FEEDING AND FASTING ON SWIMMING PERFORMENCE AND HYPOXIA TOLERANCE OF MICROPTERUS SALMOIDES
-
摘要: 为了研究摄食和饥饿对鱼类游泳运动能力和低氧耐受的影响; 以大口黑鲈(Micropterus salmoides)为对象, 在25℃下, 测定对照组(禁食2d)、摄食组(摄食后3h)和饥饿组(禁食16d)实验鱼的日常代谢率(RMR)、活跃代谢率(AMR)、代谢范围(MS)、临界游泳速度(Ucrit)、临界氧压(Pcrit)和失去平衡点(LOE)。研究显示摄食后实验鱼RMR显著提升, AMR没有显著变化, 而MS和Ucrit显著下降(P<0.05); 饥饿后实验鱼RMR、AMR和MS均没有显著变化, 而Ucrit显著下降(P<0.05); 摄食后实验鱼Pcrit显著上升, 溶解氧(DO)高于Pcrit时的代谢率(MR)与DO之间的关系的斜率显著大于对照组所对应的斜率, 而LOE没有变化(P<0.05); 饥饿后实验鱼Pcrit和LOE均没有显著变化, 而DO 低于Pcrit时的MR与DO之间的关系的斜率显著小于对照组所对应的斜率(P<0.05)。结果表明, 摄食削弱大口黑鲈游泳运动能力是因为“心鳃”系统对其有氧代谢能力的限制; 饥饿后大口黑鲈游泳运动能力下降可能与其无氧代谢能力下降相关; 摄食削弱大口黑鲈的低氧耐受, 而饥饿后其低氧耐受有所增强, 但大口黑鲈低氧耐受总体趋于保守。Abstract: To evaluate the effects of feeding and fasting on swimming performance and hypoxia tolerance of fish, we tested the routine metabolic rate (RMR), active metabolic rate (AMR), metabolic scope (MS), critical swimming speed (Ucrit), critical oxygen pressure (Pcrit) and the point of loss of equilibrium (LOE) of largemouth bass (Micropterus salmoides) at 25℃. The fish were divided into 3 groups which include control group (fasting for 2d), feeding group (3h after feeding) and fasting group (fasting for 16d). The results showed that the RMR increased, but the MS and Ucrit decreased after feeding (P<0.05). There was no change in AMR between feeding group and control group (P>0.05). There was no change in RMR, AMR and MS between fasting group and control group (P>0.05). The Ucrit of fish was decreased after fasting (P<0.05). The Pcrit was higher in feeding group than that in control group (P<0.05). When the dissolved oxygen level was higher than the Pcrit, the slope of the metabolic rate (MR) and dissolved oxygen (DO) in feeding group was higher than that in control group (P<0.05). There was no difference in LOE between feeding group and control group (P<0.05); There was no difference in Pcrit and LOE between fasting group and control group (P<0.05). However, when the dissolved oxygen level was below the Pcrit, the slope of the MR and DO in fasting group was lower than that in control group (P<0.05). The results showed that the weakening of swimming performance of largemouth bass in feeding group was caused by the limitation of its cardiobranchial system on its aerobic metabolism ability. After fasting, the weakening of swimming performance of largemouth bass may be related to the decline of anaerobic metabolism ability; Feeding weakens the hypoxic tolerance of largemouth bass, while fasting enhances its hypoxic tolerance. However, the hypoxic tolerance of largemouth bass is conservative.
-
-
表 1 摄食和饥饿对大口黑鲈游泳能力的影响(平均值±标准误, 样本数=8)
Table 1 The effect of feeding and fasting on swimming performance in largemouth bass (mean±SE, n=8)
参数Parameter 分组Group 对照Control 摄食Feeding 饥饿Fasting 体重Body
mass (g)7.98±0.56 7.90±0.58 6.07±0.39 体长Body
length (cm)7.38±0.18 7.08±0.18 6.93±0.18 日常代谢率RMR
[mg O2/(kg· h)]203.97±12.22b 328.3±21.86a 157.16±12.60b 活跃代谢率AMR
[mg O2/(kg· h)]643.13±33.04 635.00±31.85 575.18±49.85 代谢范围MS
[mg O2/(kg· h)]439.16±30.73a 306.7±21.62b 418.04±49.24a 临界游泳速度
Ucrit (cm/s)31.62±1.00a 27.33±1.27b 27.61±0.90b 注: 同一行不同字母表示有差异显著(P<0.05); 下同Note: Values in each row without a common superscript are significantly different (P<0.05). The same applies below 表 2 摄食和饥饿对大口黑鲈低氧耐受的影响(平均值±标准误, 样本数=8)
Table 2 The effect of feeding and fasting onhypoxia tolerance in largemouth bass (mean±SE, n=8)
参数Parameter 分组Group 对照Control 投喂Feeding 饥饿Fasting 体重 Body
mass (g)5.73±0.13 6.74±0.37 5.29±0.19 体长 Body
length (cm)6.68±0.05 6.76±0.11 6.44±0.11 失去平衡点 LOE
(mg O2/L)0.94±0.15 0.92±0.06 0.68±0.03 临界氧压 Pcrit
(mg O2/L)2.03±0.15b 2.52±0.13a 1.97±0.11b 临界代谢率 CMR*
[mg O2/(kg· h)]259.29±25.61b 376.38±19.75a 232.80±11.51b 斜率1 Slope1#
[L/(kg· h)]20.19±4.11b 61.99±4.98a 11.24±2.29b 斜率2 Slope2#
[L/(kg· h)]180.80±13.61a 183.83±7.60a 127.59±5.97b 注: * 表示在临界氧压点的代谢率; # 斜率1和斜率2分别表示溶氧值高于和低于临界氧压时代谢率与溶解氧间关系的斜率Note: * indicate the metabolic rate at critical oxygen pressure; # the slope1 and slope2 indicate the slopes of the relationships between metabolic rate and dissolved oxygen values above and below critical oxygen pressure, respectively -
[1] Nelson J A. Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements [J]. Journal of Fish Biology, 2016, 88(1): 10-25. doi: 10.1111/jfb.12824
[2] Killen S S, Marras S, McKenzie D J. Fuel, fasting, fear: routine metabolic rate and food deprivation exert synergistic effects on risk-taking in individual juvenile European sea bass [J]. Journal of Animal Ecology, 2011, 80(5): 1024-1033. doi: 10.1111/j.1365-2656.2011.01844.x
[3] Auer S K, Salin K, Rudolf A M, et al. The optimal combination of standard metabolic rate and aerobic scope for somatic growth depends on food availability [J]. Functional Ecology, 2015, 29(4): 479-486. doi: 10.1111/1365-2435.12396
[4] Norin T, Clark T D. Measurement and relevance of maximum metabolic rate in fishes [J]. Journal of Fish Biology, 2016, 88(1): 122-151. doi: 10.1111/jfb.12796
[5] Rubio-Garcia F, Garcia-Berthou E, Guasch H, et al. Size-related effects and the influence of metabolic traits and morphology on swimming performance in fish [J]. Current Zoology, 2020, 66(5): 493-504. doi: 10.1093/cz/zoaa013
[6] 张怡, 曹振东, 付世建. 延迟首次投喂对南方鲇(Silurus meridionalis Chen)仔鱼身体含能量、体长及游泳能力的影响 [J]. 生态学报, 2007, 27(3): 1161-1167. doi: 10.3321/j.issn:1000-0933.2007.03.042 Zhang Y, Cao Z D, Fu S J. Effect delayed first feeding on the energy content, body length and swimming performance of southern catfish (Silurus meridionalis Chen) larvae [J]. Acta Ecologica Sinica, 2007, 27(3): 1161-1167. doi: 10.3321/j.issn:1000-0933.2007.03.042
[7] Graham J B, Dewar H, Lai N C, et al. Aspects of shark swimming performance determined using a large water tunnel [J]. Journal of Experimental Biology, 1990(151): 175-192.
[8] Plaut I. Critical swimming speed: its ecological relevance [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2001, 131(1): 41-50.
[9] 付世建, 曹振东, 谢小军. 鱼类摄食代谢和运动代谢研究进展 [J]. 动物学杂志, 2008, 43(2): 150-159. doi: 10.3969/j.issn.0250-3263.2008.02.028 Fu S J, Cao Z D, Xie X J. Feeding metabolism and locomotion metabolism in fishes [J]. Chinese Journal of Zoology, 2008, 43(2): 150-159. doi: 10.3969/j.issn.0250-3263.2008.02.028
[10] Mandic M, Speers-Roesch B, Richards J G. Hypoxia tolerance in sculpins is associated with high anaerobic enzyme activity in brain but not in liver or muscle [J]. Physiological & Biochemical Zoology, 2013, 86(1): 92-105.
[11] Barnes R, King H, Carter C G. Hypoxia tolerance and oxygen regulation in Atlantic salmon, Salmo salar from a Tasmanian population [J]. Aquaculture, 2011, 318(3-4): 397-401. doi: 10.1016/j.aquaculture.2011.06.003
[12] Martínez M, Guderley H, Dutil J D. Condition, prolonged swimming performance and muscle metabolic capacities of cod Gadus morhua [J]. Journal of Experimental Biology, 2003, 206(3): 503-511. doi: 10.1242/jeb.00098
[13] 林小涛, 张秋明, 许忠能, 等. 虾蟹类呼吸代谢研究进展 [J]. 水产学报, 2000, 24(6): 575-580. Lin X T, Zhang Q M, Xu Z N, et al. Advancement of the study on respiratory metabolism of decapod crustaceans [J]. Journal of Fisheries of China, 2000, 24(6): 575-580.
[14] Pang X, Cao Z D, Peng J L, et al. The effects of feeding on the swimming performance and metabolic response of juvenile southern catfish, Silurus meridionalis, acclimated at different temperatures [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2010, 155(2): 253-258.
[15] 朱晏苹, 曹振东, 付世建. 不同游泳速度条件下瓦氏黄颡幼鱼的有氧和无氧代谢反应 [J]. 水生生物学报, 2010, 34(5): 905-912. Zhu Y P, Cao Z D, Fu S J. Aerobic and anaerobic metabolism in response to different swimming speed of juvenile darkbarbel catfish (Pelteobagrus vachelli Richardson) [J]. Acta Hydrobiologica Sinica, 2010, 34(5): 905-912.
[16] Brett J R. The respiratory metabolism and swimming performance of young sockeye salmon [J]. Journal of the Fisheries Research Board of Canada, 1964, 21(5): 1183-1226. doi: 10.1139/f64-103
[17] Lee C G, Farrell A P, Lotto A, et al. Excess post-exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon following critical speed swimming [J]. Journal of Experimental Biology, 2003, 206(18): 3253-3260. doi: 10.1242/jeb.00548
[18] Claireaux G, Couturier C, Groison A L. Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (Dicentrarchus labrax) [J]. Journal of Experimental Biology, 2006, 209(17): 3420-3428. doi: 10.1242/jeb.02346
[19] 陈波见, 曹振东, 付世建, 等. 温度对鳊鱼静止代谢和耐低氧能力的影响 [J]. 动物学杂志, 2010, 45(5): 1-8. Chen B J, Cao Z D, Fu S J, et al. Temperature effect on rest metabolic rate and hypoxia tolerance in Chinese bream Parabramis pekinensis [J]. Chinese Journal of Zoology, 2010, 45(5): 1-8.
[20] Yeager D P, Ultsch G R. Physiological regulation and conformation: a basic program for the determination of critical points [J]. Physiological Zoology, 1989, 62(4): 888-907.
[21] Wang T, Zaar M, Arvedsen S, et al. Effects of temperature on the metabolic response to feeding in Python molurus [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2002, 133(3): 519-527.
[22] Hicks J W, Bennett A F. Eat and run: prioritization of oxygen delivery during elevated metabolic states [J]. Respiratory Physiology & Neurobiology, 2004, 144(2-3): 215-224.
[23] Pang X, Cao Z D, Fu S J. The effects of temperature on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish (Carassius auratus, Cyprinus carpio and Spinibarbus sinensis) [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2011, 159(3): 253-260.
[24] Thorarensen H, Farrell A P. Postprandial intestinal blood flow, metabolic rates, and exercise in Chinook salmon (Oncorhynchus tshawytscha) [J]. Physiological and Biochemical Zoology, 2006, 79(4): 688-694. doi: 10.1086/505512
[25] 蒲德永, 丁雨箫, 刘小红, 等. 温度和摄食率对鲈鲤幼鱼摄食代谢特征的影响 [J]. 水产学报, 2021,DOI: 10.11964/jfc. 20200912390. Pu D Y, Ding Y X, Liu X H, et al. Effects of temperature and feeding rate on postprandial metabolic response in juvenile Percocypris pingi [J]. Journal of Fisheries of China, 2021, DOI: 10.11964/jfc. 20200912390.
[26] Cai L, Fang M, Johnson D, et al. Interrelationships between feeding, food deprivation and swimming performance in juvenile grass carp [J]. Aquatic Biology, 2014, 20(1): 69-76.
[27] Alsop D H, Wood C M. The interactive effects of feeding and exercise on oxygen consumption, swimming performance and protein usage in juvenile rainbow trout (Oncorhynchus mykiss) [J]. Journal of Experimental Biology, 1997, 200(17): 2337-2346. doi: 10.1242/jeb.200.17.2337
[28] Fu S J, Zeng L Q, Li X M, et al. Effect of meal size on excess post-exercise oxygen consumption in fishes with different locomotive and digestive performance [J]. Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology, 2009, 179(4): 509-517.
[29] Furnell D J. Partitioning of locomotor and feeding metabolism in sablefish (Anoplopoma fimbria) [J]. Canadian Journal of Zoology, 1987, 65(3): 486-489. doi: 10.1139/z87-075
[30] Fu S J, Zeng L Q, Li X M, et al. The behavioural, digestive and metabolic characteristics of fishes with different foraging strategies [J]. Journal of Experimental Biology, 2009, 212(14): 2296-2302. doi: 10.1242/jeb.027102
[31] Mehner T, Wieser W. Energetics and metabolic correlates of starvation in juvenile perch (Perca fluviatilis) [J]. Journal of Fish Biology, 1994, 45(2): 325-333. doi: 10.1111/j.1095-8649.1994.tb01311.x
[32] Thuy N H, Tien L A, Tuyet P N, et al. Critical oxygen tension increases during digestion in the perch Perca fluviatilis [J]. Journal of Fish Biology, 2010, 76(4): 1025-1031. doi: 10.1111/j.1095-8649.2009.02533.x
[33] Pang X, Shao F, Ding S H, et al. Interspecific differences and ecological correlations of energy metabolism traits in freshwater fishes [J]. Functional Ecology, 2020, 34(3): 616-630. doi: 10.1111/1365-2435.13505
[34] De Boeck G, Wood C M, Iftikar F I, et al. Interactions between hypoxia tolerance and food deprivation in Amazonian oscars, Astronotus ocellatus [J]. Journal of Experimental Biology, 2013, 216(24): 4590-4600.