PHYLOGENY OF JUNCAGINACEAE IN CHINA BASED ON COMPLETE CHLOROPLAST GENOME
-
摘要:
为探究水麦冬科(Juncaginaceae)系统发育上存在的争议, 并丰富水麦冬科物种的遗传信息资源, 研究对海韭菜(Triglochin maritima)和水麦冬(Triglochin palustris)叶绿体基因组进行测序、组装、注释和特征分析, 并重建其与相关类群的系统发育关系。海韭菜和水麦冬叶绿体基因组呈环状四分体结构, 全长分别为155881和155803 bp, 分别鉴定出了57和60个SSRs及49个长重复序列。海韭菜和水麦冬叶绿体基因组偏好使用以A/U结尾的密码子。系统发育分析表明水麦冬科两个物种聚为一支, 与其近缘类群遗传距离较远, 于78.67 MYA与眼子菜属(Potamogeton)、虾海藻属(Phyllospadix)、大叶藻属(Zostera)、二药藻属(Halodule)、针叶藻属(Syringodium)、川蔓藻属(Ruppia)构成的分支产生分化。结合物种生境与形态特征支持将水麦冬属上升为水麦冬科。研究将不仅为探究水麦冬科叶绿体基因组结构进化奠定理论基础, 也能为水麦冬科及相关类群物种保护和科学利用提供理论依据。
Abstract:To investigate the phylogeny of Juncaginaceae and enrich its genetic resources, the complete chloroplast genomes of Triglochin maritima and Triglochin palustris were sequenced, assembled, annotated, and characterized. In addition, the phylogenetic relationships of Juncaginaceae and closely related taxa were reconstructed. The results indicate that the chloroplast genomes of Triglochin maritima and Triglochin palustris exhibit circular structure with lengths of 155881 and 155803 bp, respectively, containing 57 and 60 SSRs and all 49 long repetitive sequences. In addition, Both genomes also show a preference for codons ending in A/U. Phylogenetic analysis shows that these two Juncaginaceae species form a single branch with a significant genetic distance from closely related taxa, diverging from Potamogeton, Phyllospadix, Zostera, Halodule, Syringodium, and Ruppia approximately 78.67 million years ago. In conjunction with the distributional habitat differences, this study supports the elevation of Triglochin to family status within Juncaginaceae. This study provides a theoretical foundation for investigating chloroplast genome structure evolution of Juncaginaceae and offers valuable insights for species conservation and scientific utilization of Juncaginaceae and its related taxa.
-
Keywords:
- Juncaginaceae /
- Chloroplast genomes characteristics /
- Phylogeny /
- Divergence time
-
-
表 1 海韭菜叶绿体基因组注释基因
Table 1 Genes contained of Triglochin maritima chloroplast genome
基因功能Gene function 基因类型Gene type 基因名称Gene name 光合作用相关基因
Genes for photosynthesis光系统Ⅰ Photosystem Ⅰ psaA, psaB, psaC, psaI, psaJ 光系统ⅡPhotosystem Ⅱ psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN(pbf1), psbT, psbZ 细胞色素b/f 复合物Cytochrome b/f complex petA, petB*, petD*, petG, petL, petN ATP 合成酶ATP synthase atpA, atpB, atpE, atpF*, atpH, atpI NADH 脱氢酶NADH dehydrogenase ndhA*, ndhB*(2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK 二磷酸核酮糖羧化酶大亚基Rubisco large subunit rbcL 自我复制Self-replication 核糖体RNA Ribosomal RNAs rrn16(2), rrn23(2), rrn4.5(2), rrn5(2) RNA 聚合酶亚基Subunits of RNA polymerase rpoA, rpoB, rpoC1*, rpoC2 核糖体小亚基(SSU)Small subunit of rubisco rps11, rps12**(2), rps14, rps15, rps16*, rps18, rps19, rps2, rps3, rps4, rps7(2), rps8 核糖体大亚基(LSU)Large subunit of rubisco rpl14, rpl16*, rpl2*(2), rpl20, rpl22, rpl23(2), rpl32, rpl33, rpl36 转运RNA Transfer RNAs trnA-UGC*(2), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC, trnG-UCC*, trnH-GUG, trnI-CAU(2), trnI-GAU*(2), trnK-UUU*, trnL-CAA(2), trnL-UAA*, trnL-UAG, trnM-AUG, trnN-GUU(2), trnP-UGG, trnQ-UUG, trnR-ACG(2), trnR-UCU, trnS-GCU, trnS-UCC, trnS-UGA, trnT-ACA, trnT-GGU, trnV-GAC(2), trnV-UAC*, trnW-CCA, trnY-GUA, trnfM-CAU 其他基因Other genes 成熟酶Maturase matK 被膜蛋白Envelop membrane protein cemA(2) 乙酰辅酶A羧化酶Acetyl-CoA carboxylase accD c-型细胞色素合成基因
c-type cytochrome synthesis geneccsA 蛋白酶Protease clpP1** 转录启动因子Transcription promoter infA 未知功能基因
Unknown function genes假定的保守叶绿体开放阅读框
Conserved hypothetical chloroplast Reading Framesycf1, ycf2(2), ycf3(pafI)**, ycf4(pafII) 注: Gene*. 此基因含有一个内含子; Gene**. 此基因含有两个内含子; Gene(2). 基因多拷贝数Note: Gene*. Gene with one intron; Gene**. Gene with two introns; Gene(2). Number of copies of multi-copy genes 表 2 水麦冬科叶绿体基因组简单重复序列
Table 2 Simple repeat sequences of chloroplast genomes of Juncaginaceae
重复类型
Repetitive type重复碱基
Repetitive
bases数量
Repeat最大重复单元
Maximum
repeat size单核苷酸重复
Single-nucleotide repeatA 24/30 16/15 C 1/1 10/10 G 1/0 11/0 T 26/25 15/18 二核苷酸重复
Dinucleotide repeatAT 3/1 7/7 TA 2/3 8/6 注: “/”前为海韭菜核苷酸重复数量或最大重复单元, 后为水麦冬核苷酸重复数量或最大重复单元Note: “/” is preceded by the repeats or maximum repeat size of nucleotide repeats in Triglochin maritima, followed by the repeats or maximum repeat size of nucleotide repeats in Triglochin palustris -
[1] 陈之端, 路安民, 刘冰, 等. 中国维管植物生命之树 [M]. 北京: 科学出版社, 2020: 179-182.] Chen Z D, Lu A M, Liu B, et al. Tree of Life for Chinese Vascular Plants [M]. Beijing: Science Press, 2020: 179-182. [
[2] 曾桂芳. 中国植物志 第八卷 [M]. 北京: 科学出版社, 1992: 40-62.] Zeng G F. Flora of China Vol. 8 [M]. Beijing: Science Press, 1992: 40-62. [
[3] 吴征镒. 中国被子植物科属综论 [M]. 北京: 科学出版社, 2003: 185-197.] Wu Z Y. The Families and Genera of Angiosperms in China a Comprehensive Analysis [M]. Beijing: Science Press, 2003: 185-197. [
[4] 栗岳洲, 付江涛, 余冬梅, 等. 寒旱环境盐生植物根系固土护坡力学效应及其最优含根量探讨 [J]. 岩石力学与工程学报, 2015, 34(7): 1370-1383.] Li Y Z, Fu J T, Yu D M, et al. Mechanical effects of halophytes roots and optimal root content for slope protection in cold and arid environment [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1370-1383. [
[5] Buzgo M, Soltis D, Soltis P, et al. Perianth development in the basal monocot Triglochin maritima (Juncaginaceae) [J]. Aliso, 2006, 22(1): 107-125. doi: 10.5642/aliso.20062201.09
[6] Cronquist A J. The Evolution and Classification of Flowering Plants [M]. Columbia: Columbia University Press, 1868: 329-337.
[7] Group T A P. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II [J]. Botanical Journal of the Linnean Society, 2003, 141(4): 399-436. doi: 10.1046/j.1095-8339.2003.t01-1-00158.x
[8] 中国科学院北京植物研究所. 中国高等植物图鉴-第五册 [M]. 北京: 科学出版社, 1976: 6-17.] Institute of Botany. Iconographia Gormophytorum Sinicorum Tomus V [M]. Beijing: Science Press, 1976: 6-17. [
[9] Glawe D A, Dugan F M, Liu Y, et al. First record and characterization of a powdery mildew on a member of the Juncaginaceae: Leveillula taurica on Triglochin maritima [J]. Mycological Progress, 2005, 4(4): 291-298. doi: 10.1007/s11557-006-0133-5
[10] James E A, Brown G K, Citroen R, et al. Development of microsatellite loci in Triglochin procera (Juncaginaceae), a polyploid wetland plant [J]. Conservation Genetics Resources, 2011, 3(1): 103-105. doi: 10.1007/s12686-010-9301-7
[11] Mering S V, Kadereit J W. Phylogeny, biogeography and evolution of Triglochin L. (Juncaginaceae)-morphological diversification is linked to habitat shifts rather than to genetic diversification [J]. Molecular Phylogenetics and Evolution, 2015(83): 200-212.
[12] 樊守金, 郭秀秀. 植物叶绿体基因组研究及应用进展 [J]. 山东师范大学学报(自然科学版), 2022, 37(1): 22-31.] Fan S J, Guo X X. Advances in research and application of plant chloroplast genome [J]. Journal of Shandong Normal University (Natural Science), 2022, 37(1): 22-31. [
[13] Luo Y, Ma P F, Li H T, et al. Plastid phylogenomic analyses resolve Tofieldiaceae as the root of the early diverging monocot order alismatales [J]. Genome Biology and Evolution, 2016, 8(3): 932-945. doi: 10.1093/gbe/evv260
[14] Doyle J J, Doyle J L. A rapid DNA isolation proce dure for small quantities of fresh leaf tissue [J]. Phytochemical bulletin, 1987, 19(1): 11-15.
[15] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114-2120. doi: 10.1093/bioinformatics/btu170
[16] Jin J J, Yu W B, Yang J B, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes [J]. Genome Biology, 2020, 21(1): 241. doi: 10.1186/s13059-020-02154-5
[17] Tillich M, Lehwark P, Pellizzer T, et al. GeSeq-versatile and accurate annotation of organelle genomes [J]. Nucleic Acids Research, 2017, 45(W1): W6-W11. doi: 10.1093/nar/gkx391
[18] Zheng S, Poczai P, Hyvönen J, et al. Chloroplot: an online program for the versatile plotting of organelle genomes [J]. Frontiers in Genetics, 2020(11): 576124.
[19] 丁锐, 胡兵, 宗小雁, 等. 杓兰叶绿体基因组密码子偏好性分析 [J]. 林业科学研究, 2021, 34(5): 177-185.] Ding R, Hu B, Zong X Y, et al. Analysis of Codon usage in the chloroplast genome of Cypripedium calceolus [J]. Forest Research, 2021, 34(5): 177-185. [
[20] Zhang D, Gao F, Jakovlić I, et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies [J]. Molecular Ecology Resources, 2020, 20(1): 348-355. doi: 10.1111/1755-0998.13096
[21] Peden J. CodonW version 1.4. 2 [CP]. Nottingham, University of Nottingham, 2005.
[22] 周全, 王璐瑶, 袁庆, 等. 吊灯扶桑叶绿体基因组特征与木槿属系统发育研究 [J]. 草地学报. https://link.cnki.net/urlid/11.3362.S.20241011.1249.006.] Zhou Q, Wang L Y, Yuan Q, et al. Chloroplast genomic characteristics of Hibiscus schizopetalus and phylogenetic relationships of Hibiscus [J]. Acta Agrestia Sinica. https://link.cnki.net/urlid/11.3362.S.20241011.1249.006. [
[23] 杨楠, 王奥, 张子晨, 等. 极小种群植物川柿叶绿体基因组特征与系统发育分析 [J]. 广西植物, 2024, 44(1): 15-29.] doi: 10.11931/guihaia.gxzw202306039 Yang N, Wang A, Zhang Z C, et al. Characteristics of chloroplast genome and phylogenetic analysis of Diospyros sutchuensis with extremely small populations [J]. Guihaia, 2024, 44(1): 15-29. [ doi: 10.11931/guihaia.gxzw202306039
[24] 修志莹, 赵艳玲, 程永琴, 等. 牡荆属叶绿体基因组比较分析及系统发育分析 [J]. 广西植物, 2024, 44(9): 1755-1771.] doi: 10.11931/guihaia.gxzw202307027 Xiu Z Y, Zhao Y L, Cheng Y Q, et al. Comparative analysis of chloroplast genomes and phylogenetic analysis of Vitex [J]. Guihaia, 2024, 44(9): 1755-1771. [ doi: 10.11931/guihaia.gxzw202307027
[25] Grantham R, Gautier C, Gouy M, et al. Codon catalog usage is a genome strategy modulated for gene expressivity [J]. Nucleic Acids Research, 1981, 9 (1): r43-r74.
[26] 马孟莉, 张薇, 孟衡玲, 等. 豆蔻属药用植物叶绿体基因组密码子偏性分析 [J]. 中草药, 2021, 52(12): 3661-3670.] doi: 10.7501/j.issn.0253-2670.2021.12.024 Ma M L, Zhang W, Meng H L, et al. Codon bias analysis of chloroplast genome in medicinal plants of Amomum Roxb [J]. Chinese Traditional and Herbal Drugs, 2021, 52(12): 3661-3670. [ doi: 10.7501/j.issn.0253-2670.2021.12.024
[27] 牛元, 徐琼, 王嵛德, 等. 大花香水月季叶绿体基因组密码子使用偏性分析 [J]. 西北林学院学报, 2018, 33(3): 123-130.] doi: 10.3969/j.issn.1001-7461.2018.03.19 Niu Y, Xu Q, Wang Y D, et al. An analysis on Codon usage bias of chloroplast genome of Rosa odorata var. gigantea [J]. Journal of Northwest Forestry University, 2018, 33(3): 123-130. [ doi: 10.3969/j.issn.1001-7461.2018.03.19
[28] Kurtz S, Choudhuri J V, Ohlebusch E, et al. REPuter: the manifold applications of repeat analysis on a genomic scale [J]. Nucleic Acids Research, 2001, 29(22): 4633-4642. doi: 10.1093/nar/29.22.4633
[29] Beier S, Thiel T, Münch T, et al. MISA-web: a web server for microsatellite prediction [J]. Bioinformatics, 2017, 33(16): 2583-2585. doi: 10.1093/bioinformatics/btx198
[30] Rozas J, Ferrer-Mata A, Sánchez-DelBarrio J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets [J]. Molecular Biology and Evolution, 2017, 34(12): 3299-3302. doi: 10.1093/molbev/msx248
[31] Ma C, Gunther S, Cooke B, et al. Geneious plugins for the access of PlasmoDB and PiroplasmaDB databases [J]. Parasitology International, 2013, 62(2): 134-136. doi: 10.1016/j.parint.2012.11.003
[32] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. doi: 10.1093/molbev/msw054
[33] Nakamura T, Yamada K D, Tomii K, et al. Parallelization of MAFFT for large-scale multiple sequence alignments [J]. Bioinformatics, 2018, 34(14): 2490-2492. doi: 10.1093/bioinformatics/bty121
[34] Kalyaanamoorthy S, Minh B Q, Wong T K F, et al. ModelFinder: fast model selection for accurate phylogenetic estimates [J]. Nature Methods, 2017, 14(6): 587-589. doi: 10.1038/nmeth.4285
[35] Minh B Q, Schmidt H A, Chernomor O, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era [J]. Molecular Biology and Evolution, 2020, 37(5): 1530-1534. doi: 10.1093/molbev/msaa015
[36] Rannala B, Yang Z. Inferring speciation times under an episodic molecular clock [J]. Systematic Biology, 2007, 56(3): 453-466. doi: 10.1080/10635150701420643
[37] Sagulenko P, Puller V, Neher R A. TreeTime: Maximum-likelihood phylodynamic analysis [J]. Virus Evolution, 2018, 4(1): vex042.
[38] 尹明华, 余璐, 周佳慧, 等. 马家柚叶绿体基因组特征及其密码子偏好性分析 [J]. 果树学报, 2024, 41(5): 824-846.] Yin M H, Yu L, Zhou J H, et al. Analysis of the chloroplast genome sequence characteristics and its code usage bias of Citrus maxima (L.) Osbeck‘Majiayou’ [J]. Journal of Fruit Science, 2024, 41(5): 824-846. [
[39] 赖瑞联, 陈瑾, 冯新, 等. 橄榄叶绿体基因组密码子偏好性特征 [J]. 福建农林大学学报(自然科学版), 2022, 51(4): 502-509.] Lai R L, Chen J, Feng X, et al. Codon usage preference of chloroplast genome of Canarium album [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2022, 51(4): 502-509. [
[40] 张晶晶, 袁庆, 魏瑶, 等. 忍冬属囊管组植物叶绿体基因组进化分析 [J]. 中草药, 2024, 55(9): 3085-3097.] Zhang J J, Yuan Q, Wei Y, et al. Evolutionary analysis of chloroplast genomes of Sect. Isika (Lonicera) species [J]. Chinese Traditional and Herbal Drugs, 2024, 55(9): 3085-3097. [
[41] Liu L, Li H, Li J, et al. Chloroplast genome analyses of Caragana arborescens and Caragana opulens [J]. BMC Genomic Data, 2024, 25(1): 16. doi: 10.1186/s12863-024-01202-4
[42] Zhang Y, Ma J, Yang B, et al. The complete chloroplast genome sequence of Taxus chinensis var. mairei (Taxaceae): loss of an inverted repeat region and comparative analysis with related species [J]. Gene, 2014, 540(2): 201-209. doi: 10.1016/j.gene.2014.02.037
[43] 刘庆坡, 谭军, 薛庆中. 籼稻品种93-11同义密码子的使用偏性 [J]. 遗传学报, 2003, 30(4): 335-340.] Liu Q P, Tan J, Xue Q Z. Synonymous Codon usage bias in the rice cultivar 93-11 (Oryza sativa l. ssp. indica) [J]. Acta Genetica Sinica, 2003, 30(4): 335-340. [
[44] Xiao M, Hu X, Li Y, et al. Comparative analysis of Codon usage patterns in the chloroplast genomes of nine forage legumes [J]. Physiology and Molecular Biology of Plants, 2024, 30(2): 153-166. doi: 10.1007/s12298-024-01421-0
[45] Li T, Ma Z, Ding T, et al. Codon usage bias and phylogenetic analysis of chloroplast genome in 36 Gracilariaceae species [J]. Functional & Integrative Genomics, 2024, 24 (2): 45.
[46] Rao A, Chen Z, Wu D, et al. Codon usage bias in the chloroplast genomes of Cymbidium species in Guizhou, China [J]. South African Journal of Botany, 2024(164): 429-437.
[47] Li C, Zhou L, Nie J, et al. Codon usage bias and genetic diversity in chloroplast genomes of Elaeagnus species (Myrtiflorae: Elaeagnaceae) [J]. Physiology and Molecular Biology of Plants, 2023, 29 (2): 239-251.
[48] 杨俏俏, 姜梅, 王立强, 等. 药食两用藠头叶绿体基因组解析、比较基因组学及系统发育研究 [J]. 药学学报, 2019, 54(1): 173-181.] Yang Q Q, Jiang M, Wang L Q, et al. Complete chloroplast genome of Allium chinense: comparative genomic and phylogenetic analysis [J]. Acta Pharmaceutica Sinica, 2019, 54(1): 173-181. [
[49] Schmid R, Kubitzki K K, Kubitzki K K, et al. The families and Genera of vascular plants [J]. Taxon, 2005, 54(2): 574. doi: 10.2307/25065407
[50] 陈曦, 王成善, 黄永建. 白垩纪快速气候变化研究新进展——温室世界中的冰川证据 [J]. 现代地质, 2011, 25(3): 409-418.] doi: 10.3969/j.issn.1000-8527.2011.03.002 Chen X, Wang C S, Huang Y J. Progress in the study of Cretaceous rapid climate change-evidence of glaciation in a greenhouse world [J]. Geoscience, 2011, 25(3): 409-418. [ doi: 10.3969/j.issn.1000-8527.2011.03.002
[51] 李祥辉, 胡修棉, 黄永建, 等. 白垩纪古海洋气候变化及主要问题 [J]. 地球科学进展, 2004, 19(S1): 83-92.] Li X H, Hu X M, Huang Y J, et al. Cretaceous paleo-marine climate change and its main problems [J]. Advances in Earth Science, 2004, 19(S1): 83-92. [