暗纹东方鲀运动训练后游泳能力和呼吸代谢的变化

顾玲玲, 冯广朋, 韩志强

顾玲玲, 冯广朋, 韩志强. 暗纹东方鲀运动训练后游泳能力和呼吸代谢的变化[J]. 水生生物学报, 2023, 47(12): 2011-2017. DOI: 10.7541/2023.2023.0031
引用本文: 顾玲玲, 冯广朋, 韩志强. 暗纹东方鲀运动训练后游泳能力和呼吸代谢的变化[J]. 水生生物学报, 2023, 47(12): 2011-2017. DOI: 10.7541/2023.2023.0031
GU Ling-Ling, FENG Guang-Peng, HAN Zhi-Qiang. EXERCISE TRAINING ON THE SWIMMING PERFORMANCE AND RESPIRATION METABOLISM OF TAKIFUGU OBSCURUS[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(12): 2011-2017. DOI: 10.7541/2023.2023.0031
Citation: GU Ling-Ling, FENG Guang-Peng, HAN Zhi-Qiang. EXERCISE TRAINING ON THE SWIMMING PERFORMANCE AND RESPIRATION METABOLISM OF TAKIFUGU OBSCURUS[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(12): 2011-2017. DOI: 10.7541/2023.2023.0031

暗纹东方鲀运动训练后游泳能力和呼吸代谢的变化

基金项目: 国家重点研发计划“蓝色粮仓科技创新”重点专项(2020YFD0900805); 上海长鱼长江水生生物保护基金会项目(2021CL03)资助
详细信息
    作者简介:

    顾玲玲(1998—), 女, 硕士研究生; 研究方向为渔业资源养护与利用。E-mail: gllsgxxn@163.com

    通信作者:

    冯广朋, 男, 博士, 研究员; 主要从事渔业资源增殖保护与开发利用研究。E-mail: fgp7711@163.com

  • 中图分类号: Q178.1

EXERCISE TRAINING ON THE SWIMMING PERFORMANCE AND RESPIRATION METABOLISM OF TAKIFUGU OBSCURUS

Funds: Supported by the National Key R & D Program of China (2020YFD0900805); Project of Shanghai Yangtze River Fish Protection Foundation (2021CL03)
    Corresponding author:
  • 摘要:

    为了探讨增殖放流活动中持续运动训练对暗纹东方鲀游泳运动能力和呼吸代谢的作用, 经不同的强度(0.75和1.5 BL/s)和时间(1、2和4周)运动训练后, 分别测定暗纹东方鲀的临界游泳速度(Ucrit)、突进游泳速度(Ubrust)、静止代谢率(RMR)和活动代谢率(AMR)。结果表明, 低强度(0.75 BL/s)持续训练1周后, 暗纹东方鲀的Ubrust、RMR、AMR无显著变化, 而Ucrit显著提高; 持续训练2周, 暗纹东方鲀的UcritUbrust、RMR和AMR变化趋于稳定; 持续训练4周后Ubrust、RMR无显著变化, 而Ucrit显著下降(P<0.05), AMR显著提高(P<0.05)。高强度(1.5 BL/s)持续训练2周后, 暗纹东方鲀的UcritUbrust、RMR和AMR仍无显著变化; 持续训练4周后暗纹东方鲀的UcritUbrust和RMR均无显著变化, 而AMR显著下降(P<0.05)。研究结果总体揭示, 短期的低强度训练(0.75 BL/s训练1—2周)提高了暗纹东方鲀的临界游泳能力; 持续的低强度训练(0.75 BL/s训练2—4周)提高了暗纹东方鲀的活动代谢率, 因此, 开展适当的运动训练对于提高暗纹东方鲀放流后的运动能力有一定作用, 有助于提升放流成活率和放流成效。

    Abstract:

    In order to investigate the effect of continuous exercise training on the swimming performance and respiration metabolism of Takifugu obscurus during proliferation and release activities, the critical swimming speed (Ucrit), burst swimming speed (Ubrust), resting metabolic rate (RMR) and active metabolic rate (AMR) of T. obscurus were measured after exercise training at different intensities (0.75 and 1.5 BL/s) and durations (1, 2 and 4 weeks). The results showed that after 1 week of continuous training at low intensity (0.75 BL/s), Ubrust, RMR and AMR had no significant changes, while Ucrit was significantly increased. Following 2 weeks of continuous training, Ucrit, Ubrust, RMR and AMR remained reletively stable. After 4 weeks of continuous training, Ubrust and RMR showed no significant change, while Ucrit decreased significantly (P<0.05) and AMR increased significantly (P<0.05). After 2 weeks of high intensity (1.5 BL/s) training, there were no significant changes in Ucrit, Ubrust, RMR and AMR of T. obscurus. After 4 weeks of continuous training, Ucrit, Ubrust and RMR did not change significantly, while AMR decreased significantly (P<0.05). The results showed that short periods of low-intensity training (0.75 BL/s training for 1 to 2 weeks) improved the critical swimming capacity of T. obscurus, while continuous low-intensity training (0.75 BL/s training for 2—4 weeks) increased the active metabolic rate of T. obscurus. Therefore, proper exercise training may play a certain role in improving the swimming capacity of T. obscurus after releasing, which is helpful to improve the survival rate and releasing effect.

  • 图  1   鱼类游泳能力测定装置

    Figure  1.   Apparatus for the determination of swimming ability of fish

    图  2   暗纹东方鲀临界游泳速度随训练强度和时间变化趋势

    小写字母表示相同训练时间下不同训练强度之间的显著性差异(P<0.05), 大写字母表示相同的训练强度下不同训练时间之间的显著性差异(P<0.05); 下同

    Figure  2.   Change of critical swimming speed with exercise time and intensity of Takifugu obscurus

    Lowercase letters are significant differences between different training intensities at the same training time (P<0.05), and uppercase letters are significant differences between different training times at the same training intensity (P<0.05); The same applies below

    图  3   暗纹东方鲀突进游泳速度随训练强度和时间变化趋势

    Figure  3.   Change of burst swimming speed with exercise time and intensity of T. obscurus

    图  4   暗纹东方鲀静止代谢率随训练强度和时间变化趋势

    Figure  4.   Change of resting metabolic rate with exercise time and intensity of T. obscurus

    图  5   暗纹东方鲀活动代谢率随训练强度和时间变化趋势

    Figure  5.   Change of Activity metabolic rate with exercise intensity and time of T. obscurus

  • [1] 文鑫. 暗纹东方鲀(Takifugu fasciatus)应对低温胁迫的生理响应和分子机制研究 [D]. 南京: 南京师范大学, 2019: 9.

    Wen X. Physiological response and molecular mechanism of Takifugu fasciatus to low temperature stress [D]. Nanjing: Nanjing Normal University, 2019: 9.

    [2] 庄平, 张涛, 李圣法, 等. 长江口鱼类(第2版) [M]. 北京: 中国农业出版社, 2018: 606-610.

    Zhuang P, Zhang T, Li S F, et al. Fishes of the Yangtze Estuary (2nd Edition) [M]. Beijing: China Agriculture Press, 2018: 606-610.

    [3] 彭玉凤. 运动训练对草鱼游泳能力及行为影响研究 [D]. 重庆: 重庆交通大学, 2021: 7-8.

    Peng Y F. The effect of exercise training on swimming ability and behavior of grass carp [D]. Chongqing: Chongqing Jiaotong University, 2021: 7-8.

    [4] 区又君, 李加儿, 柳琪. 褐毛鲿早期发育阶段行为选择和游泳能力的研究 [J]. 生态科学, 2016, 35(4): 1-11.

    Ou Y J, Li J E, Liu Q. Studies on behavior selectivity and swimming ability of Megalonibea fusca in early development stages [J]. Ecological Science, 2016, 35(4): 1-11.

    [5]

    Li S P, Liu X, Lin T T, et al. Muscle fiber plasticity, stress physiology, and muscle transcriptome determine the inter-individual difference of swimming performance in the large yellow croaker (Larimichthys crocea) [J]. Aquaculture, 2023(567): 739247.

    [6]

    Kieffer J D. Perspective-Exercise in fish: 50+ years and going strong [J]. Comparative Biochemistry and Physiology,Part A,Molecular & Integrative Physiology, 2010, 156(2): 163-168.

    [7]

    Plaut I. Critical swimming speed: its ecological relevance [J]. Comparative Biochemistry and Physiology,Part A,Molecular & Integrative Physiology, 2001, 131(1): 41-50.

    [8]

    Kokita T, Mizota T. Male secondary sexual traits are hydrodynamic devices for enhancing swimming performance in a monogamous filefish Paramonacanthus japonicus [J]. Journal of Ethology, 2002, 20(1): 35-42. doi: 10.1007/s10164-002-0051-1

    [9] 曹平, 穆祥鹏, 白音包力皋, 等. 与鱼道水力设计相关的草鱼幼鱼游泳行为特性研究 [J]. 水利学报, 2017, 48(12): 1456-1464.

    Cao P, Mu X P, Baiyinbaoligao, et al. Study on swimming behavior of juvenile grass carp for the fish channel hydraulic design [J]. Journal of Hydraulic Engineering, 2017, 48(12): 1456-1464.

    [10]

    Langerhans R, Reznick D. Ecology and Evolution of Swimming Performance in Fishes: Predicting Evolution with Biomechanics [M]. Enfield, NH: Science Publishers, 2010: 200-248.

    [11] 蔡露, 房敏, 涂志英, 等. 与鱼类洄游相关的鱼类游泳特性研究进展 [J]. 武汉大学学报(理学版), 2013, 59(4): 363-368.

    Cai L, Fang M, Tu Z Y, et al. Research progress on the fish swimming performance related to migration [J]. Journal of Wuhan University (Natural Science Edition), 2013, 59(4): 363-368.

    [12]

    Goolish E M. The Scaling of aerobic and anaerobic muscle power in rainbow trout (Salmo gairdneri) [J]. Journal of Experimental Biology, 1989, 147(1): 493-505. doi: 10.1242/jeb.147.1.493

    [13]

    Das S K, De M, Ghaffar M A, et al. Effects of temperature on the oxygen consumption rate and gill fine structure of hybrid grouper, Epinephelus fuscoguttatus ♀ × E. Lanceolatus ♂ [J]. Journal of King Saud University-Science, 2021, 33(2): 101358. doi: 10.1016/j.jksus.2021.101358

    [14] 庞旭, 付世建, 曹振东, 等. 饥饿和温度驯化对中华倒刺鲃静止代谢和游泳能力的影响 [J]. 生态学报, 2016, 36(7): 1854-1860.

    Pang X, Fu S J, Cao Z D, et al. The effects of fasting and acclimation temperature on the resting metabolism and swimming performance in qingbo (Spinibarbus sinensis) [J]. Acta Ecologica Sinica, 2016, 36(7): 1854-1860.

    [15] 夏丹阳. 鲤的代谢特征与游泳能力、低氧耐受及生长性能的关联 [D]. 重庆: 西南大学, 2020: 2-3.

    Xia D Y. The relationship between metabolic characteristics and swimming performance, hypoxia tolerance and growth performance in common carp [D]. Chongqing: Southwest University, 2020: 2-3.

    [16] 王晓, 廖冬芽, 俞立雄, 等. 温度梯度对四大家鱼临界游泳速度的影响 [J]. 渔业科学进展, 2022, 43(2): 53-61. doi: 10.19663/j.issn2095-9869.20201104001

    Wang X, Liao D Y, Yu L X, et al. Effect of temperature gradient on the critical swimming speed of four major Chinese carps [J]. Progress in Fishery Sciences, 2022, 43(2): 53-61. doi: 10.19663/j.issn2095-9869.20201104001

    [17] 鲁艳, 李茂华, 甘维熊, 等. 运动训练和停训对鲈鲤幼鱼游泳能力的影响 [J]. 四川动物, 2019, 38(4): 361-367. doi: 10.11984/j.issn.1000-7083.20190057

    Lu Y, Li M H, Gan W X, et al. Effect of exercise training and detraining on swimming performance of juvenile Percocypris pingi [J]. Sichuan Journal of Zoology, 2019, 38(4): 361-367. doi: 10.11984/j.issn.1000-7083.20190057

    [18] 刘海生, 曹振东, 付世建. 水流刺激对宽鳍鱲幼鱼的游泳和代谢的影响 [J]. 重庆师范大学学报(自然科学版), 2015, 32(1): 35-40.

    Liu H S, Cao Z D, Fu S J. Effects of flow stimulation on the swimming performance and metabolism in juvenile Zacco platypus [J]. Journal of Chongqing Normal University (Natural Science), 2015, 32(1): 35-40.

    [19]

    Brown E J, Bruce M, Pether S, et al. Do swimming fish always grow fast? Investigating the magnitude and physiological basis of exercise-induced growth in juvenile New Zealand yellowtail kingfish, Seriola lalandi [J]. Fish Physiology and Biochemistry, 2011, 37(2): 327-336. doi: 10.1007/s10695-011-9500-5

    [20]

    Bagatto B, Pelster B, Burggren W W. Growth and metabolism of larval zebrafish: effects of swim training [J]. The Journal of Experimental Biology, 2001, 204(Pt 24): 4335-4343.

    [21]

    Larsen B K, Skov P V, McKenzie D J, et al. The effects of stocking density and low level sustained exercise on the energetic efficiency of rainbow trout (Oncorhynchus mykiss) reared at 19℃ [J]. Aquaculture, 2012(324-325): 226-233. doi: 10.1016/j.aquaculture.2011.10.021

    [22] 夏伟. 运动训练对鲤鱼(Cyprinus carpio)幼鱼游泳能力的影响及其代谢机制探讨 [D]. 重庆: 重庆师范大学, 2012: 13-19.

    Xia W. Effects of exercise training on swimming performance and metabolic regime in juvenile common carp (Cyprinus carpio) [D]. Chongqing: Chongqing Normal University, 2012: 13-19.

    [23]

    Zhao W W, Pang X, Peng J L, et al. The effects of hypoxia acclimation, exercise training and fasting on swimming performance in juvenile qingbo (Spinibarbus sinensis) [J]. Fish Physiology and Biochemistry, 2012, 38(5): 1367-1377. doi: 10.1007/s10695-012-9624-2

    [24]

    Wieser W, Forstner H, Medgyesy N, et al. To switch or not to switch: partitioning of energy between growth and activity in larval cyprinids (Cyprinidae: Teleostei) [J]. Functional Ecology, 1988, 2(4): 499-507. doi: 10.2307/2389393

    [25]

    Secombes C J, Ellis A E. The Immunology of Teleosts [M]. London: John Wiley & Sons, Ltd, 2012: 133-150.

    [26]

    Li X M, Yu L J, Wang C, et al. The effect of aerobic exercise training on growth performance, digestive enzyme activities and postprandial metabolic response in juvenile qingbo (Spinibarbus sinensis) [J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2013, 166(1): 8-16.

    [27] 虞顺年, 魏小岚, 韦芳三, 等. 不同运动强度对黑鲷生长、血清和肝脏抗氧化指标的影响 [J]. 水生生物学报, 2018, 42(2): 255-263. doi: 10.7541/2018.032

    Yu S N, Wei X L, Wei F S, et al. Effects of different exercise intensity on growth and serum and liver antioxidant indices of Sparus macrocephalus [J]. Acta Hydrobiologica Sinica, 2018, 42(2): 255-263. doi: 10.7541/2018.032

    [28] 魏小岚, 虞顺年, 阳艳, 等. 运动强度对斜带石斑鱼生长、非特异性免疫和肝脏抗氧化能力的影响 [J]. 中国水产科学, 2017, 24(5): 1055-1064. doi: 10.3724/SP.J.1118.2017.17036

    Wei X L, Yu S N, Yang Y, et al. Effects of exercise intensity on growth, blood innate immunity, hepatic antioxidant capacity, and HSPs70 mRNA expression of Epinephelus coioides [J]. Journal of Fishery Sciences of China, 2017, 24(5): 1055-1064. doi: 10.3724/SP.J.1118.2017.17036

    [29] 王茂林, 张秀梅, 黄国强, 等. 水流对三疣梭子蟹幼蟹运动行为和代谢的影响 [J]. 大连水产学院学报, 2009, 24(4): 321-324.

    Wang M L, Zhang X M, Huang G Q, et al. The effects of water current on locomotion behavior and metabolism of juvenile swimming crab Portunus trituberculatus [J]. Journal of Dalian Fisheries University, 2009, 24(4): 321-324.

    [30] 范雯, 刘永, 魏小岚, 等. 不同运动强度和训练时间对紫红笛鲷幼鱼血清生理生化指标的影响 [J]. 海洋渔业, 2020, 42(5): 618-633. doi: 10.3969/j.issn.1004-2490.2020.05.010

    Fan W, Liu Y, Wei X L, et al. Effects of exercise intensity and time on the serology of juvenile Lutjanus argentimaculatus [J]. Marine Fisheries, 2020, 42(5): 618-633. doi: 10.3969/j.issn.1004-2490.2020.05.010

    [31]

    Pang X, Cao Z D, Fu S J. The effects of temperature on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish (Carassius auratus, Cyprinus carpio and Spinibarbus sinensis) [J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2011, 159(3): 253-260.

    [32]

    Guderley H. Locomotor performance and muscle metabolic capacities: impact of temperature and energetic status [J]. Comparative Biochemistry and Physiology, Part B: Biochemistry and Molecular Biology, 2004, 139(3): 371-382. doi: 10.1016/j.cbpc.2004.04.001

    [33] 宋波澜, 林小涛, 许忠能. 逆流运动训练对多鳞四须鲃摄食、生长和体营养成分的影响 [J]. 水产学报, 2012, 36(1): 106-114.

    Song B L, Lin X T, Xu Z N. Effects of upstream exercise training on feeding efficiency, growth and nutritional components of juvenile tinfoil barbs (Barbodes schwanenfeldi) [J]. Journal of Fisheries of China, 2012, 36(1): 106-114.

    [34] 刘梅, 原居林, 练青平, 等. 不同流速对流水槽大口黑鲈生长性能、抗氧化能力、能量代谢及组织结构的影响 [J]. 水生生物学报, 2023, 47(1): 25-36. doi: 10.7541/2022.2021.0167

    Liu M, Yuan J L, Lian Q P, et al. Different water flow rates on the growth performance, antioxidant capacity, energy metabolism and tissue structure of Micropterus salmoides under an in-pond recirculating aquaculture system [J]. Acta Hydrobiologica Sinica, 2023, 47(1): 25-36. doi: 10.7541/2022.2021.0167

    [35]

    Ling H, Fu S J, Zeng L Q. Predator stress decreases standard metabolic rate and growth in juvenile crucian carp under changing food availability [J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2019(231): 149-157.

    [36]

    Lee C G, Farrell A P, Lotto A, et al. The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks [J]. The Journal of Experimental Biology, 2003, 206(Pt 18): 3239-3251.

    [37]

    Gallaugher P E, Thorarensen H, Kiessling A, et al. Effects of high intensity exercise training on cardiovascular function, oxygen uptake, internal oxygen transport and osmotic balance in chinook salmon (Oncorhynchus tshawytscha) during critical speed swimming [J]. The Journal of Experimental Biology, 2001, 204(Pt 16): 2861-2872.

    [38]

    Pearson M, Spriet L, Stevens E. Effect of sprint training on swim performance and white muscle metabolism during exercise and recovery in rainbow trout (Salmo gairdneri) [J]. The Journal of Experimental Biology, 1990(149): 45-60. doi: 10.1242/jeb.149.1.45

图(5)
计量
  • 文章访问数:  445
  • HTML全文浏览量:  247
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-05
  • 修回日期:  2023-04-10
  • 网络出版日期:  2023-05-07
  • 刊出日期:  2023-09-10

目录

    /

    返回文章
    返回