中华拟同形溞卵黄蛋白原基因的表达和功能分析

李国庆, 赵雅洁, 朱豪, 尹熠辉, 张坤, 邓道贵

李国庆, 赵雅洁, 朱豪, 尹熠辉, 张坤, 邓道贵. 中华拟同形溞卵黄蛋白原基因的表达和功能分析[J]. 水生生物学报, 2025, 49(4): 042509. DOI: 10.7541/2025.2024.0287
引用本文: 李国庆, 赵雅洁, 朱豪, 尹熠辉, 张坤, 邓道贵. 中华拟同形溞卵黄蛋白原基因的表达和功能分析[J]. 水生生物学报, 2025, 49(4): 042509. DOI: 10.7541/2025.2024.0287
LI Guo-Qing, ZHAO Ya-Jie, ZHU Hao, YIN Yi-Hui, ZHANG Kun, DENG Dao-Gui. EXPRESSION AND FUNCTIONAL ANALYSIS OF THE VITELLINOGEN GENE IN DAPHNIA SINENSIS[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042509. DOI: 10.7541/2025.2024.0287
Citation: LI Guo-Qing, ZHAO Ya-Jie, ZHU Hao, YIN Yi-Hui, ZHANG Kun, DENG Dao-Gui. EXPRESSION AND FUNCTIONAL ANALYSIS OF THE VITELLINOGEN GENE IN DAPHNIA SINENSIS[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042509. DOI: 10.7541/2025.2024.0287
李国庆, 赵雅洁, 朱豪, 尹熠辉, 张坤, 邓道贵. 中华拟同形溞卵黄蛋白原基因的表达和功能分析[J]. 水生生物学报, 2025, 49(4): 042509. CSTR: 32229.14.SSSWXB.2024.0287
引用本文: 李国庆, 赵雅洁, 朱豪, 尹熠辉, 张坤, 邓道贵. 中华拟同形溞卵黄蛋白原基因的表达和功能分析[J]. 水生生物学报, 2025, 49(4): 042509. CSTR: 32229.14.SSSWXB.2024.0287
LI Guo-Qing, ZHAO Ya-Jie, ZHU Hao, YIN Yi-Hui, ZHANG Kun, DENG Dao-Gui. EXPRESSION AND FUNCTIONAL ANALYSIS OF THE VITELLINOGEN GENE IN DAPHNIA SINENSIS[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042509. CSTR: 32229.14.SSSWXB.2024.0287
Citation: LI Guo-Qing, ZHAO Ya-Jie, ZHU Hao, YIN Yi-Hui, ZHANG Kun, DENG Dao-Gui. EXPRESSION AND FUNCTIONAL ANALYSIS OF THE VITELLINOGEN GENE IN DAPHNIA SINENSIS[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042509. CSTR: 32229.14.SSSWXB.2024.0287

中华拟同形溞卵黄蛋白原基因的表达和功能分析

基金项目: 国家自然科学基金(31870451和32001155) 资助
详细信息
    作者简介:

    李国庆(1999—), 女, 硕士研究生; 主要研究枝角类分子进化。E-mail: 2358964590@qq.com

    通信作者:

    邓道贵(1969—), 男, 教授; 主要研究方向为浮游生物生态学和枝角类分子进化。E-mail: dengdg@chnu.edu.cn

  • 中图分类号: Q344+.1

EXPRESSION AND FUNCTIONAL ANALYSIS OF THE VITELLINOGEN GENE IN DAPHNIA SINENSIS

Funds: Supported by the National Natural Science Foundation of Chnia (31870451 and 32001155)
    Corresponding author:
  • 摘要:

    为了阐明卵黄蛋白原基因对溞属枝角类生殖和胚胎发育的影响机制, 研究了RNA干扰下中华拟同形溞(Daphnia sinensis)的卵黄蛋白原基因表达及产幼溞数变化。结果表明, RNA干扰后, 与EGFP (Enhanced green fluorescent protein)组相比, 2%大肠杆菌浓度下中华拟同形溞在Vtg组的首次产幼溞数和Vtg基因相对表达量没有显著差异; 5%大肠杆菌浓度下中华拟同形溞前四个成龄在Vtg组的产幼溞数均显著小于EGFP组, 且中华拟同形溞的第一成龄、第四成龄时在Vtg组的Vtg基因相对表达量均显著小于EGFP组, 分别下降了5.25%和78.03%。此外, RNA干扰后Vtg组的中华拟同形溞还出现了胚胎消解和后代发育不全的现象。结果表明, 高强度、长时间的RNA干扰能够显著降低中华拟同形溞Vtg基因的相对表达水平, 也能够显著抑制其生殖量和胚胎发育。因此, Vtg基因对中华拟同形溞的生殖和胚胎发育起重要作用。

    Abstract:

    In order to elucidate the mechanism of the influence of vitellinogen gene on the reproduction and embryonic development of Daphnia, the changes on the expression of vitellogenin gene and the number of offspring of D. sinensis under RNA interference (RNAi) was studied. After RNA interference, compared with the EGFP (Enhanced Green Fluorescent Protein) group, there was no significant difference in number of offspring at the first reproduction or relative expression level of Vtg gene of D. sinensis in the Vtg group at the 2% E. coli concentration. At the 5% E. coli concentration, the number of offspring at the first four adult instar in the Vtg group were significantly lower than those in the EGFP group. Additionally, the relative expressions of the Vtg gene of D. sinensis at the first and the fourth adult instars in the Vtg group were significantly lower than those in the EGFP group, with decreases of 5.25% and 78.03%, respectively. In addition, the phenomenon of embryonic digestion and underdevelopment of offspring also appeared in the Vtg group after RNAi. The results suggest that high-intensity and prolonged RNA interference can significantly reduce the relative expression of the Vtg gene in D. sinensis, leading to a marked inhibition of reproductive capacity and embryonic development. Therefore, the Vtg gene plays an important role in the reproduction and embryonic development of D. sinensis.

  • 图  1   部分甲壳动物Vtg基因的氨基酸序列的系统进化树

    Figure  1.   Phylogenetic tree on amino acid sequence of Vtg gene in partial crustaceans

    图  2   dsRNA诱导图

    M. DNA分子量标准Marker; 1—2. 分别携带L4440-Vtg、L4440-EGFP重组质粒的HT115菌株的诱导产物; 3. 携带L4440重组质粒的HT115菌株的未诱导产物

    Figure  2.   The induction of double strand RNA

    M. DNA molecular weight standard; 1—2. Induced product of HT115 strain carrying recombinant plasmid of L4440-Vtg and L4440-EGFP, respectively; 3. HT115 strain carrying L4440 recombinant plasmid is not induced

    图  3   RNA干扰后中华拟同形溞的首次怀卵数、首次产幼溞数及第一成龄Vtg基因的相对表达量

    Figure  3.   Number of eggs at first pregnancy and offspring at the first reproduction and relative expression of mRNA of Vtg gene at the 1st adult instar of D. sinensis after RNAi

    (2% and 5% stand for 2% and 5% E. coli concentrations, respectively; *P<0.05, **P<0.01)

    图  4   RNA干扰后中华拟同形溞的胚胎解体及后代畸形的现象

    1. 显示正常发育的胚胎Showing normal embryo; 2. 显示消解的胚胎Showing disintegrated embryos; 3. 显示正常发育的后代Showing normal offspring; 4. 显示畸形的后代Showing abnormal offspring

    Figure  4.   The phenomenon of embryonic disintegration and offspring malformation of D. sinensis after RNAi

    图  5   5%大肠杆菌浓度下RNA干扰后中华拟同形溞前四个成龄的产幼溞数

    Figure  5.   Offspring number of D. sinensis at the first four adult instar after RNAi under 5% E. coli concentration (*P<0.05, ***P<0.001)

    图  6   5%大肠杆菌浓度下第四成龄时中华拟同形溞Vtg基因的表达水平

    Figure  6.   Expression levels of Vtg gene of D. sinensis at the 4th adult instar under 5% E. coli concentration (***P<0.001)

    表  1   引物的序列及名称

    Table  1   Sequence and name of primer employed in this experiment

    引物名称
    Primer name
    引物
    Primer (5′—3′)
    GAPDHTCGTCTCCAATGCTTCTT
    CGGTCCATCAACAGTCTT
    VtgCTTGGAAGGCAATGGAATCCCA
    GGATGTGGATCAGGACATTATTGC
    下载: 导出CSV
  • [1] 蒋燮治, 堵南山. 中国动物志·淡水枝角类 [M]. 北京: 科学出版社, 1979: 6-7.]

    Jiang X Z, Du N S. Fauna Sinica: Crustacean-Freshwater Cladocera [M]. Beijing: Science Press, 1979: 6-7. [

    [2]

    Harris K D M, Bartlett N J, Lloyd V K. Daphnia as an emerging epigenetic model organism [J]. Genetics Research International, 2012(2012): 147892.

    [3]

    Ebert D. A genome for the environment [J]. Science, 2011, 331(6017): 539-540. doi: 10.1126/science.1202092

    [4]

    Chakri K, Touati L, Alfarhan A H, et al. Effect of vertebrate and invertebrate kairomones on the life history of Daphnia magna Straus (Crustacea: Branchiopoda) [J]. Comptes Rendus Biologies, 2010, 333(11-12): 836-840. doi: 10.1016/j.crvi.2010.09.004

    [5]

    Prater C, Wagner N D, Frost P C. Seasonal effects of food quality and temperature on body stoichiometry, biochemistry, and biomass production in Daphnia populations [J]. Limnology and Oceanography, 2018, 63(4): 1727-1740. doi: 10.1002/lno.10803

    [6] 孙雨琛. 鱼类信息素与铜绿微囊藻协同作用对中华拟同形溞生殖和身体表型的影响 [D]. 淮北: 淮北师范大学, 2020.]

    Sun Y C. The combined effects of fish kairomone and Microcystis aeruginosa on the reproduction and body phenotype of Daphnia similoides sinensis [D]. Huaibei: Huaibei Normal University, 2020. [

    [7]

    Sperfeld E, Wacker A. Temperature affects the limitation of Daphnia magna by eicosapentaenoic acid, and the fatty acid composition of body tissue and eggs [J]. Freshwater Biology, 2012, 57(3): 497-508. doi: 10.1111/j.1365-2427.2011.02719.x

    [8] 李兆杰, 杨丽君, 王静, 等. 卵黄蛋白原的研究进展 [J]. 生命科学, 2010, 22(3): 284-290.]

    Li Z J, Yang L J, Wang J, et al. The progress in studies on vitellogenin [J]. Chinese Bulletin of Life Sciences, 2010, 22(3): 284-290. [

    [9]

    Wang S Y, Smith D E, Williams D L. Purification of avian vitellogenin Ⅲ: comparison with vitellogenins Ⅰ and Ⅱ [J]. Biochemistry, 1983, 22(26): 6206-6212. doi: 10.1021/bi00295a026

    [10]

    Huang X, Green S, Chung J S. The presence of an insulin-like peptide-binding protein (ILPBP) in the ovary and its involvement in the ovarian development of the red deep-sea crab, Chaceon quinquedens [J]. General and Comparative Endocrinology, 2021(301): 113653.

    [11]

    Sun W K, Li H, Zhao Y H, et al. Distinct vitellogenin domains differentially regulate immunological outcomes in invertebrates [J]. Journal of Biological Chemistry, 2021(296): 100060.

    [12]

    Ando S, Hatano M. Distribution of carotenoids in the eggs from four species of salmonids [J]. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1991, 99(2): 341-344. doi: 10.1016/0305-0491(91)90052-F

    [13]

    Azuma M, Irie T, Seki T. Retinals and retinols induced by estrogen in the blood plasma of Xenopus laevis [J]. Journal of Experimental Biology, 1993(178): 89-96.

    [14]

    Mac Lachlan I, Nimpf J, Schneider W J. Avian riboflavin binding protein binds to lipoprotein receptors in association with vitellogenin [J]. The Journal of Biological Chemistry, 1994, 269(39): 24127-24132. doi: 10.1016/S0021-9258(19)51057-2

    [15]

    Montorzi M, Falchuk K H, Vallee B L. Xenopus laevis vitellogenin is a zinc protein [J]. Biochemical and Biophysical Research Communications, 1994, 200(3): 1407-1413. doi: 10.1006/bbrc.1994.1607

    [16]

    Prowse T A A, Byrne M. Evolution of yolk protein genes in the Echinodermata [J]. Evolution and Development, 2012, 14(2): 139-151. doi: 10.1111/j.1525-142X.2012.00531.x

    [17]

    Yilmaz O, Com E, Pineau C, et al. Genomic disturbance of vitellogenin 2 (vtg2) leads to vitellin membrane deficiencies and significant mortalities at early stages of embryonic development in zebrafish (Danio rerio) [J]. Scientific Reports, 2023, 13(1): 18795. doi: 10.1038/s41598-023-46148-2

    [18]

    Wang C X, Bao H Q, Yan Z C, et al. Knockdown of vitellogenin receptor based on minute insect RNA interference methods affects the initial mature egg load in the pest natural enemy Trichogramma dendrolimi [J]. Insect Science, 2024. DOI: 10.1111/1744-7917.13385.

    [19]

    Jiang K, Fang X, Li Y L, et al. Genome-wide identification, phylogeny, expression and eyestalk neuroendocrine regulation of vitellogenin gene family in the freshwater giant prawn Macrobrachium rosenbergii [J]. General and Comparative Endocrinology, 2023(340): 114306.

    [20]

    Sheng Y Z, Liao J Q, Zhang Z P, et al. Regulation of vtg and VtgR in mud crab Scylla paramamosain by miR-34 [J]. Molecular Biology Reports, 2022, 49(8): 7367-7376. doi: 10.1007/s11033-022-07530-x

    [21]

    Tokishita S I, Kato Y, Kobayashi T, et al. Organization and repression by juvenile hormone of a vitellogenin gene cluster in the crustacean, Daphnia magna [J]. Biochemical and Biophysical Research Communications, 2006, 345(1): 362-370. doi: 10.1016/j.bbrc.2006.04.102

    [22]

    Chen P, Xu S L, Zhou W, et al. Cloning and expression analysis of a transformer gene in Daphnia pulex during different reproduction stages [J]. Animal Reproduction Science, 2014, 146(3-4): 227-237. doi: 10.1016/j.anireprosci.2014.03.010

    [23]

    Liu A J, Zhang M Q, Kong L, et al. Cloning and expression profiling of a cuticular protein gene in Daphnia carinata [J]. Development Genes and Evolution, 2014, 224(3): 129-135. doi: 10.1007/s00427-014-0469-9

    [24]

    Li H X, Yang Y, Xu G R, et al. Cloning, expression and localization of DacaCSP2 and DacaCSP3 during different reproductive stages in Daphnia carinata [J]. Gene, 2016, 582(1): 59-68. doi: 10.1016/j.gene.2016.01.048

    [25]

    Seyoum A, Pradhan A, Jass J, et al. Perfluorinated alkyl substances impede growth, reproduction, lipid metabolism and lifespan in Daphnia magna [J]. Science of the Total Environment, 2020(737): 139682.

    [26]

    Maselli V, Siciliano A, Giorgio A, et al. Multigenerational effects and DNA alterations of QDs-Indolicidin on Daphnia magna [J]. Environmental Pollution, 2017(224): 597-605.

    [27]

    Kim J, Kim Y, Lee S, et al. Determination of mRNA expression of DMRT93B, vitellogenin, and cuticle 12 in Daphnia magna and their biomarker potential for endocrine disruption [J]. Ecotoxicology, 2011, 20(8): 1741-1748. doi: 10.1007/s10646-011-0707-0

    [28] 赵雅洁, 李国庆, 王业平, 等. 两个与中华拟同形溞生殖相关基因的筛选及其RNA干扰研究 [J]. 水生生物学报, 2024, 48(1): 176-184.] doi: 10.7541/2023.2023.0107

    Zhao Y J, Li G Q, Wang Y P, et al. Screening and RNA interference study of two genes related to reproduction in Daphnia sinensis [J]. Acta Hydrobiologica Sinica, 2024, 48(1): 176-184. [ doi: 10.7541/2023.2023.0107

    [29]

    Nwokeoji A O, Nwokeoji E A, Chou T, et al. A novel sustainable platform for scaled manufacturing of double-stranded RNA biopesticides [J]. Bioresources and Bioprocessing, 2022, 9(1): 107. doi: 10.1186/s40643-022-00596-2

    [30]

    Qi H Y, Cao H J, Zhao Y J, et al. Cloning and functional analysis of the molting gene CYP302A1 of Daphnia sinensis [J]. Frontiers in Zoology, 2023, 20(1): 2. doi: 10.1186/s12983-023-00483-2

    [31]

    Hiramatsu N, Matsubara T, Fujita T, et al. Multiple piscine vitellogenins: biomarkers of fish exposure to estrogenic endocrine disruptors in aquatic environments [J]. Marine Biology, 2006, 149(1): 35-47. doi: 10.1007/s00227-005-0214-z

    [32]

    Carducci F, Biscotti M A, Canapa A. Vitellogenin gene family in vertebrates: evolution and functions [J]. The European Zoological Journal, 2019, 86(1): 233-240. doi: 10.1080/24750263.2019.1631398

    [33]

    Fernández-González L E, Sánchez-Marín P, Gestal C, et al. Vitellogenin gene expression in marine mussels exposed to ethinylestradiol: No induction at the transcriptional level [J]. Marine Environmental Research, 2021(168): 105315.

    [34]

    Reading B J, Hiramatsu N, Sawaguchi S, et al. Conserved and variant molecular and functional features of multiple egg yolk precursor proteins (vitellogenins) in white perch (Morone americana) and other teleosts [J]. Marine Biotechnology, 2009, 11(2): 169-187. doi: 10.1007/s10126-008-9133-6

    [35]

    Wahli W. Evolution and expression of vitellogenin genes [J]. Trends in Genetics, 1988, 4(8): 227-232. doi: 10.1016/0168-9525(88)90155-2

    [36]

    Kato Y, Tokishita S I, Ohta T, et al. A vitellogenin chain containing a superoxide dismutase-like domain is the major component of yolk proteins in cladoceran crustacean Daphnia magna [J]. Gene, 2004(334): 157-165.

    [37]

    Yang F, Xu H T, Dai Z M, et al. Molecular characterization and expression analysis of vitellogenin in the marine crab Portunus trituberculatus [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2005, 142(4): 456-464. doi: 10.1016/j.cbpb.2005.09.011

    [38]

    Hystad E M, Salmela H, Amdam G V, et al. Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes [J]. PLoS One, 2017, 12(9): e0184108. doi: 10.1371/journal.pone.0184108

    [39] 刘熙阳. 长牡蛎卵黄蛋白原免疫防御调节机制的初步研究 [D]. 大连: 大连海洋大学, 2023: 5.]

    Liu X Y. Preliminary study on the immunomodulatory mechanism of vitellogenin in Crassostrea gigas [D]. Dalian: Dalian Ocean University, 2023: 5. [

    [40]

    Li J, Li H T, Lin D D, et al. Effects of butyl benzyl phthalate exposure on Daphnia magna growth, reproduction, embryonic development and transcriptomic responses [J]. Journal of Hazardous Materials, 2021, 404(Pt B): 124030.

    [41]

    Liu Y, Zhang J L, Zhao H Y, et al. Effects of polyvinyl chloride microplastics on reproduction, oxidative stress and reproduction and detoxification-related genes in Daphnia magna [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2022(254): 109269.

    [42]

    Cho H, Ryu C S, Lee S A, et al. Endocrine-disrupting potential and toxicological effect of para-phenylphenol on Daphnia magna [J]. Ecotoxicology and Environmental Safety, 2022(243): 113965.

    [43]

    Gust K A, Lotufo G R, Barker N D, et al. Mode of action evaluation for reduced reproduction in Daphnia pulex exposed to the insensitive munition, 1-methyl-3-nitro-1-nitroguanidine (MeNQ) [J]. Ecotoxicology, 2021, 30(6): 1203-1215. doi: 10.1007/s10646-021-02447-w

    [44]

    Moriyama M, Hosokawa T, Tanahashi M, et al. Suppression of bedbug's reproduction by RNA interference of vitellogenin [J]. PLoS One, 2016, 11(4): e0153984. doi: 10.1371/journal.pone.0153984

    [45]

    Tokar D R, Veleta K A, Canzano J, et al. Vitellogenin RNAi halts ovarian growth and diverts reproductive proteins and lipids in young grasshoppers [J]. Integrative and Comparative Biology, 2014, 54(5): 931-941. doi: 10.1093/icb/icu068

    [46]

    Le T H, Lim E S, Lee S K, et al. Toxicity evaluation of verapamil and tramadol based on toxicity assay and expression patterns of Dhb, Vtg, Arnt, CYP4, and CYP314 in Daphnia magna [J]. Environmental Toxicology, 2011, 26(5): 515-523. doi: 10.1002/tox.20665

    [47]

    Schwerin S, Zeis B, Lamkemeyer T, et al. Acclimatory responses of the Daphnia pulex proteome to environmental changes. Ⅱ. Chronic exposure to different temperatures (10 and 20℃) mainly affects protein metabolism [J]. BMC Physiology, 2009(9): 8.

图(6)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-26
  • 修回日期:  2024-09-19
  • 网络出版日期:  2024-10-09
  • 刊出日期:  2025-04-14

目录

    /

    返回文章
    返回