DIETARY ZINC REQUIREMENT OF JUVENILE MONOPTERUS ALBUS
-
摘要:
为探究黄鳝(Monopterus albus)对锌的适宜需求量, 以鱼粉和豆粕为蛋白源, 鱼油和豆油为脂肪源配制基础实验饲料, 以甘氨酸锌(Zn2+≥21%)为锌源在基础饲料中分别添加0、10、20、40、80、160和320 mg/kg的锌, 制成7种不同锌水平的饲料(实际锌含量分别为48.24、60.79、70.25、88.04、123.88、204.35和381.65 mg/kg干物质), 饲喂初始体重为(23.17±0.04) g的黄鳝 60d, 以增重率、特定生长率、脊椎骨锌含量和血清碱性磷酸酶活性等指标综合评价黄鳝锌的需求量。结果表明: (1)各组的增重率、特定生长率随饲料锌水平呈先上升后下降趋势, 存活率呈下降趋势, 60.79组和70.25 mg/kg组黄鳝的增重率和特定生长率较高, 381.65 mg/kg组增重率、特定生长率和存活率均最低且显著低于48.24—70.25 mg/kg组, 以增重率和特定生长率为评价指标, 黄鳝幼鳝对锌的需求量分别为56.85和56.79 mg/kg。(2)随着饲料锌水平的升高, 全鱼粗蛋白含量呈先上升后下降趋势, 70.25 mg/kg组最高, 粗脂肪呈先下降后平缓的趋势, 48.24 mg/kg组显著高于其他组, 全鱼锌含量升高、锌沉积率呈先上升后下降的趋势, 黄鳝脊椎骨、肝脏、皮肤和肾脏中锌含量显著增加, 脊椎骨锌含量呈先显著上升后平缓的现象; 肌肉中锌含量变化不明显; 全鱼铁、锰、铜、骨铁和骨锰含量呈下降趋势, 骨磷和骨钙含量呈先上升后下降趋势, 以脊椎骨锌含量为评价指标, 黄鳝对锌的需求量为81.01 mg/kg。(3)随着饲料锌水平的升高, 黄鳝血清碱性磷酸酶活力和白蛋白含量呈先上升后下降的趋势, 在88.04 mg/kg组最高且显著高于204.35—381.65 mg/kg组, 以血清碱性磷酸酶活力为评价指标, 黄鳝幼鳝对锌的需求量为76.73 mg/kg。溶菌酶活力呈先上升后下降的趋势, 60.79 mg/kg组显著高于其他组, 381.65 mg/kg组血清谷丙转氨酶活性最高且显著高于48.24—70.25 mg/kg组。综合饲料锌水平对黄鳝生长性能、体成分、组织锌沉积和血清生化指标的影响, 黄鳝饲料中适宜的锌需求量为56.79—81.01 mg/kg。黄鳝皮肤、脊椎骨和肝脏较肌肉更易沉积锌。
Abstract:In order to determine the optimal feed zinc requirement for Monopterus albus, we formulated basic experimental diets using fish meal and soybean meal as protein sources, and fish oil and soybean oil as fat sources. Seven experimental diet groups were created by sequentially adding glycine zinc as the zinc source to the basic group, resulting in zinc concentrations of 0, 10, 20, 40, 80, 160, 320 mg/kg. Monopterus albus with an initial body weight of (23.17±0.04) g were fed these diets for 60d, resulting in actual zinc contents of 48.24, 60.79, 70.25, 88.04, 123.88, 204.35, and 381.65 mg/kg dry matter, respectively. The zinc demand of Monopterus albus was comprehensively evaluated by weight gain rate, specific growth rate, vertebral bone zinc content and serum alkaline phosphatase activity. The results showed as follows: (1) The weight gain rate and specific growth rate initially increased and then decreased with dietary zinc level. Survival rate exhibited a declining trend. The 60.79 and 70.25 mg/kg groups showed higher weight gain and specific growth rates compared to other groups. The 381.65 mg/kg group had the lowest rates, significantly lower than the 48.24—70.25 mg/kg group. Based on gain rate and specific growth rate, the zinc demand for Monopterus albus was 56.85 and 56.79 mg/kg, respectively. (2) With increasing dietary zinc level, whole fish crude protein initially increased and then decreased, peaking in the 70.25 mg/kg group. Whole fish crude fat exhibited an initial decrease followed by a slowdown, with the 48.24 mg/kg group significantly higher than others. Zinc content in the whole body increased, and zinc deposition rate followed an initial increase and subsequent decrease. The content of zinc in various tissues (vertebrae, liver, skin and kidney) increased significantly, with vertebrae zinc content peaking before leveling off. Bone phosphorus and calcium content increased and then decreased. Considering zinc content in vertebral bone, the zinc demand for Monopterus albus was 81.01 mg/kg. (3) With the increase of dietary zinc level, Monopterus albus exhibited a pattern of initially increasing and subsequently decreasing serum alkaline phosphatase activity and albumin content. The apex of these parameters was observed in the 88.04 mg/kg group, surpassing significantly the range of 204.35—381.65 mg/kg. Utilizing serum alkaline phosphatase activity as the evaluation index, the zinc demand of Monopterus albus juveniles was determined to be 76.73 mg/kg. Lysozyme activity demonstrated an initial rise followed by a decline, with the 60.79 mg/kg group exhibiting a marked superiority over the other groups. The serum alanine aminotransferase activity in the 381.65 mg/kg group reached the highest levels, significantly higher than that in the 48.24—70.25 mg/kg group. In conclusion, considering the effects of dietary zinc levels on growth performance, nutrient composition, tissue znic deposition, and serum biochemical indexes of Monopterus albus, the appropriate zinc demand in the diet ranges from 56.79 to 81.01 mg/kg. Additionally, the skin, spine, and liver of Monopterus albus exhibit higher susceptibility to zinc deposition than muscle.
-
Keywords:
- Growth performance /
- Zinc /
- Tissue zinc deposition /
- Biochemical indicato /
- Monopterus albus
-
-
表 1 实验饲料组成及营养水平(干物质)
Table 1 Composition and nutritional level of experimental feed ingredients (dry matter)
原料Ingredient 组别Group 48.24 60.79 70.25 88.04 123.88 204.35 381.65 鱼粉Fish meal 360 360 360 360 360 360 360 豆粕Soybean meal 150 150 150 150 150 150 150 复合蛋白粉Concentrate protein meal1 160 160 160 160 160 160 160 玉米蛋白粉Corn gluten meal 40 40 40 40 40 40 40 小麦Wheat meal 200 200 200 200 200 200 200 碎米Broken rice 30 30 30 30 30 30 30 磷酸二氢钙Ca(H2PO4)2 15 15 15 15 15 15 15 预混料Premix2 10 10 10 10 10 10 10 鱼油﹕豆油(1﹕1) Fish oil﹕Soybean oil (1﹕1) 30 30 30 30 30 30 30 氯化胆碱Choline chloride 5 5 5 5 5 5 5 甘氨酸锌Gly-Zn 0 0.05 0.10 0.19 0.38 0.76 1.52 合计Total 1000 1000 1000 1000 1000 1000 1000 营养成分Proximate composition (%)3 干物质Dry matter 91.93 91.96 92.25 92.07 91.98 91.93 92.00 粗蛋白CP 49.87 50.07 50.00 49.98 49.81 50.11 49.87 粗脂肪EE 7.42 7.50 7.54 7.53 7.38 7.40 7.42 灰分Ash 11.70 11.82 11.92 12.05 12.04 12.08 12.25 总钙Total calcium 2.38 2.39 2.42 2.49 2.48 2.49 2.45 总磷Total phosphorus 1.47 1.52 1.50 1.51 1.41 1.42 1.46 锌水平Dietary zinc levels (mg/kg) 48.24 60.79 70.25 88.04 123.88 204.35 381.65 注: 1复合蛋白粉主要为虾粉The composite protein powder is mainly shrimp powder; 2预混料为每千克饲料提供 The premix provide the following per kg of diets: VA 6000.0 IU, VD 2000.0 IU, VE 100.0 mg, VK 5.0 mg, VB1 15.0 mg, VB2 15.0 mg, 烟酸niacin 30.0 mg, VB6 10.0 mg, 泛酸 pantothenate acid 25.0 mg, 叶酸folic acid 0.2 mg, VB12 0.03 mg, 生物素 biotin 0.2 mg, 肌醇 inositol 100 mg, VC 200.0 mg(以颗粒饲料表面喷涂的形式添加Added in the form of surface spraying of pellet feed), Fe 150 mg, Mn 20 mg, Cu 35 mg, Co 0.1 mg, I 0.35 mg, Se 0.1 mg, Mg 50 mg, K 50 mg; 3营养成分为实测值 Nutrient composition is measured value 表 2 饲料锌水平对养殖水体Zn、Fe、Mn、Cu含量的影响(平均值±标准误, n=8)
Table 2 Effects of dietary zinc level on the contents of Zn, Fe, Mn and Cu in aquaculture water (mean±SE, n=8)
元素Element (µg/L) 饲料锌水平Dietary zinc levels (mg/kg) 48.24 60.79 70.25 88.04 123.88 204.35 381.65 锌Zn 36.63±1.78a 34.99±1.47a 39.24±2.36a 38.17±1.72a 39.19±2.38a 41.34±2.06a 49.78±2.45b 铁Fe 42.92±1.62 42.59±1.68 43.00±1.48 42.41±1.19 42.16±0.96 42.13±2.00 41.67±0.92 锰Mn 11.20±1.45 10.87±2.24 10.81±1.11 10.86±1.22 12.84±1.90 13.04±2.71 13.07±1.31 铜Cu 24.05±2.85 20.46±1.83 21.02±1.87 22.62±2.07 20.82±2.22 20.67±2.21 17.37±1.18 注: 同一行相同右上角含有相同英文上标字母或无上标表示无显著差异 (P≥0.05), 含有不同英文上标字母表示有显著差异 (P<0.05);下同Note: There is no significant difference in the same upper right corner of the same line with the same English superscript letter or without superscript (P≥0.05), and there is significant difference with different English superscript letter (P<0.05). The same applies below 表 3 饲料锌水平对黄鳝生长性能的影响(平均值±标准误, n=4)
Table 3 Effects of dietary zinc levels on growth performance of Monopterus albus (mean±SE, n=4)
指标Index 饲料锌水平Dietary zinc level (mg/kg) 48.24 60.79 70.25 88.04 123.88 204.35 381.65 初均重IBW (g) 23.20±0.01 23.15±0.06 23.17±0.06 23.20±0.01 23.17±0.06 23.17±0.06 23.20±0.01 末均重FBW (g) 41.20±0.69bcd 43.03±0.82d 42.70±0.87cd 40.55±0.05bcd 40.03±1.08abc 39.70±0.40ab 37.23±0.90a 增重率WGR (%) 77.77±3.06bcd 85.75±3.36d 84.20±3.74cd 74.95±0.05bcd 72.82±4.61bc 71.37±1.93ab 60.57±3.91a 特定生长率SGR (%/d) 0.96±0.03bcd 1.03±0.03d 1.02±0.03cd 0.93±0.01bcd 0.91±0.04bc 0.90±0.02b 0.79±0.04a 饲料系数FCR 1.16±0.04 1.18±0.03 1.19±0.04 1.22±0.03 1.23±0.05 1.22±0.05 1.25±0.11 存活率SR (%) 100.00±0.00b 100.00±0.00b 98.57±0.83b 97.86±0.71ab 97.14±1.17ab 97.20±1.17ab 94.29±2.33a 表 4 饲料锌水平对黄鳝全鱼营养成分的影响(平均值±标准误, n=4)
Table 4 Effects of dietary zinc levels on nutrient composition of whole body of Monopterus albus (mean±SE, n=4)
成分
Composition (%)饲料锌水平Dietary zinc levels (mg/kg) 48.24 60.79 70.25 88.04 123.88 204.35 381.65 水分Moisture 72.50±0.19 72.55±0.40 72.18±0.43 72.43±0.17 72.17±0.01 72.31±0.22 72.67±0.13 粗蛋白Crude protein 16.59±0.15a 16.61±0.02a 17.13±0.03b 17.08±0.02b 16.53±0.01a 16.48±0.18a 16.61±0.08a 粗脂肪Crude lipid 6.83±0.15c 6.67±0.05bc 6.45±0.02ab 6.39±0.06a 6.52±0.05ab 6.55±0.04ab 6.59±0.03ab 粗灰分Crude ash 2.19±0.02 2.22±0.01 2.23±0.01 2.22±0.01 2.18±0.02 2.22±0.02 2.22±0.01 表 5 饲料锌水平对黄鳝组织锌含量的影响(干物质; 平均值±标准误, n=4)
Table 5 Effects of dietary zinc levels on tissue zinc content in Monopterus albus (dry matter; mean±SE, n=4)
指标Index
(mg/kg)饲料锌水平 Dietary zinc level (mg/kg) 48.24 60.79 70.25 88.04 123.88 204.35 381.65 肌肉Muscle 51.31±1.18a 51.35±1.17a 49.83±0.88a 50.02±0.57a 52.55±1.37a 52.73±0.01a 52.00±0.47a 脊椎骨Vertebra 34.87±2.06a 41.03±3.28a 53.00±1.73b 59.36±2.34bc 61.18±3.24bc 64.58±0.74c 66.93±4.15c 肝脏Liver 23.78±0.20a 24.49±1.03a 26.57±1.04a 24.47±1.16a 34.36±0.07b 34.94±1.04b 45.64±1.70c 皮肤Skin 21.89±0.43a 23.55±0.39a 25.96±1.21ab 28.91±0.31b 39.6±1.24c 43.46±0.67c 51.75±2.38d 肠道Intestine 77.96±1.09a 81.99±2.82a 84.09±4.05a 85.69±2.71a 87.61±3.83ab 95.55±0.92b 100.98±1.89c 肾脏Kidney 34.32±0.51a 35.04±1.26a 37.14±0.73a 48.28±0.91b 48.97±1.55b 46.16±0.78b 54.32±0.49c 表 6 饲料锌水平对黄鳝全鱼矿物质含量的影响(干物质; 平均值±标准误, n=4)
Table 6 Effects of dietary zinc level on mineral content in whole body of Monopterus albus (dry matter; mean±SE, n=4)
指标Index (mg/kg) 饲料锌水平Dietary zinc level (mg/kg) 48.24 60.79 70.25 88.04 123.88 204.35 381.65 锌Zn 35.27±0.88a 41.81±0.94b 44.42±0.21bc 44.70±1.51bc 46.28±0.97c 48.20±1.73cd 51.18±0.51d 铁Fe 44.17±0.75d 41.64±2.20cd 41.12±1.02cd 41.34±1.34cd 39.22±1.09bc 35.94±0.33ab 33.37±0.89a 锰Mn 11.59±0.50b 11.13±0.85ab 10.46±0.09ab 9.86±0.34a 10.26±0.29ab 10.45±0.31ab 10.29±0.26ab 铜Cu 5.28±0.01b 4.78±0.05ab 4.55±0.15a 4.26±0.22a 4.40±0.23a 4.29±0.03a 4.32±0.23a 锌沉积率Znic RR (%) 58.98±1.01e 62.67±0.59e 62.15±1.80e 50.02±1.05d 38.18±1.83c 24.95±0.81b 13.92±1.20a 表 7 饲料锌水平对黄鳝脊椎骨矿物质含量的影响 (平均值±标准误, n=4)
Table 7 Effects of dietary zinc level on bone mineral content in the vertebrae of Monopterus albus (mean±SE, n=4)
指标Index 饲料锌水平 Dietary zinc level (mg/kg) 48.24 60.79 70.25 88.04 123.88 204.35 381.65 灰分Ash (%) 39.60±0.04a 39.74±0.16a 40.27±0.02b 40.87±0.15c 40.29±0.25b 39.64±0.15a 39.81±0.02a 钙Ca (%) 12.58±0.33a 12.84±0.11ab 13.22±0.05ab 13.52±0.23b 13.48±0.34b 13.37±0.25b 13.32±0.28ab 磷P (%) 7.37±0.13a 7.46±0.06ab 7.75±0.04bc 7.82±0.02c 7.75±0.07bc 7.68±0.17abc 7.53±0.13ab 锌Zn (mg/kg) 34.87±2.06a 41.03±3.28a 53.00±1.73b 59.36±2.34bc 61.18±3.24bc 64.58±0.74c 66.93±4.15c 铁Fe (mg/kg) 126.96±2.84d 119.24±1.30c 112.29±1.29b 110.27±0.25ab 106.17±0.99a 106.24±1.15a 105.70±1.23a 锰Mn (mg/kg) 121.31±0.22b 114.76±3.08b 98.75±1.72a 102.32±4.06a 102.74±0.55a 101.68±0.45a 104.29±1.13a 铜Cu (mg/kg) 1.62±0.01 1.55±0.01 1.61±0.01 1.63±0.01 1.56±0.05 1.61±0.11 1.55±0.01 表 8 饲料锌水平对黄鳝血清生化指标的影响(平均值±标准误, n=6)
Table 8 Effects of dietary zinc level on serum biochemical indexes of Monopterus albus (mean±SE, n=6)
指标Index 饲料锌水平Dietary zinc levels (mg/kg) 48.24 60.79 70.25 88.04 123.88 204.35 381.65 碱性磷酸酶ALP (U/L) 8.62±0.27ab 9.35±0.77ab 9.92±0.87ab 10.58±1.01b 9.63±0.89ab 7.91±1.11a 7.50±0.10a 谷丙转氨酶GPT (U/L) 2.61±0.28a 2.47±0.46a 2.70±0.50a 2.96±0.52ab 3.74±0.08ab 3.67±0.55ab 4.18±0.40b 谷草转氨酶GOT(U/L) 13.52±1.12 12.06±0.60 13.84±1.11 14.04±1.36 13.99±1.50 13.86±1.11 14.49±0.24 总蛋白TP (g/L) 68.16±1.44 66.55±0.49 67.16±0.78 68.54±0.82 66.26±1.37 67.68±0.86 68.68±1.72 白蛋白ALB (g/L) 7.72±0.16abc 7.75±0.41abc 8.09±0.57bc 8.60±0.40c 7.32±0.26ab 7.39±0.38ab 6.68±0.27a 溶菌酶LZM (µg/mL) 8.99±0.13b 10.13±0.15d 9.58±0.11c 8.79±0.21b 8.81±0.15b 8.52±0.15ab 8.10±0.19a -
[1] Panchi R N, Bolin K K. The distribution, economic aspects, nutritional, and therapeutic potential of swamp eel Monopterus cuchia: A review [J]. Fisheries Research, 2023(261): 106635. doi: 10.1016/j.fishres.2023.106635
[2] 姜文灏, 杨鑫, 周秋白, 等. 黄鳝饲料蛋白质需求量的研究 [J]. 水生生物学报, 2022, 46(8): 1205-1214. Jiang W H, Yang X, Zhou Q B, et al. Requirement level of dietary protein for Monopterus albus [J]. Acta Hydrobiologica Sinica, 2022, 46(8): 1205-1214.
[3] Zhang Y Z, Guo F, Yang X, et al. Insights into the mechanism of Frontiers-lipid [J]. Frontiers in Immunology, 2023(14): 1-15.
[4] Deng Y, Wu H D, Zhou J J, et al. Effects of dietary gelatinized starch on growth performance, glucose metabolism, oxidative status and fillet texture of rice field eel (Monopterus albus) [J]. Aquaculture Research, 2021, 52(11): 5527-5536. doi: 10.1111/are.15428
[5] 胡重华, 张文平, 霍欢欢, 等. 维生素A对黄鳝生长、转氨酶活性和肝脏显微结构的影响 [J]. 江西农业大学学报, 2022, 44(4): 988-995. Hu Z H, Zhang W P, Huo H H, et al. Effects of vitamin A on growth, transaminase activity and liver microstructure of Monopterus albus [J]. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(4): 988-995.
[6] Dawood M A O, Alagawany M, Sewilam H. The role of zinc microelement in aquaculture: a review [J]. Biological Trace Element Research, 2022, 200(8): 3841-3853. doi: 10.1007/s12011-021-02958-x
[7] Feeney G P, Zheng D, Kille P, et al. The phylogeny of teleost ZIP and ZnT zinc transporters and their tissue specific expression and response to zinc in zebrafish [J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 2005, 1732(1/2/3): 88-95.
[8] Mohamed S I, Eman Y. M, Mohamed A. E, et al Dietary Zinc oxide for growth and immune stimulation of aquatic animals species: a review [J]. Proceedings of the Zoological Society, 2023(76): 59-72. doi: 10.1007/s12595-023-00479-0
[9] Ma S L, Wang W X. Physiological trade-off of marine fish under Zn deficient and excess conditions [J]. Science of the Total Environment, 2023(901): 166187. doi: 10.1016/j.scitotenv.2023.166187
[10] Pan S, Yan X, Tan B, et al. Effects of dietary zinc sources and levels on growth performance, serum biochemical and immunological indexes and tissue zinc content of Litopenaeus vannamei [J]. Aquaculture Reports, 2022(25): 101247. doi: 10.1016/j.aqrep.2022.101247
[11] Shi B, Xu F M, Zhou Q C, et al. Dietary organic zinc promotes growth, immune response and antioxidant capacity by modulating zinc signaling in juvenile Pacific white shrimp (Litopenaeus vannamei) [J]. Aquaculture Reports, 2021(19): 100638. doi: 10.1016/j.aqrep.2021.100638
[12] Chen H Y, Cheng Y C, Hu L C, et al. Dietary zinc requirements of juvenile grouper, Epinephelus malabaricus [J]. Aquaculture, 2014(432): 360-364. doi: 10.1016/j.aquaculture.2014.05.020
[13] 崔立娇, 张利民, 王际英, 等. 饲料锌水平对星斑川鲽幼鱼生长、组织积累和抗氧化功能的影响 [J]. 水产学报, 2010, 34(9): 1420-1428. Cui L J, Zhang L M, Wang J Y, et al. Effects of dietary zinc on growth performance, tissue accumulation and antioxidation of juvenile starry flounder (Platichthys stellatus) [J]. Journal of Fisheries of China, 2010, 34(9): 1420-1428.
[14] Kou H Y, Liu X T, Hu J R, et al. Impact of dietary zinc on the growth performance, histopathological analysis, antioxidant capability, and inflammatory response of largemouth bass Micropterus salmoides [J]. Fish & Shellfish Immunology, 2023(141): 109025.
[15] Akram Z, Fatima M, Shah S Z H, et al. Dietary zinc requirement of Labeo rohita juveniles fed practical diets [J]. Journal of Applied Animal Research, 2019(47): 223-229. doi: 10.1080/09712119.2019.1613238
[16] Du Z J, Luo W, Liu Yi, et al. The dietary zinc requirement of a benthic fish Paramisgurnus dabryanus [J]. Aquaculture Research, 2020, 51(4): 1346-1352. doi: 10.1111/are.14462
[17] Zhou C P, Lin H Z, Huang Z, et al. Effects of dietary zinc levels on growth performance, digestive enzyme activities, plasma physiological response, hepatic antioxidant responses and metallothionein gene expression in juvenile spotted sea bass (Lateolabrax maculatus) [J]. Aquaculture Nutrition, 2021, 27(5): 1421-1432. doi: 10.1111/anu.13280
[18] Luo Z, Tan X Y, Zheng J L, et al. Quantitative dietary zinc requirement of juvenile yellow catfish Pelteobagrus fulvidraco, and effects on hepatic intermediary metabolism and antioxidant responses [J]. Aquaculture, 2011, 319(1-2): 150-155. doi: 10.1016/j.aquaculture.2011.06.047
[19] 于万峰, 林黑着, 黄忠, 等. 卵形鲳鲹(Trachinotus ovatus)对饲料中锌的需要量 [J]. 动物营养学报, 2019, 31(10): 4602-4611. Yu W F, Lin H Z, Huang Z, et al. Dietary zinc requirement of juvenile golden pompano (Trachinotus ovatus) [J]. Chinese Journal of Animal Nutrition, 2019, 31(10): 4602-4611.
[20] 曾延清. 低鱼粉饲料中添加姜黄素对黄姑鱼生长性能、饲料利用及肠道健康的影响研究 [D]. 舟山: 浙江海洋大学, 2022: 17-18. Zeng Y Q. Effects of curcumin supplementation in low-fish meal diet on growth performance, feed utilization and intestinal health of yellow drum (Nibea albiflora) [D]. Zhoushan: Zhejiang Ocean University, 2022: 17-18.
[21] 张梦婷, 李兆新, 邢丽红, 等. 褐藻寡糖及其锌络合物对暗纹东方鲀消化能力、血清生化指标及肠道菌群的影响 [J]. 饲料工业, 2023, 44(4): 85-91. Zhang M T, Li Z X, Xing L H, et al. Effects of alginate oligosaccharides and its zinc complex on digestive ability, serum biochemical indexes and intestinal microflora of Takifugu obscurus [J]. Feed Industry, 2023, 44(4): 85-91.
[22] Moazenzadeh K, Islami H R, Zamini A, et al. Effects of dietary zinc level on performance, zinc status, tissue composition and enzyme activities of juvenile Siberian sturgeon, Acipenser baerii (Brandt 1869) [J]. Aquaculture Nutrition, 2018, 24(4): 1330-1339. doi: 10.1111/anu.12670
[23] Peng D, Yang L W, Liang X F, et al. Dietary zinc levels affect growth, appetite, and lipid metabolism of Chinese perch (Siniperca chuatsi) [J]. Fish Physiology and Biochemistry, 2023, 49(5): 1017-1030. doi: 10.1007/s10695-023-01238-w
[24] Bury N R, Walker P A, Glover C N. Nutritive metal uptake in teleost fish [J]. The Journal of Experimental Biology, 2003, 206(1): 11-23. doi: 10.1242/jeb.00068
[25] 郭建林. Fe、Cu、Mn、Zn对异育银鲫生长、生理机能及器官微量元素含量的影响 [D]. 苏州: 苏州大学, 2007: 12-14. Guo J L. Effects of Fe、Cu、Mn、Zn on growth, physiological function, content of trace elements in organs of Carassius auratus gibelio [D]. Suzhou: Soochow University, 2007: 12-14.
[26] Jeng S S, Sun L T. Effects of dietary zinc levels on zinc concentrations in tissues of common carp [J]. The Journal of Nutrition, 1981, 111(1): 134-140. doi: 10.1093/jn/111.1.134
[27] Fan W, Li Q, Yang X, et al. Zn subcellular distribution in liver of goldfish (Carassius auratus) with exposure to zinc oxide nanoparticles and mechanism of hepatic detoxification [J]. PLoS One, 2013, 8(11): e78123. doi: 10.1371/journal.pone.0078123
[28] Wang J J, Xiao J, Zhang J Y, et al. Effects of dietary Cu and Zn on the accumulation, oxidative stress and the expressions of immune-related genes in the livers of Nile tilapia (Oreochromis niloticus) [J]. Fish & Shellfish Immunology, 2020(100): 198-207.
[29] Baeverfjord G, Antony J P P, Fjelldal P G, et al. Mineral nutrition and bone health in salmonids [J]. Reviews in Aquaculture, 2019, 11(3): 740-765. doi: 10.1111/raq.12255
[30] Huang Q C, Wang E L, Dong X H, et al. Investigations on zinc bioavailability of different sources anddietary zinc requirement in juvenile grouper Epinephelus coioides [J]. Aquaculture Research, 2018(49): 2763-2773. doi: 10.1111/are.13737
[31] Liang J J, Yang H J, Liu Y J, et al. Dietary zinc requirement of juvenile grass carp (Ctenopharyngodon idella) based on growth and mineralization [J]. Aquaculture Nutrition, 2012, 18(4): 380-387. doi: 10.1111/j.1365-2095.2011.00935.x
[32] 黄艳玲, 罗绪刚, 吕林, 等. 动物细胞内锌稳衡调节的研究进展 [J]. 中国畜牧杂志, 2007, 43(15): 44-47. Huang Y L, Luo X G, Lu L, et al. Recent advances in the regulation of cellular zinc homeostasis [J]. Chinese Journal of Animal Science, 2007, 43(15): 44-47.
[33] Marcelo V, Luiz E P, Margarida M B Fe L, et al. Optimum zinc supplementation level in Nile tilapia Oreochromis niloticus juveniles diets [J]. Aquaculture, 2004, 238(1-4): 385-401. doi: 10.1016/j.aquaculture.2004.06.011
[34] Dyk van J C, Pieterse G M, Vuren van J H J. Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc [J]. Ecotoxicology and Environmental Safety, 2007, 66(3): 432-440. doi: 10.1016/j.ecoenv.2005.10.012
[35] 周彦锋, 吴伟, 尤洋, 等. 重金属镉锌联合胁迫下鲫鱼组织中金属硫蛋白的动态变化 [J]. 生态与农村环境学报, 2010, 26(1): 63-67. Zhou Y F, Wu W, You Y, et al. Dynamics of metallothionein in organs of Carassius auratus under combined stresses of Cd and Zn [J]. Journal of Ecology and Rural Environment, 2010, 26(1): 63-67.
[36] 中国营养学会. 中国居民膳食营养素参考摄入量2023版 [M]. 北京: 人民卫生出版社, 2023: 635. Chinese Nutrition Society. Dietary Reference Intakes for China 2023 edition [M]. BeiJing People’s Medical Publishing House, 2023: 635.
[37] Chasapis T C, Ntoupa A P, Spiliopoulou A C, et al. Recent aspects of the effects of zinc on human health [J]. Archives of Toxicology, 2020, 94(5): 1443-1460. doi: 10.1007/s00204-020-02702-9
[38] 曾欢, 张华, 熊小英, 等. 鄱阳湖河湖交错区鱼类重金属含量特征及健康风险评估 [J]. 环境科学学报, 2021, 41(2): 649-659. Zeng H, Zhang H, Xiong X Y, et al. Heavy metal levels in fish and their human health risk in the river-lake ecosystems of the Poyang Lake [J]. Acta Scientiae Circumstantiae, 2021, 41(2): 649-659.
[39] Leitemperger J, Menezes C, Oliveira V A, et al. The bioaccumulation of waterborne zinc in tissues of silver catfish (Rhamdia quelen) and its effect on biochemical parameters [J]. Biometals, 2019, 32(2): 241-249. doi: 10.1007/s10534-019-00168-6
[40] Fountoulaki E, Morgane H, Rigos G, et al. Evaluation of zinc supplementation in European Sea bass (Dicentrarchus labrax) juvenile diets [J]. Aquaculture Research, 2010, 41(9): e208-e216. doi: 10.1111/j.1365-2109.2010.02503.x
[41] 许明珠, 张琴, 童潼, 等. 饲料锌含量对方格星虫稚虫生长性能、体成分、体腔液中锌含量及碱性磷酸酶活性的影响 [J]. 动物营养学报, 2016, 28(7): 2292-2299. Xu M Z, Zhang Q, Tong T, et al. Effects of dietary zinc content on growth performance, body composition, coelomic fluid zinc content and alkaline phosphatase activity of juvenile peanut worm, Sipunculus nudus Linnaeus [J]. Chinese Journal of Animal Nutrition, 2016, 28(7): 2292-2299.
[42] Saurabh S, Sahoo P K. Lysozyme: an important defence molecule of fish innate immune system [J]. Aquaculture Research, 2008, 39(3): 223-239. doi: 10.1111/j.1365-2109.2007.01883.x
[43] Shukry M, Albogami S, Gewaily M, et al. Growth performance, antioxidative capacity, and intestinal histomorphology of grey mullet (Liza ramada)-fed dietary Zinc nanoparticles [J]. Biological Trace Element Research, 2022(200): 2406-2415. doi: 10.1007/s12011-021-02844-6
[44] Fei S Z, Liu H K, Li Y Z, et al. Zinc supplementation in practical diets for pond-raised hybrid snakehead (Channa maculate ♀ × Channa argus ♂) fingerlings: Effects on performance, mineral retention and health [J]. Aquaculture Reports, 2022(23): 101061. doi: 10.1016/j.aqrep.2022.101061
[45] Garcia-Martinez R, Caraceni P, Bernardi M, et al. Albumin: pathophysiologic basis of its role in the treatment of cirrhosis and its complications [J]. Hepatology, 2013, 58(5): 1836-1846. doi: 10.1002/hep.26338
[46] Mohamed A M W, El-Houseiny W, Ibrahim E R, et al. Palliative effects of zinc sulfate against the immunosuppressive, hepato-and nephrotoxic impacts of nonylphenol in Nile tilapia (Oreochromis niloticus) [J]. Aquaculture, 2019(504): 227-238. doi: 10.1016/j.aquaculture.2019.02.004
[47] Ma S, Shu X, Wang W. Multi-omics reveals the regulatory mechanisms of zinc exposure on the intestine-liver axis of golden pompano Trachinotus ovatus [J]. Science of the Total Environment, 2022(816): 151497. doi: 10.1016/j.scitotenv.2021.151497
[48] Wu K, Luo Z, Hogstrand C, et al. Zn stimulates the phospholipids biosynthesis via the pathways of oxidative and endoplasmic reticulum stress in the intestine of freshwater teleost yellow catfish [J]. Environmental Science & Technology, 2018, 52(16): 9206-9214.
[49] 宋博文, 杨航, 李小勤, 等. 大口黑鲈幼鱼对饲料中锌的需求量 [J]. 水产学报, 2021, 45(10): 1715-1725. Song B W, Yang H, Li X Q, et al. Dietary zinc requirement of juvenile largemouth bass (Micropterus salmoides) [J]. Journal of Fisheries of China, 2021, 45(10): 1715-1725.
[50] Antony J P P, Schrama J W, Kaushik S J. Mineral requirements of fish: a systematic review [J]. Reviews in Aquaculture, 2016, 8(2): 172-219. doi: 10.1111/raq.12090
[51] 郭建林, 陈建明, 孙丽慧, 等. 日本沼虾幼虾对饲料中锌的需求量 [J]. 动物营养学报, 2013, 25(3): 661-668. Guo J L, Chen J M, Sun L H, et al. Dietary zinc requirement of juvenile oriental river prawn (Macrobrachium nipponense) [J]. Chinese Journal of Animal Nutrition, 2013, 25(3): 661-668.
[52] Liang X, Cao C, Chen P, et al. Effects of dietary zinc sources and levels on growth performance, tissue zinc retention and antioxidant response of juvenile common carp (Cyprinus carpio var. Jian) fed diets containing phytic acid [J]. Aquaculture Nutrition, 2020, 26(2): 410-421. doi: 10.1111/anu.13003
[53] Huang F, Jiang M, Wen H, et al. Dietary zinc requirement of adult Nile tilapia (Oreochromis niloticus) fed semi-purified diets, and effects on tissue mineral composition and antioxidant responses [J]. Aquaculture, 2015(439): 53-59. doi: 10.1016/j.aquaculture.2015.01.018
-
期刊类型引用(11)
1. 丁小雨,李振通,段鹏飞,邱弈树,王心怡,黎琳琳,王林娜,刘阳,李文升,王清滨,赵侠,田永胜,李胜忠. 长期超低温冷冻保存对鞍带石斑鱼精子超微结构及酶活性的影响. 水产学报. 2023(07): 50-66 . 百度学术
2. 金佳利,许金娇,杜明润,乔明辉,阮瑞,李创举. 瓦氏黄颡鱼精子冷冻保存技术. 中国水产科学. 2023(11): 1301-1310 . 百度学术
3. 邢露梅,肖伟,李兰兰,张利平,赛清云,俞兆曦,吴旭东,连总强. 兰州鲇精液超低温冷冻保存技术研究及细胞损伤检测. 水生生物学报. 2021(03): 547-556 . 本站查看
4. 周洲,李世凯,赵飞,陈飞雄,孔杰. 不同抗冻剂对西伯利亚鲟精子冷冻保存的影响. 西南农业学报. 2021(06): 1347-1350 . 百度学术
5. 刘光霞,吴兴兵,何勇凤,邓智明,杨德国,王小明,杨少荣,刘欢. 圆口铜鱼精子超低温冷冻保存. 中国水产科学. 2020(01): 44-52 . 百度学术
6. 周洲,李世凯,赵飞,陈飞雄,孔杰. 超低温冷冻保存对西伯利亚鲟精子酶活性的影响. 贵州农业科学. 2020(01): 77-80 . 百度学术
7. 马林,李楠,郝爽,吴会民,姜巨峰,刘克明,白晓慧,刘肖莲,李春艳,尤宏争. 乌克兰鳞鲤精子超低温冷冻保存方法研究. 水产科学. 2019(04): 473-478 . 百度学术
8. 黄梦璐,王洁,王磊. 我国鱼类精子超低温冷冻保存的研究进展. 河南水产. 2019(06): 20-23 . 百度学术
9. 吴栩灵,洪孝友,李凯彬,朱新平,徐红艳. 美洲鲥雄性生殖细胞冷冻保存及移植. 水生生物学报. 2018(03): 599-605 . 本站查看
10. 王鑫伟,史应学,竺俊全,王建平. 光唇鱼精子的超低温冷冻保存及酶活性检测. 农业生物技术学报. 2017(04): 639-649 . 百度学术
11. 韩龙江,刘清华,许飞,温海深,李军. 长牡蛎精子超低温冷冻后超微结构损伤研究. 水生生物学报. 2017(01): 220-227 . 本站查看
其他类型引用(8)