STOCKING DENSITIES ON GROWTH, ANTIOXIDANT ENZYME ACTIVITIES AND INTESTINAL MICROBIOTA OF HYBRID OF CULTER ALBURNUS (♀)×MEGALOBRAMA TERMINALIS (♂) IN IPRA SYSTEM
-
摘要: 为探讨池塘内循环流水养殖(In-pond Raceway Aquaculture, IPRA)太湖鲂鲌幼鱼的合理放养密度, 以初始体重为(5.58±0.45) g的太湖鲂鲌幼鱼为研究对象, 设置3个放养密度: 0.5 (SD1)、1.0 (SD2)、1.5 kg/m3 (SD3), 在养殖第90、第120、第150、第180天采样, 对其生长性能、血清和肝脏抗氧化酶活力进行分析, 实验结束后分析肠道微生物群落组成。生长结果表明: 养殖120d, 当放养密度超过1.0 kg/m3时, 太湖鲂鲌幼鱼的体重和特定生长率(SGR)显著降低(P<0.05), 养殖150—180d, 体重和SGR随着放养密度的升高显著降低(P<0.05)。血清抗氧化酶结果表明: 养殖90d, 太湖鲂鲌血清抗氧化酶的活力随着放养密度的升高而增加, SD3组显著高于SD1组(P<0.05)。养殖150—180d, 血清抗氧化酶的活力随着放养密度的升高而降低, 养殖180d, SD3组抗氧化酶的活力显著低于SD1组(P<0.05)。肝脏抗氧化酶结果表明: 养殖150—180d, 肝脏中抗氧化酶活力随着放养密度的增加而升高, GSH-Px的活力随着放养密度的增加显著升高(P<0.05)。养殖前120d, 丙二醛(MDA)的水平随着放养密度的升高有所降低, 养殖180d, SD2和SD3组的MDA水平显著高于SD1组(P<0.05)。肠道微生物结果表明, 在属水平, 各密度组肠道微生物群落组成发生明显改变, 气单胞菌属(Aeromonas)、假单胞菌属(Pseudomonas)和不动杆菌属(Acinetobacter)等在SD3组的相对丰度显著增加(P<0.05), 而Shannon多样性指数显著降低(P<0.05)。综上, 在试验条件下, 当养殖时间小于120d, 放养密度小于1.0 kg/m3时, 太湖鲂鲌幼鱼的生长和抗氧化能力未受显著影响, 建议放养密度小于1.0 kg/m3; 当养殖时间为150—180d, 放养密度大于0.5 kg/m3时, 放养密度对太湖鲂鲌幼鱼的生长产生了抑制, 肠道微生物群落组成中条件致病菌显著增加、多样性指数显著降低, 建议放养密度小于0.5 kg/m3。Abstract: This experiment was conducted to evaluate the appropriate stocking density of a new hybrid strain of (♀Culter alburnus) × (♂Megalobrama terminalis) [initial body weight of (5.58±0.45) g] for in-pond raceway aquaculture (IPRA) system. The new hybrid strains were farmed in three stocking densities of 0.5 (SD1), 1.0 (SD2) and 1.5 kg/m3 (SD3). The growth and antioxidant enzyme activities were analyzed on 90, 120, 150 and 180 days while the intestinal microbiota composition was analysed when the experiment finished. Growth results showed that the body weight and specific growth rate (SGR) decreased significantly when stocking density was above 1.0 kg/m3 on 120 days (P<0.05). In the day of 150—180, indices of SGR and body weight decreased significantly with the increasing of rearing density (P<0.05). Antioxidant enzyme activities in serum increased with the increasing of stocking density on 90 days, and fish farmed at SD3 had significantly higher antioxidant enzyme activities than group of SD1 (P<0.05). In contrast, antioxidant enzyme activities in serum decreased with the increasing of stocking density in the day of 150—180, and the activities of catalase (CAT) and total antioxidant capacity (T-AOC) were significant lower in the group of SD3 than group of SD1 (P<0.05). Antioxidant enzyme activities in liver increased with increasing stocking density in the day of 150—180, and values of GSH-Px decreased significantly with the increasing of stocking density (P<0.05). MDA level decreased with increasing stocking density before the day of 120, whereas fish farmed at SD2 and SD3 groups had significant higher MDA values than the SD1 group on 180 days. The intestinal microbiota results demonstrated that microbiota community changed in genus level obviously, and the relative abundances of pathogenic genus such as Aeromonas, Pseudomonas and Acinetobacter increased while Shannon diversity indices decreased significantly in group of SD3 (P<0.05). In conclusion, when culturing days below 120, the stocking density of SD2 had no great effect on the growth and antioxidant capacity, and the suitable stocking density is suggested below 1.0 kg/m3. When culturing time extends to 150 days, the stocking density of SD1 would inhibit growth and increase the relative abundances of pathogenic genus and decrease the Shannon diversity index of intestine microbiota, therefore 0.5 kg/m3 is suggested as an appropriate density.
-
-
表 1 不同放养密度组太湖鲂鲌的生长参数(平均值±标准误, n=30)
Table 1 Growth parameters of hybrid strain at different stocking densities (mean±SE, n=30)
时间Time 组别Group 体重BW (g) 肥满度CF (g/cm3) 肝体比HIS 脏体比VSI 成活率Survival rate (%) 90d SD1 81.44±1.81b 1.47±0.14 1.13±0.02 7.01±0.10 100 SD2 77.12±2.18b 1.45±0.17 1.11±0.02 6.84±0.11 100 SD3 68.04±1.84a 1.44±0.17 1.10±0.03 6.79±0.11 100 120d SD1 136.20±3.48b 1.47±0.02 1.24±0.02 7.10±0.11 100 SD2 133.49±4.52b 1.49±0.02 1.21±0.03 6.97±0.22 100 SD3 109.81±3.54a 1.52±0.01 1.16±0.02 6.86±0.14 100 150d SD1 247.05±5.09c 1.57±0.01b 1.15±0.03b 7.44±0.15b 100 SD2 207.39±4.89b 1.52±0.01a 1.05±0.03a 6.87±0.10a 100 SD3 148.88±4.20a 1.51±0.02a 1.03±0.02a 6.57±0.10a 100 180d SD1 400.34±10.26c 1.57±0.01b 1.06±0.04 6.88±0.60b 99.83 SD2 286.91±8.99b 1.50±0.02a 1.01±0.02 6.23±0.34a 97.67 SD3 206.30±6.59a 1.47±0.01a 0.98±0.02 6.15±0.37a 96.51 注: 同一时间同列数据肩标不同小写字母表示差异显著(P<0.05), 下同Note: In the same column of the same time, values with different small letter superscripts are significantly different (P<0.05), the same applies below 表 2 各实验组太湖鲂鲌血清抗氧化酶活力(平均值±标准误, n=3)
Table 2 Antioxidant enzyme activities in serum of hybrid strain at different stocking densities (mean±SE, n=3)
时间
Time (d)组别
GroupT-SOD
(U/mL)CAT
(U/mL)T-AOC
(U/mL)PO
(ng/mL)90 SD1 361.44±
21.55a7.84±
0.14a1.65±
0.07a8.98±
0.12aSD2 418.41±
10.03ab15.52±
0.61b2.40±
0.08b10.13±
0.44aSD3 470.98±
18.55b15.67±
0.97b2.64±
0.25b12.51±
0.39b120 SD1 364.29±
17.5914.36±
0.54b2.06±
0.0116.46±
0.78aSD2 393.45±
24.6112.92±
0.25a2.10±
0.0517.32±
0.30abSD3 326.46±
24.3613.51±
0.33ab2.14±
0.0218.51±
0.45b150 SD1 489.47±
10.57c21.27±
0.80b6.77±
0.7426.84±
0.64bSD2 449.83±
10.81b20.29±
0.44ab6.51±
0.0929.81±
0.88cSD3 331.94±
6.36a18.05±
0.67a5.51±
0.2624.49±
0.40a180 SD1 472.75±
27.93b15.67±
0.97c5.14±
0.02b24.94±
0.52cSD2 423.18±
21.10b8.14±
0.49b3.15±
0.02a19.36±
0.67bSD3 265.46±
10.02a5.52±
0.06a3.12±
0.02a14.48±
1.01a表 3 各实验组太湖鲂鲌肝脏抗氧化酶活力(平均值±标准误, n=3)
Table 3 Antioxidant enzyme activities in liver of hybrid strain at different stocking densities (mean±SE, n=3)
时间Time(d) 组别Group T -SOD
(U/mg prot)CAT
(U/mg prot)GSH-PX
(U/mg prot)MDA
(nmol/mg
prot)90 SD1 100.88±
4.1010.15±
0.51239.53±
2.49a3.22±
0.06bSD2 103.08±
5.1411.53±
0.54241.04±
4.95ab2.98±
0.04aSD3 100.02±
5.0611.94±
0.95255.71±
4.99b2.95±
0.07a120 SD1 102.23±
2.39a9.67±
0.60a300.13±
1.98a1.97±
0.06bSD2 127.86±
3.84b12.93±
0.96b314.44±
3.50b1.79±
0.04bSD3 130.89±
4.62b14.40±
0.39b327.07±
5.33b1.40±
0.09a150 SD1 80.26±
3.21a9.71±
0.11a215.21±
0.89a1.09±
0.10SD2 98.17±
4.61b11.46±
0.27b239.08±
3.69b1.14±
0.06SD3 103.42±
2.66b11.57±
0.70b275.91±
1.14c1.19±
0.04180 SD1 120.17±
3.6610.53±
0.92a247.38±
1.23a1.29±
0.07aSD2 124.02±
4.5111.86±
0.32a306.62±
4.75b1.53±
0.07bSD3 124.75±
4.7814.53±
0.49b327.65±
2.91c1.67±
0.05b表 4 肠道微生物样本的多样性指数(平均值±标准误, n=3)
Table 4 Alpha-diversity indexes of gut microbiota in all of samples (mean±SE, n=3)
样本
Sample香农指数
Shannon index辛普森指数
Simpson index覆盖率
Good coverageSD1 4.71±0.11a 0.05±0.00c 0.99±0.00 SD2 3.58±0.06b 0.15±0.02b 0.99±0.00 SD3 2.79±0.07c 0.24±0.01a 0.99±0.00 -
[1] 王朋, 徐钢春, 徐跑. 大口黑鲈池塘工程化循环水养殖系统的溶解氧时空变化及菌群响应特征 [J]. 水生生物学报, 2019, 43(6): 1290-1299. doi: 10.7541/2019.153 Wang P, Xu G C, Xu P. Temporal and spatial variation of dissolved oxygen and reaction of bacterial community in in-pond raceway system (iprs) of largemouth bass (Micropterus salmoides) [J]. Acta Hydrobiologica Sinica, 2019, 43(6): 1290-1299. doi: 10.7541/2019.153
[2] Wang Y Y, Xu G C, Nie Z J, et al. Growth performance of bluntnose black bream, channel catfish, yellow catfish, and largemouth bass reared in the in-pond raceway recirculating culture system [J]. North American Journal of Aquaculture, 2019, 81(2): 153-159. doi: 10.1002/naaq.10082
[3] 冯双双, 周凡, 娄剑锋, 等. 池塘循环流水跑道养殖大口黑鲈的适宜密度 [J]. 贵州农业科学, 2020, 48(2): 70-73. Feng S S, Zhou F, Lou J F, et al. Study on suitable density of Micropterus salmoides under in-pond raceway aquaculture system (IPAS) [J]. Guizhou Agricultural Sciences, 2020, 48(2): 70-73.
[4] 马文君, 丁雪燕, 周凡, 等. 浙江省池塘内循环流水“跑道”养殖模式发展现状及建议 [J]. 中国渔业经济, 2019, 37(5): 76-81. doi: 10.3969/j.issn.1009-590X.2019.05.012 Ma W J, Ding X Y, Zhou F, et al. Development status and countermeasures of in-pond raceway aquaculture in Zhejiang Province [J]. Chinese Fisheries Economics, 2019, 37(5): 76-81. doi: 10.3969/j.issn.1009-590X.2019.05.012
[5] 皮杰, 付莹, 余建波, 等. 湖南省池塘内循环流水养殖模式的推广应用 [J]. 水产养殖, 2020, 41(8): 46-49. doi: 10.3969/j.issn.1004-2091.2020.08.014 Pi J, Fu Y, Yu J B, et al. The application and extension of in-pond raceway aquaculture in Hunan province [J]. Aquaculture, 2020, 41(8): 46-49. doi: 10.3969/j.issn.1004-2091.2020.08.014
[6] 张雷鸣, 原居林, 倪蒙, 等. 两种养殖模式水质因子及微生物群落结构研究 [J]. 江西农业大学学报, 2020, 42(3): 537-545. Zhang L M, Yuan J L, Ni M, et al. A study on water quality factors and microbial community structure in two aquaculture models [J]. Acta Agriculturae Universitatis Jiangxiensis, 2020, 42(3): 537-545.
[7] 刘梅, 宓国强, 郭建林, 等. 池塘内循环流水养殖模式对黄颡鱼生长性能、形体指标、血清生化指标及肌肉营养成分的影响 [J]. 动物营养学报, 2019, 31(4): 1704-1717. doi: 10.3969/j.issn.1006-267x.2019.04.028 Liu M, Mi G Q, Guo J L, et al. Effects of internal-circulation pond aquaculture model on growth performance, morphological indices, serum biochemical indices and muscle nutritional components of Pelteobagrus fulvidraco [J]. Chinese Journal of Animal Nutrition, 2019, 31(4): 1704-1717. doi: 10.3969/j.issn.1006-267x.2019.04.028
[8] 董立学, 喻亚丽, 毛涛, 等. 池塘内循环流水养殖斑点叉尾鮰肌肉品质的分析 [J]. 中国水产科学, 2021, 28(7): 914-924. Dong L X, Yu Y L, Mao T, et al. Analysis of muscle quality variations of Ictalurus punctatus reared in internal-circulation pond aquaculture [J]. Journal of Fishery Sciences of China, 2021, 28(7): 914-924.
[9] Jørgensen E H, Christiansen J S, Jobling M. Effects of stocking density on food intake, growth performance and oxygen consumption in Arctic charr (Salvelinus alpinus) [J]. Aquaculture, 1993, 110(2): 191-204. doi: 10.1016/0044-8486(93)90272-Z
[10] 刘宝良, 雷霁霖, 贾睿, 等. 养殖密度对鱼类福利影响研究进展 [J]. 中国工程科学, 2014, 16(9): 100-105. doi: 10.3969/j.issn.1009-1742.2014.09.015 Liu B L, Lei J L, Jia R, et al. A review: the influence of stocking density on fish welfare [J]. Engineering Sciences, 2014, 16(9): 100-105. doi: 10.3969/j.issn.1009-1742.2014.09.015
[11] Wang Y Y, Xu P, Nie Z J, et al. Growth, digestive enzymes activities, serum biochemical parameters and antioxidant status of juvenile genetically improved farmed tilapia (Oreochromis niloticus) reared at different stocking densities in in-pond raceway recirculating culture system [J]. Aquaculture Research, 2019, 50(4): 1338-1347. doi: 10.1111/are.14010
[12] 杨震飞, 刘波, 徐跑, 等. 池塘工业化跑道式循环水高密度应激对团头鲂组织抗氧化酶及其Nrf2-Keap1信号通路的影响 [J]. 中国水产科学, 2019, 26(2): 232-241. doi: 10.3724/SP.J.1118.2019.18302 Yang Z F, Liu B, Xu P, et al. Effects of crowding stress on gene expression of antioxidant enzymes and Nrf2-Keap1signaling pathway in different tissues of blunt snout bream (Megalobrama amblycephala) for in-pond raceway aquaculture systems [J]. Journal of Fishery Sciences of China, 2019, 26(2): 232-241. doi: 10.3724/SP.J.1118.2019.18302
[13] 周恩华, 张建, 李乃顺. 利用池塘循环流水技术进行不同密度养殖草鱼的对比试验 [J]. 中国水产, 2019(7): 85-87. Zhou E H, Zhang J, Li N S, et al. The comparative experiment of grass carp culturing in different density in in-pond recirculating aquaculture [J]. Chinese Aquaculture, 2019(7): 85-87.
[14] 蒋文枰, 贾永义, 刘士力, 等. 鲌鲂F1、F2及其亲本肌间骨的比较分析 [J]. 水生生物学报, 2016, 40(2): 277-286. Jiang W P, Jia Y Y, Liu S L, et al. Comparative analysis of intermuscular bones in hybrid f1, f2 of (C. alburnus) (♀)×(M. amblycephala) (♂) and its parents [J]. Acta Hydrobiologica Sinica, 2016, 40(2): 277-286.
[15] 李倩, 郭建林, 王雨辰, 等. 池塘内循环流水养殖下太湖鲂鲌(翘嘴鲌(♀)×三角鲂(♂))肠道微生物群落变化的研究 [J]. 海洋与湖沼, 2020, 51(2): 364-370. doi: 10.11693/hyhz20191200266 Li Q, Guo J L, Wang Y C, et al. On changes of intestinal microbiota of a new hybrid strain of (female Culter alburnus) × (male Megalobrama terminalis) reared in in-pond raceway aquaculture system [J]. Oceanologia et Limnologia Sinica, 2020, 51(2): 364-370. doi: 10.11693/hyhz20191200266
[16] 刘加林, 贾永义, 刘士力, 等. 太湖鲂鲌F2代GH基因结构、系统发育和表达特征 [J]. 海洋与湖沼, 2020, 51(6): 1440-1451. doi: 10.11693/hyhz20200100006 Liu J L, Jia Y Y, Liu S L, et al. Structure, phylogeny and tissue distribution of GH in Culter alburnus♀ × Megalobrama terminalis♂ [J]. Oceanologia et Limnologia Sinica, 2020, 51(6): 1440-1451. doi: 10.11693/hyhz20200100006
[17] 姜建湖, 沈斌乾, 陈建明, 等. “太湖鲂鲌”及其亲本肌肉营养成分的分析与评价 [J]. 水生生物学报, 2019, 43(2): 388-394. doi: 10.7541/2019.048 Jiang J H, Shen B Q, Chen J M, et al. Analysis and evaluation of nutritional composition in muscle of hybrid f1 of female Culter alburnus × male Megalobrama terminalis and its parent fish [J]. Acta Hydrobiologica Sinica, 2019, 43(2): 388-394. doi: 10.7541/2019.048
[18] 陈建明, 黄爱霞, 田儒品, 等. 饲料蛋白质水平对太湖鲂鲌幼鱼生长性能、体组成和消化酶活性的影响 [J]. 动物营养学报, 2019, 31(10): 4843-4851. Chen J M, Huang A X, Tian R P, et al. Effects of dietary protein level on growth performance, body composition and digestive enzyme activities of juvenile hybrid of Culter alburnus (♀) × Megalobrama terminalis (♂) [J]. Chinese Journal of Animal Nutrition, 2019, 31(10): 4843-4851.
[19] Wang Y Y, Ni J J, Nie Z J, et al. Effects of stocking density on growth, serum parameters, antioxidant status, liver and intestine histology and gene expression of largemouth bass (Micropterus salmoides) farmed in the in-pond raceway system [J]. Aquaculture Research, 2020, 51(12): 5228-5240. doi: 10.1111/are.14862
[20] 曹阳, 李二超, 陈立侨, 等. 养殖密度对俄罗斯鲟幼鱼的生长、生理和免疫指标的影响 [J]. 水生生物学报, 2014, 38(5): 968-974. doi: 10.7541/2014.143 Cao Y, Li E C, Chen L Q, et al. Effects of stocking density on growth, physiological and immune responses in juvenile Russian sturgeon [J]. Acta Hydrobiologica Sinica, 2014, 38(5): 968-974. doi: 10.7541/2014.143
[21] 姚清华, 颜孙安, 郭清雄, 等. 养殖密度对瓦氏黄颡鱼幼鱼生长品质和生化指标的影响 [J]. 福建农业学报, 2018, 33(7): 670-675. doi: 10.19303/j.issn.1008-0384.2018.07.004 Yao Q H, Yan S A, Guo Q X, et al. Effects of stocking density on growth performance and parameters of Pelteobagrus vachelli juveniles [J]. Fujian Journal of Agricultural Sciences, 2018, 33(7): 670-675. doi: 10.19303/j.issn.1008-0384.2018.07.004
[22] 任华, 蓝泽桥, 王一明, 等. 循环水养殖系统中放养密度对杂交鲟仔鱼摄食行为、生长和存活的影响 [J]. 渔业现代化, 2013, 40(2): 12-16. doi: 10.3969/j.issn.1007-9580.2013.02.003 Ren H, Lan Z Q, Wang Y M, et al. Effect of different farming densities to the feeding behavior, growth and survival of sturgeon juvenile [J]. Fishery Modernization, 2013, 40(2): 12-16. doi: 10.3969/j.issn.1007-9580.2013.02.003
[23] 宋志飞, 温海深, 李吉方, 等. 养殖密度对流水养殖系统中俄罗斯鲟幼鱼生长的影响 [J]. 水产学报, 2014, 38(6): 835-842. Song Z F, Wen H S, Li J F, et al. The influence of stocking density on the growth performance of juvenile Russian sturgeon (Acipenser gueldenstaedti) in flowing water cultivation [J]. Journal of Fisheries of China, 2014, 38(6): 835-842.
[24] 洪磊, 张秀梅. 环境胁迫对鱼类生理机能的影响 [J]. 海洋科学进展, 2004, 22(1): 114-121. doi: 10.3969/j.issn.1671-6647.2004.01.017 Hong L, Zhang X M. Effects of environmental stress on physiological function of fish [J]. Advances in Marine Science, 2004, 22(1): 114-121. doi: 10.3969/j.issn.1671-6647.2004.01.017
[25] 程佳佳, 李吉方, 温海深, 等. 养殖密度对杂交鲟幼鱼生长、肌肉组分和血液生理生化指标的影响 [J]. 中国水产科学, 2015, 22(3): 433-441. Cheng J J, Li J F, Wen H S, et al. Effect of stocking density on growth, muscle composition and blood parameters of hybrid sturgeon juveniles [J]. Journal of Fishery Sciences of China, 2015, 22(3): 433-441.
[26] 房子恒, 田相利, 董双林, 等. 不同盐度下半滑舌鳎幼鱼非特异性免疫酶活力分析 [J]. 中国海洋大学学报(自然科学版), 2014, 44(5): 46-53. doi: 10.16441/j.cnki.hdxb.2014.05.007 Fang Z H, Tian X L, Dong S L, et al. Analysis of the activity of non-specific immune enzymes of juvenile tongue soles cultured in various salinities [J]. Periodical of Ocean University of China, 2014, 44(5): 46-53. doi: 10.16441/j.cnki.hdxb.2014.05.007
[27] Casillas E, Myers M, Ames W E. Relationship of serum chemistry values to liver and kidney histopathology in English sole (Parophrys vetulus) after acute exposure to carbon tetrachloride [J]. Aquatic Toxicology, 1983, 3(1): 61-78. doi: 10.1016/0166-445X(83)90007-3
[28] Söderhäll K, Aspán A, Duvic B. The pro-PO-system and associated proteins; role in cellular communication in arthropods [J]. Research in Immunology, 1990, 141(9): 896-907. doi: 10.1016/0923-2494(90)90190-A
[29] 陆羚子, 王岩, Mehadi H. pH水平和昼夜变化对池塘养殖凡纳滨对虾成活率的影响 [J]. 水产学报, 2020, 44(7): 1086-1099. Lu L Z, Wang Y, Mehadi H. Effect of pH variation on survival of Litopenaeus vannamei reared in ponds and its physiological mechanisms [J]. Journal of Fisheries of China, 2020, 44(7): 1086-1099.
[30] 尹飞, 孙鹏, 彭士明, 等. 低盐度胁迫对银鲳幼鱼肝脏抗氧化酶、鳃和肾脏ATP酶活力的影响 [J]. 应用生态学报, 2011, 22(4): 1059-1066. doi: 10.13287/j.1001-9332.2011.0107 Yin F, Sun P, Peng S M, et al. Effects of low salinity stress on the antioxidant enzyme activities in juvenile Pampus argenteus liver and the APTase activities in its gill and kidney [J]. Chinese Journal of Applied Ecology, 2011, 22(4): 1059-1066. doi: 10.13287/j.1001-9332.2011.0107
[31] 孙鹏, 尹飞, 彭士明, 等. 盐度对条石鲷幼鱼肝脏抗氧化酶活力的影响 [J]. 海洋渔业, 2010, 32(2): 154-159. doi: 10.3969/j.issn.1004-2490.2010.02.007 Sun P, Yin F, Peng S M, et al. Effects of salinity on the activity of antioxidant enzymes in livers of juvenile Oplegnathus fasciatus [J]. Marine Fisheries, 2010, 32(2): 154-159. doi: 10.3969/j.issn.1004-2490.2010.02.007
[32] 边平江, 邱成功, 徐善良, 等. 盐度对暗纹东方鲀生长、非特异性免疫和抗氧化酶活力的影响 [J]. 水生生物学报, 2014, 38(1): 108-114. doi: 10.7541/2014.14 Bian P J, Qiu C G, Xu S L, et al. Effects of salinity on growth, activity of non-specific immune and antioxidant enzymes in obscure puffer Takifugu obscures [J]. Acta Hydrobiologica Sinica, 2014, 38(1): 108-114. doi: 10.7541/2014.14
[33] 王尧, 陈晨光, 张洁若, 等. 养殖密度对厚颌鲂幼鱼生长、饲料利用及肠道抗氧化应激性能的影响 [J]. 渔业科学进展, 2022, 43(1): 106-114. doi: 10.19663/j.issn2095-9869.20200920001 Wang Y, Chen C G, Zhang J R, et al. Effects of stocking density on growth, feed utilization and intestinal oxidative stress resistance of juvenile Megalobrama pellegrini (Tchang, 1930) [J]. Progress in Fishery Sciences, 2022, 43(1): 106-114. doi: 10.19663/j.issn2095-9869.20200920001
[34] Zheng Y F, Yu M, Liu Y, et al. Comparison of cultivable bacterial communities associated with Pacific white shrimp (Litopenaeus vannamei) larvae at different health statuses and growth stages [J]. Aquaculture, 2016(451): 163-169. doi: 10.1016/j.aquaculture.2015.09.020
[35] Qi X Z, Xue M Y, Yang S B, et al. Ammonia exposure alters the expression of immune-related and antioxidant enzymes-related genes and the gut microbial community of crucian carp (Carassius auratus) [J]. Fish & Shellfish Immunology, 2017(70): 485-492.
[36] Shin N R, Whon T W, Bae J W. Proteobacteria: microbial signature of dysbiosis in gut microbiota [J]. Trends in Biotechnology, 2015, 33(9): 496-503. doi: 10.1016/j.tibtech.2015.06.011
[37] 王燚纬. 低氧、养殖密度对团头鲂生理生化指标和组织结构的影响 [D]. 上海: 上海海洋大学, 2019: 25-26. Wang Y W. Effects of hypoxia and culture density on physiological and biochemical indexes and tissue structure of Megalobrama amblycephala [D]. Shanghai: Shanghai Ocean University, 2019: 25-26.
[38] 张美玲, 单承杰, 杜震宇. 益生菌与鱼类肠道健康研究进展 [J]. 水产学报, 2021, 45(1): 147-157. Zhang M L, Shan C J, Du Z Y. Research advances on probiotics and fish gut health [J]. Journal of Fisheries of China, 2021, 45(1): 147-157.