, 2019, 43(S1): 84-96.] Li M Z, Ma Q, Chen L, et al. Natural reproduction and hydrologic requirements of pelagophil fish in the Three Gorges Reservoir [J]. Acta Hydrobiologica Sinica, 2019, 43(S1): 84-96. [
[43] Liu J H, Yang Z H, Liu Y, et al. Can the regulation of Golden Inland Waterways meet the needs of navigation, flood control, and ecology? A model-based case study [J]. Ecological Engineering, 2023(193): 106998. doi: 10.1016/j.ecoleng.2023.106998
[44] 赵志舟, 赵世强, 许光祥. 山区河流滩群河段的碍航特征与整治原则分析 [J]. 水利水运工程学报, 2013(2): 39-44.] doi: 10.3969/j.issn.1009-640X.2013.02.007 Zhao Z Z, Zhao S Q, Xu G X. Analysis of navigation hindering characteristics and regulation principle of shoal group reaches of mountain rivers [J]. Hydro-Science and Engineering, 2013(2): 39-44. [ doi: 10.3969/j.issn.1009-640X.2013.02.007
[45] Jägerbrand A K, Brutemark A, Barthel Svedén J, et al. A review on the environmental impacts of shipping on aquatic and nearshore ecosystems [J]. Science of the Total Environment, 2019(695): 133637. doi: 10.1016/j.scitotenv.2019.133637
[46] Que S, Luo H, Wang L, et al. Canonical correlation study on the relationship between shipping development and water environment of the Yangtze River [J]. Sustainability, 2020, 12(8): 3279. doi: 10.3390/su12083279
[47] Liu C, Xiong H, Huang W, et al. Influence of Waterway Dredging Engineering on Water Ecological Environment and Countermeasures [C]. Proceedings of the 2015 International Symposium on Material, Energy and Environment Engineering, 2015: 28-29.
[48] 李方平, 张登成, 王孟, 等. 金沙江旭龙水电站鱼类栖息地适宜性评价 [J]. 水生态学杂志, 2023, 44(6): 53-62.] Li F P, Zhang D C, Wang M, et al. Suitability assessment of fish habitat in the riverine sectionat Xulong Hydropower Station on Jinsha River [J]. Journal of Hydroecology, 2023, 44(6): 53-62. [
[49] Chen X, Liu S, Wang Y, et al. Restoration of a fish-attracting flow field downstream of a dam based on the swimming ability of endemic fishes: a case study in the Upper Yangtze River Basin [J]. Journal of Environmental Management, 2023(345): 118694. doi: 10.1016/j.jenvman.2023.118694
[50] Miró J M, Megina C, Donázar-Aramendía I, et al. Effects of maintenance dredging on the macrofauna of the water column in a turbid estuary [J]. Science of the Total Environment, 2022(806): 151304. doi: 10.1016/j.scitotenv.2021.151304
[51] Wan Y, Huang G, Du H, et al. Effects of waterway regulation structures on the planktonic community in the Upper Yangtze River [J]. Ecological Indicators, 2023(155): 111049. doi: 10.1016/j.ecolind.2023.111049
[52] Wortley L, Hero J M, Howes M. Evaluating ecological restoration success: a review of the literature [J]. Restoration Ecology, 2013, 21(5): 537-543. doi: 10.1111/rec.12028
[53] Diefenderfer H L, Johnson G E, Thom R M, et al. Evidence-based evaluation of the cumulative effects of ecosystem restoration [J]. Ecosphere, 2016, 7(3): e01242. doi: 10.1002/ecs2.1242