两种大型海藻提取物对杜氏盐藻生长和代谢活性的促进作用

王婧一, 蔡春尔, 张颖, 董傲, 查敏俊, 何培民

王婧一, 蔡春尔, 张颖, 董傲, 查敏俊, 何培民. 两种大型海藻提取物对杜氏盐藻生长和代谢活性的促进作用[J]. 水生生物学报, 2024, 48(8): 1348-1357. DOI: 10.7541/2024.2024.0030
引用本文: 王婧一, 蔡春尔, 张颖, 董傲, 查敏俊, 何培民. 两种大型海藻提取物对杜氏盐藻生长和代谢活性的促进作用[J]. 水生生物学报, 2024, 48(8): 1348-1357. DOI: 10.7541/2024.2024.0030
WANG Jing-Yi, CAI Chun-Er, ZHANG Ying, DONG Ao, CHA Min-Jun, HE Pei-Min. PROMOTIONAL EFFECTS OF TWO MACROALGAL EXTRACTS ON THE GROWTH AND METABOLIC ACTIVITY OF DUNALIELLA SALINA[J]. ACTA HYDROBIOLOGICA SINICA, 2024, 48(8): 1348-1357. DOI: 10.7541/2024.2024.0030
Citation: WANG Jing-Yi, CAI Chun-Er, ZHANG Ying, DONG Ao, CHA Min-Jun, HE Pei-Min. PROMOTIONAL EFFECTS OF TWO MACROALGAL EXTRACTS ON THE GROWTH AND METABOLIC ACTIVITY OF DUNALIELLA SALINA[J]. ACTA HYDROBIOLOGICA SINICA, 2024, 48(8): 1348-1357. DOI: 10.7541/2024.2024.0030

两种大型海藻提取物对杜氏盐藻生长和代谢活性的促进作用

基金项目: 国家重点研发计划重点专项(2022YFC2601303); 自然资源部海洋生态监测与修复技术重点实验室课题(MATHAB201817)资助
详细信息
    作者简介:

    王婧一(1998—), 女, 硕士研究生; 主要从事大型海藻资源化利用以及海洋生物学与活性物质的研究。E-mail: 18145664756@163.com

    通信作者:

    蔡春尔(1980—), 男, 博士, 高级实验师; 主要从事大型海藻资源化利用以及海洋生物学与活性物质的研究。E-mail: cecai@shou.edu.cn

  • 中图分类号: Q938.8

PROMOTIONAL EFFECTS OF TWO MACROALGAL EXTRACTS ON THE GROWTH AND METABOLIC ACTIVITY OF DUNALIELLA SALINA

Funds: Supported by the National Key Research and Development Program of China (2022YFC2601303); Key Laboratory of Marine Ecological Monitoring and Restoration Technologies, MNR (MATHAB201817)
    Corresponding author:
  • 摘要:

    实验选取绿潮藻提取物和铜藻提取物作为一种高经济价值藻——杜氏盐藻生长的营养添加剂, 与传统的f/2培养基相比, 探究两种大型海藻提取物对杜氏盐藻的生长和某些代谢活性(色素、碳水化合物、蛋白质、光合活性)的影响。藻类生理指标和营养成分分析表明, 不同浓度的藻华提取物对杜氏盐藻生长的促进效果显著。添加0.26%、0.31%、0.38 %的绿潮藻提取物和添加0.24%的铜藻提取物均能够显著促进杜氏盐藻生物量增长、光合色素和营养物质的积累, 但对杜氏盐藻的最大光化学效率(Fv/Fm)和有效量子产量(Yield)无显著影响。研究表明, 一定浓度的绿潮藻提取物和铜藻提取物能够显著促进杜氏盐藻的生长和营养物质的积累, 该发现为藻华防控及利用大型藻华提取物来优化杜氏盐藻的生产提供了新的思路。

    Abstract:

    In this experiment, Green Tide Algae Extract and Copper Algae Extract were selected as nutrient additives for cultivating Dunaliella salina, a high-value alga, aiming to explore the effects on the growth and various metabolic activities (such as pigments, carbohydrates, proteins, and photosynthetic activities) compared to the traditional f/2 medium. The physiological indices and nutrient analysis of the algae showed that different concentrations of macroalgal extracts significantly promoted the growth of Dunaliella salina. Specifically, the addition of 0.26%, 0.31%, and 0.38% of Chlorella vulgaris extract, as well as 0.24% of Copper Algae extract, notably promoted biomass growth, photosynthetic pigment content, and nutrient accumulation in Dunaliella salina. However, these additions did not significantly impact the maximum photochemical efficiency (Fv/Fm) and effective quantum yield (Yield) of Duchenne Saltwater Algae. The present study demonstrated that specific concentrations of Chlorophyceae and Copperophyceae extracts could significantly promote the growth and nutrient accumulation of Duchenne salina. This findings provide a novel approach for algal bloom prevention and control, along with optimizing the production of Dunaliella salina through the utilization of macroalgal bloom extracts.

  • 图  1   杜氏盐藻全波长扫描

    Figure  1.   The full wavelength scanning of Dunaliella salina

    图  2   杜氏盐藻细胞密度与吸光度A684的关系

    Figure  2.   Relationship between cell density and A684 of Dunaliella salina

    图  3   施加绿潮藻粉水提物15d内杜氏盐藻的OD值在684 nm下的变化情况

    标准误差柱顶部的符号表示对照组和实验组数据之间差异的显著性。“*”代表差异显著(P<0.05), “**”代表差异极显著(P<0.01); 下同

    Figure  3.   Changes in OD of Dunaliella salina at 684 nm during 15d of aqueous extract application of green tide algae

    Symbols on the top of standard error bars indicate the significant differences between data for control and experimental group. “*” represent significant difference (P<0.05), “**” represent higly significant difference (P<0.01). The same applies below

    图  4   施加铜藻粉水提物15d内杜氏盐藻的OD值在684 nm下的变化情况

    Figure  4.   Changes in OD of Dunaliella salina at 684 nm during 15d of aqueous extract application of Sargassum horneri

    图  5   施加绿潮藻粉水提物15d内盐藻藻液中的叶绿素a、叶绿素b和β-胡萝卜素含量的变化情况

    Figure  5.   Changes in chlorophyll a, chlorophyll b and β-carotene contents of Dunaliella salina algal solution within 15d of aqueous extracts application of green tide algae

    图  6   施加铜藻粉水提物15d内盐藻藻液中的叶绿素a、叶绿素b和β-胡萝卜素含量的变化情况

    Figure  6.   Changes in chlorophyll a, chlorophyll b, and β-carotene content of Dunaliella salina algal solution during 15d of aqueous extracts application of Sargassum horneri

    图  7   添加绿潮藻粉水提物后15d内杜氏盐藻最大光化学效率(Fv/Fm)和有效量子产量(Yeild)的变化情况

    Figure  7.   Changes in Maximum photochemical efficiency (Fv/Fm), and effective quantum yield (Yeild), of Dunaliella salina during 15d after aqueous extract addition of green tide algae

    图  8   施加铜藻粉水提物后15d内杜氏盐藻最大光化学效率(Fv/Fm)和有效量子产量(Yeild)的变化情况

    Figure  8.   Changes in Maximum photochemical efficiency (Fv/Fm), and effective quantum yield (Yeild) of Dunaliella salina during 15d after aqueous extract addition of Sargassum horneri

    图  9   施加绿潮藻粉水提物后15d内盐藻藻液中总糖含量和可溶性蛋白质含量的变化

    Figure  9.   Changes in total sugar content and soluble protein content of Dunaliella salina algal solution during 15d after aqueous extracts application of green tide algae

    图  10   施加铜藻粉水提物后15d内盐藻藻液中总糖含量和蛋白质含量的变化

    Figure  10.   Changes in total sugar content and protein content of Dunaliella salina algal solution within 15d after aqueous extract application of Sargassum horneri

  • [1]

    Xiao J, Wang Z, Liu D, et al. Harmful macroalgal blooms (HMBs) in China’s coastal water: green and golden tides [J]. Harmful Algae, 2021(107): 102061. doi: 10.1016/j.hal.2021.102061

    [2]

    Liu J J, Dickson R, Niaz H, et al. Production of fuels and chemicals from macroalgal biomass: current status, potentials, challenges, and prospects [J]. Renewable and Sustainable Energy Reviews, 2022(169): 112954. doi: 10.1016/j.rser.2022.112954

    [3]

    Shankar T, Malik G C, Banerjee M, et al. Effect of sea weed extracts on the growth, yield attribute and nutrient uptake of sesame (Sesamum indicum L.) [J]. International Journal of Bio-resource and Stress Management, 2015, 6(3): 420. doi: 10.5958/0976-4038.2015.00064.0

    [4]

    Singh S K, Thakur R, Singh M K, et al. Effect of fertilizer level and seaweed sap on productivity and profitability of rice (Oryza sativa) [J]. Indian Journal of Agronomy, 2015, 60(3): 420-425.

    [5] 王明鹏. 基于褐藻酸降解的铜藻发酵提取技术及其产物农用功效研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017: 34-39.

    Wang M P. Research on fermentation technology of Sargassum horneri based on alginate-degrading and agricutural effects of fermentation product [D]. Harbin: Harbin Institute of Technology, 2017: 34-39.

    [6]

    Arun N, Singh, D. P. A review on pharmacological applications of halophilic alga Dunaliella [J]. Indian Journal of Marine Sciences, 2016, 45(3): 440-447.

    [7] 张鑫志. 杜氏盐藻的培养条件优化及采收 [D]. 天津科技大学, 2022: 27-34.

    Zhang Z X. Optimization of culture conditions and harvesting of Dunaliella salina [D]. Tianjin: Tianjin University of Science and Technology, 2022: 27-34.

    [8]

    Hurtado A Q, Critchley A T. Time for applications of biostimulants in phyconomy: seaweed Extracts for Enhanced Cultivation of Seaweeds (SEECS) [M]. Sustainable Seaweed Technologies. Amsterdam: Elsevier, 2020: 103-127.

    [9]

    Cho J Y, Jin H J, Lim H J, et al. Growth activation of the microalga Isochrysis galbana by the aqueous extract of the seaweed Monostroma nitidum [J]. Journal of Applied Phycology, 1998, 10(6): 561-567. doi: 10.1023/A:1008010519923

    [10]

    Kaladharan P, Gireesh R, Smitha K S. Cost effective medium for the laboratory culture of live feed micro algae [J]. Seaweed Research & Utilisation, 2002, 24(1): 35-40.

    [11]

    Abdel-Kareem M S, Mohy El Din S M, Ibrahim E S M. Optimization of growth conditions and biochemical composition of Microchloropsis salina, cultured with three macroalgal aqueous extracts [J]. Thalassas:An International Journal of Marine Sciences, 2020, 36(2): 415-429. doi: 10.1007/s41208-020-00218-8

    [12]

    Paulert R, Ascrizzi R, Malatesta S, et al. Ulva intestinalis Extract acts as biostimulant and modulates metabolites and hormone balance in basil (Ocimum basilicum L.) and parsley (Petroselinum crispum L.) [J]. Plants, 2021, 10(7): 1391. doi: 10.3390/plants10071391

    [13]

    Rana V S, Sharma V, Sharma S, et al. Seaweed extract as a biostimulant agent to enhance the fruit growth, yield, and quality of kiwifruit [J]. Horticulturae, 2023, 9(4): 432. doi: 10.3390/horticulturae9040432

    [14] 才金玲, 刘洁, 王雨, 等. 渤海湾海水养殖杜氏盐藻培养条件优化 [J]. 盐科学与化工, 2022, 51(12): 28-37. doi: 10.3969/j.issn.2096-3408.2022.12.006

    Cai J L, Liu J, Wang Y, et al. Culture condition optimization of Dunaliella salina utilizing seawater from Bohai Bay [J]. Journal of Salt Science and Chemical Industry, 2022, 51(12): 28-37. doi: 10.3969/j.issn.2096-3408.2022.12.006

    [15]

    Karthik T, Jayasri M A. Systematic study on the effect of seaweed fertilizer on the growth and yield of Vigna radiata (L.) R. Wilczek (Mung bean) [J]. Journal of Agriculture and Food Research, 2023(14): 100748. doi: 10.1016/j.jafr.2023.100748

    [16]

    Seo J, Lee J G, Kang B C, et al. Indole-3-acetic acid, a hormone potentially involved in chilling-induced seed browning of pepper (Capsicum annuum L.) fruit during cold storage [J]. Postharvest Biology and Technology, 2023(199): 112299. doi: 10.1016/j.postharvbio.2023.112299

    [17]

    Ghaderiardakani F, Collas E, Damiano D K, et al. Effects of green seaweed extract on Arabidopsis early development suggest roles for hormone signalling in plant responses to algal fertilisers [J]. Scientific Reports, 2019, 9(1): 1983. doi: 10.1038/s41598-018-38093-2

    [18]

    El Khattabi O, El Hasnaoui S, Toura M, et al. Seaweed extracts as promising biostimulants for enhancing lead tolerance and accumulation in tomato (Solanum lycopersicum) [J]. Journal of Applied Phycology, 2023, 35(1): 459-469. doi: 10.1007/s10811-022-02849-1

    [19]

    Naskar S, Biswas G, Kumar P, et al. The green seaweed, Enteromorpha intestinalis: an efficient inorganic extractive species for environmental remediation and improved performances of fed species in brackishwater integrated multi-trophic aquaculture (BIMTA) system [J]. Aquaculture, 2023(569): 739359. doi: 10.1016/j.aquaculture.2023.739359

    [20]

    Stirk W A, Arthur G D, Lourens A F, et al. Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature [J]. Journal of Applied Phycology, 2004, 16(1): 31-39. doi: 10.1023/B:JAPH.0000019057.45363.f5

    [21] 李丽, 宁利敏, 姚忠, 等. 褐藻胶多糖分子修饰酶的研究进展 [J]. 食品与生物技术学报, 2023, 42(1): 18-39. doi: 10.3969/j.issn.1673-1689.2023.01.002

    Li L, Ning L M, Yao Z, et al. Research progress of alginate polysaccharide molecular modifying enzymes [J]. Journal of Food Science and Biotechnology, 2023, 42(1): 18-39. doi: 10.3969/j.issn.1673-1689.2023.01.002

    [22]

    Bai N R, Banu N R L, Prakash J W, et al. Effect of Sargassum wightii extract (SLF) on the growth and yield of Phaseolus aureus L [J]. Plant Archives, 2007, 7(2): 621-624.

    [23]

    Ashour M, Mabrouk M M, Ayoub H F, et al. Effect of dietary seaweed extract supplementation on growth, feed utilization, hematological indices, and non-specific immunity of Nile Tilapia, Oreochromis niloticus challenged with Aeromonas hydrophila [J]. Journal of Applied Phycology, 2020, 32(5): 3467-3479. doi: 10.1007/s10811-020-02178-1

    [24]

    Mansori M, Chernane H, Latique S, et al. Seaweed extract effect on water deficit and antioxidative mechanisms in bean plants (Phaseolus vulgaris L.) [J]. Journal of Applied Phycology, 2015, 27(4): 1689-1698. doi: 10.1007/s10811-014-0455-7

    [25]

    Trivedi K, Vijay Anand K G, Kubavat D, et al. Role of Kappaphycus alvarezii seaweed extract and its active constituents, glycine betaine, choline chloride, and zeatin in the alleviation of drought stress at critical growth stages of maize crop [J]. Journal of Applied Phycology, 2022, 34(3): 1791-1804. doi: 10.1007/s10811-022-02722-1

    [26]

    El Mehdi El Boukhari M, Barakate M, Choumani N, et al. Ulva lactuca extract and fractions as seed priming agents mitigate salinity stress in tomato seedlings [J]. Plants, 2021, 10(6): 1104. doi: 10.3390/plants10061104

    [27]

    Yakhin O I, Lubyanov A A, Yakhin I A, et al. Biostimulants in plant science: a global perspective [J]. Frontiers in Plant Science, 2017(7): 2049.

    [28]

    Čmiková N, Galovičová L, Miškeje M, et al. Determination of antioxidant, antimicrobial activity, heavy metals and elements content of seaweed extracts [J]. Plants, 2022, 11(11): 1493. doi: 10.3390/plants11111493

    [29]

    Omar H H, Abdullatif B M, Al-Kazan M M, et al. Various applications of seaweed improves growth and biochemical constituents of Zea mays L. and Helianthus annuus L. [J]. Journal of Plant Nutrition, 2015, 38(1): 28-40. doi: 10.1080/01904167.2014.911893

    [30]

    Ramya S S, Vijayanand N, Rathinavel S. Foliar application of liquid biofertilizer of brown alga Stoechospermum marginatum on growth, biochemical and yield of Solanum melongena [J]. International Journal of Recycling of Organic Waste in Agriculture, 2015, 4(3): 167-173. doi: 10.1007/s40093-015-0096-0

    [31]

    el-Sheekh M M, el-D E S A. Effect of crude seaweed extracts on seed germination, seedling growth and some metabolic processes of Vicia faba L [J]. Cytobios, 2000, 101(396): 23-35.

    [32]

    Sui Y, Harvey P J. Effect of light intensity and wavelength on biomass growth and protein and amino acid composition of Dunaliella salina [J]. Foods, 2021, 10(5): 1018. doi: 10.3390/foods10051018

    [33]

    Kim M, Kim J, Lee S, et al. Deciphering the β-carotene hyperaccumulation in Dunaliella by the comprehensive analysis of Dunaliella salina and Dunaliella tertiolecta under high light conditions [J]. Plant,Cell &Environment, 2024, 47(1): 213-229.

    [34]

    Christaki E, Bonos E, Giannenas I, et al. Functional properties of carotenoids originating from algae [J]. Journal of the Science of Food and Agriculture, 2013, 93(1): 5-11. doi: 10.1002/jsfa.5902

    [35]

    Alharbi K, Amin M A, Ismail M A, et al. Alleviate the drought stress on Triticum aestivum L. using the algal extracts of Sargassum latifolium and Corallina elongate versus the commercial algal products [J]. Life-Basel, 2022, 12(11).

    [36]

    Hernández Acevedo H E, Flores Ramos L, Villamón Cifuentes F, et al. Characterization and production potential of carotenes in Peruvian strains of Dunaliella salina Teodoresco [J]. Journal of the World Aquaculture Society, 2022, 53(3): 765-780. doi: 10.1111/jwas.12859

    [37]

    Gazali M, Husni A, Majid F A A, et al. The evaluation of antioxidant action of green seaweed Boergesenia forbesii extracts [J]. IOP Conference Series:Earth and Environmental Science, 2023, 1137(1): 012044. doi: 10.1088/1755-1315/1137/1/012044

    [38]

    de Souza Félix F C C, Hidalgo V B, de Carvalho A K F, et al. Assessing the application of marine microalgae Dunaliella salina in a biorefinery context: production of value-added biobased products [J]. Biofuels,Bioproducts and Biorefining, 2024, 18(2): 439-452. doi: 10.1002/bbb.2577

图(10)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  23
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-24
  • 修回日期:  2024-04-07
  • 网络出版日期:  2024-05-12
  • 刊出日期:  2024-08-14

目录

    /

    返回文章
    返回