EVALUATION OF THE EFFECTS ON “10-YEAR FISHING BAN” IN POYANG LAKE ECOSYSTEM BASED ON ECOPATH MODEL
-
摘要:
基于渔业资源调查数据构建了鄱阳湖禁渔前后(2018和2021年)的生态系统Ecopath模型, 比较了两个时期生态系统规模、食物网及营养结构、能量流动、系统稳定性等特征的变化, 以评估“十年禁渔”措施的效果。结果表明: 在“十年禁渔”政策实施后, 鄱阳湖生态系统规模扩大了8.07%, 总生物量增加了35.7%; 生态系统的能量与物质转换效率由10.7%增长到11.3%, 能够恢复到1998年水平; 生态系统成熟度、稳定性增强; 食物网的高营养指标从28.6%增长到35.7%, 食物链长度从3.63增长到3.86。综上所述, 禁渔之后鄱阳湖生态系统规模扩大, 各功能组间的营养交互关系变强, 生态系统的物质流转速度和物质再循环的比例升高, 复杂性、稳定性和成熟度增加, 表明“十年禁渔”政策已取得明显成效。
Abstract:Based on fishery resource survey data, Ecopath models were constructed before and after the fishing ban in Poyang Lake (2018 and 2021) to evaluate the effectiveness of the “10-Year Fishing Ban” policy on ecosystem. Comparisons were made regarding differences in ecosystem scale, food web and nutrient structure, energy flow characteristics, and system stability between the two periods. The results indicate a notable expansion in the scale of the ecosystem by 8.07%, accompanied by a substantial increase in total biomass by 35.7%. Moreover, the energy and material transfer efficiency of the ecosystem experienced an improvement from 10.7% to 11.3%, which is close to the historical level of 1998 (11%). Furthermore, there was an enhancement in ecosystem maturity and stability. The high nutritional index of the food web increased from 28.6% to 35.7%, while the length of the food chain increased from 3.63 to 3.86. In summary, following the fishing ban, the Poyang Lake ecosystem exhibited increased complexity, stability, and maturity, with stronger nutritional interactions among various functional groups. The speed of material circulation and the proportion of material recycling in the ecosystem also increased, indicating that the “10-Year Fishing Ban” policy has achieved significant positive outcomes.
-
觅食是动物最重要的行为之一, 动物通过觅食活动为机体提供营养物质[1, 2]。当食物资源匮乏时, 不良的营养状况还会造成动物机体运动性能和逃避捕食者能力的下降[3]。因此鱼类通常会增加觅食活动以避免遭受饥饿胁迫[4]。然而, 频繁的觅食活动不仅会加剧能量的消耗, 还会导致被捕食者发现的概率上升[5]。因此, 鱼类在觅食和生存之间存在权衡, 而自身营养状况可能成为影响该权衡平衡点的重要因素[6]。此外, 环境中的捕食压力同样可能影响该权衡[7, 8]。因此, 鱼类如何衡量机体能量储备状况和捕食压力, 评估风险并调整相应的反捕食策略, 与其生存和繁衍息息相关。
动物常通过集群行为来有效地提高觅食效率并降低被捕食的风险[9, 10]。例如鱼群在遭遇饥饿或捕食压力时, 通常会在成群的频率和持续时间等集群特征上发生改变, 以应对饥饿或捕食胁迫[4, 11, 12]。以往有关饥饿和捕食压力对鱼群成群动态影响的研究主要关注同质性鱼群(例如, 群体中全部为饥饿成员)的行为变化。然而在自然界中, 早期生活史及资源竞争能力的个体差异使得鱼群中不同成员很可能在饥饿程度上存在差异, 个体间进行觅食和避敌行为的生态收益和代价也会因此而不同。既然群体中不同成员的利益可能存在严重分歧, 那此时群体形态如何变化, 群体如何决策则是非常有意义的科学问题。由此, 研究饥饿个体占比不同鱼群的集群行为具有重要的生态学意义, 然而相关研究却鲜见报道。
为了探知饥饿个体占比对鱼群成群动态的影响, 本研究选取喜好集群生活的德玛森小岩鲷(Chindongo demasoni)幼鱼为实验对象。德玛森小岩鲷为慈鲷科, 小岩鲷属, 原产自非洲坦桑尼亚的Malawi湖, 为淡水、底栖、热带鱼类, 生境结构复杂[13]。研究采用设置了隐蔽所臂和食物臂的六臂迷宫, 观测无干扰及捕食刺激[白鹭(Egretta garzetta)模型]条件下不同鱼群(8尾构成一个鱼群, 共包含5种鱼群, 其中饥饿个体分别占0、1、4、7和8尾)在迷宫不同区域(包括隐蔽所臂、食物臂、空白臂和中心区域)的分布状况、群体成群频率和持续时间等集群参数。本研究旨在探究(1)鱼群的空间分布和成群动态是否受鱼群中饥饿个体占比的影响? (2)饥饿个体占比不同的鱼群对捕食风险的反应是否存在差异? (3)通过鱼群组成和行为反应的关联探讨鱼群决策的可能机制。
1. 材料与方法
1.1 实验鱼来源及驯化
德玛森小岩鲷幼鱼购于当地市场。将实验鱼放入实验室自净化循环控温水槽[(25±1)℃, 容水量约150 L]中驯养3周, 实验用水为曝气24h的自来水, 使用充气泵增氧保证溶氧水平≥7 mg/L, 日换水量约为水体的10%, 光周期为12L﹕12D。在驯养期间每日9:00用商业颗粒饲料饱足投喂1次, 1h后用虹吸法清除残饵与粪便。
1.2 实验装置
本实验的装置为实验室自制六臂径向迷宫(图 1)[12]。该迷宫由1.5 cm厚的白色PVC板组成, 中心区域是一个边长为20 cm的规则六边形, 周围为6个长方形的辐射臂(长42 cm×宽20 cm×高20 cm)。迷宫内部覆盖一层白色广告纸, 以减少外界干扰。将塑料水草和鹅卵石随机放入迷宫的一个臂中作为隐蔽所臂, 再将自制食物供给装置随机固定在迷宫的另外任一臂中作为食物臂[14]。在实验时, 水深保持在10 cm[12], 温度控制在(25±1)℃。将高清摄像头(罗技C920)安装在装置正上方进行拍摄。
图 1 本研究使用的六臂径向迷宫结构示意图A. 圆形水槽; B.六臂径向迷宫; 图示中Ⅰ. 隐蔽所臂; Ⅱ、Ⅲ、Ⅳ、Ⅵ. 空白臂; Ⅴ. 食物臂; Ⅶ. 中心区域。每次实验前隐蔽所臂和食物臂的位置在6个臂中进行随机更换。Figure 1. Schematic drawing of the radial arm maze used in the present studyA. circular water tank; B. radial arm maze; Ⅰ. shelter arm; Ⅱ, Ⅲ, Ⅳ, Ⅵ. blank arm; Ⅴ: food arm; Ⅶ. center area. For each test, arms are chosen randomly to serve as shelter arm or food arm1.3 实验方案
驯养结束后挑选身体健康, 大小接近的德玛森小岩鲷幼鱼[体重: (1.66±0.54) g; 体长: (4.21±0.54) cm]用于后续正式的实验测定。分别选取饥饿(禁食10d)或正常摄食(禁食24h)的实验鱼组成5种不同的异质性鱼群(5种鱼群正常摄食和饥饿鱼比例分别为: 8﹕0、7﹕1、4﹕4、1﹕7和0﹕8, 以下简称为8F0S、7F1S、4F4S、1F7S和0F8S, F为正常投喂个体, S为饥饿个体)。将实验鱼群(每组8尾)带水转移到迷宫中心区域的适应装置(不透明塑料管, 直径约15 cm)中适应10min, 随后小心移除适应装置进行20min拍摄。在拍摄的第17min通过移动金属杆控制捕食者白鹭(Egretta garzetta)模型(白鹭标本, 长28 cm, 固定在一根金属杆的一端)在迷宫上方实现盘旋和俯冲, 对实验鱼进行持续10s的模拟捕食刺激[14]。每种鱼群组成测定8个重复。视频经格式转换后使用Matlab分析以获取每尾实验鱼的位置, 用于评估迷宫中每个部分(中心区域和每个臂)中包含的个体数量[15]。视频的前10min作为不同鱼群在无干扰条件下的成群动态, 而模拟捕食刺激前后1min的数据[16]用来比较捕食风险对不同鱼群成群动态的影响。
1.4 实验参数的计算
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
1.5 数据统计和分析
实验数据采用SPSS软件进行统计分析。所有统计值用平均值±标准差(mean±SD)表示。数据在分析之前先进行正态分布(K-S检验)和方差齐性检验(Levene检验), 如不符合则采用非参数检验。鱼群组成对在不同迷宫区域成群动态参数的影响采用一般线性模型的双因素多变量分析, 如差异显著, 采用Duncan多重比较检验差异显著性。模拟捕食刺激对不同组成鱼群成群动态参数的影响采用线性混合模型(以测定序号为随机变量)分析。鱼群在不同臂(或区域; 由于空白臂的分布数很低, 3个空白臂合并分析)的密度分布差异使用Fisher精确检验。
2. 结果
2.1 不同饥饿个体占比对鱼群分布和成群动态的影响
密度分布 总体上, 实验鱼在隐蔽所臂的分布最为密集, 其次是食物臂和迷宫中心区域, 最低为空白臂(图 2A)。具体而言: 8F0S、7F1S和4F4S组实验鱼在隐蔽所臂的分布密度显著高于其他区域(P<0.05); 1F7S组在隐蔽所臂的分布显著高于食物臂和中心区域, 另外在食物臂的分布还显著高于空白臂(P<0.05); 0F8S组在隐蔽所臂和食物臂分布大致相当, 且均显著高于空白臂(P<0.05)。
图 2 鱼群组成对实验鱼群在迷宫区域分布和成群动态参数的影响(N=8, 平均值±标准差)a, b, c. 不同字母表示不同鱼群组成间差异显著(P<0.05); x, y, z. 不同字母表示同一鱼群组成不同区域间差异显著(P<0.05)Figure 2. Effect of different initial fish shoal compositions on the distribution and fission-fusion dynamic of the fish shoal in different maze zones (N=8, mean±SD)a, b, c. Different letters indicate significant difference among different groups (P<0.05); x, y, z. Different letters indicate significant difference among maze zones within the same group (P<0.05)成群频率 鱼群组成和迷宫区域对成群频率均有显著影响(表 1和图 2B)。隐蔽所臂的成群频率随着群体内饥饿鱼个体数量的增加呈下降趋势, 其中8F0S组和7F1S组显著高于1F7S组(P<0.05)。食物臂和空白臂的成群频率值为7F1S组最高, 显著高于1F7S组和0F8S组(P<0.05)。所有实验组隐蔽所臂的成群频率均显著高于空白臂, 且8F0S组、7F1S组和0F8S组的隐蔽所臂还显著高于食物臂(P<0.05)。
表 1 鱼群组成和迷宫区域对鱼群成群动态影响的双因素分析统计表Table 1. Results of Two-way ANOVA for the effect of different initial fish shoal compositions on the distribution and the fission-fusion dynamics in different maze zones指标Index 成群频率Grouping frequency 群体持续时间Duration of shoal 成群时间比Percentage time in grouping 鱼群组成Group composition, G F4,105=6.343 F4,105=2.063 F4,105=2.645 P<0.001* P=0.091 P=0.038* 迷宫区域Maze zone, M F2,105=24.708 F2,105=21.174 F2,105=45.729 P<0.001* P<0.001* P<0.001* 组成×区域G×M F8,105=0.786 F8,105=1.750 F8,105=2.549 P=0.616 P=0.096 P=0.014* 注: *影响显著 (P<0.05); 下同Note: *Significant effect (P<0.05). The same applies below 成群持续时间 仅迷宫区域对成群的持续时间有显著影响(表 1和图 2C), 8F0S组的隐蔽所臂的持续时间显著长于食物臂和空白臂, 其余组别表现为隐蔽所臂和食物臂显著高于空白臂(P<0.05)。
成群时间占比 鱼群组成和迷宫区域对成群时间占比均有显著影响(表 1和图 2D; P<0.05)。除0F8S组的食物臂与隐蔽所臂和空白臂相比没有差异外, 其余各组均为隐蔽所臂显著大于食物臂, 而后者显著大于空白臂(P<0.05)。另外, 8F0S组的隐蔽所臂的成群时间占比显著大于其他各组(P<0.05); 而空白臂的最大值出现在7F1S组, 显著大于除4F4S组外的其他各鱼群组(P<0.05)。
2.2 模拟捕食刺激对不同组成鱼群分布和成群动态的影响
密度分布 鱼群组成对不同迷宫区域鱼群的分布均没有显著影响。刺激后各实验组在隐蔽所臂的分布均显著上升(P<0.05), 而空白臂和迷宫中心的分布均显著下降(P<0.05); 食物臂的分布在刺激后未发生显著变化(图 3)。
图 3 模拟捕食刺激对不同组成鱼群密度分布的影响(N=8, 平均值±标准差)*表示同一鱼群组成不同状态间差异显著(P<0.05); 下同Figure 3. Effects of simulated predation risk on the distribution of fish shoal with different composition in the maze (N=8, mean±SD)* indicates significant difference between non-stress and stress status (P<0.05). The same applies below成群频率 由于迷宫的空白臂和食物臂刺激后多数没有出现成群的现象, 无法对单次成群的持续时间进行有效统计, 因此本结果只统计了模拟捕食刺激前后成群频率与成群时间比的数据。鱼群组成仅对隐蔽所臂成群频率有显著影响(P=0.025, 表 2), 表现为8F0S组显著高于1F7S组和0F8S组(图 4A—C)。模拟捕食刺激对食物臂和空白臂成群频率均有显著影响, 表现为实验鱼受到捕食刺激后在食物臂和空白臂的成群频率显著下降(P<0.05)。另外, 在刺激后鱼群在隐蔽所臂基本上一直处于成群状态, 频率接近于1, 因此刺激对成群频率的影响表现为8F0S组和7F1S组有下降趋势, 而7F1S组和0F8S组有上升趋势。
表 2 鱼群组成和模拟捕食刺激对实验鱼群不同迷宫臂成群动态参数影响的线性混合模型(以测量编号为随机变量)分析统计表Table 2. The statistical results of linear mixed model for the effects of different initial fish shoal compositions and simulated predation stimulation on fission-fusion dynamics of the experimental fishes (measurement numbers as random variables)指标Index 隐蔽所臂Shelter arm 食物臂Food arm 空白臂Normal arm 成群频率Frequency 时间占比Percentage time 成群频率Frequency 时间占比Percentage time 成群频率Frequency 时间占比Percentage time 组成 Composition, C F4,70=2.962 F4,70=0.096 F4,70=0.635 F4,70=0.282 F4,70=1.004 F4,70=2.982 P=0.025* P=0.983 P=0.641 P=0.154 P=0.412 P=0.025* 刺激Stimulation, S F1,70=0.024 F1,70=141.141 F1,70=15.059 F1,70=10.848 F1,70=30.244 F1,70=18.169 P=0.878 P<0.001* P<0.001* P=0.002* P<0.001* P<0.001* 组成×刺激C×S F4,70=1.696 F4,0=0.981 F4,70=0.802 F4,70=0.133 F4,70=1.475 F4,70=1.766 P=0.161 P=0.423 P=0.532 P=0.969 P=0.219 P=0.146 成群时间比 模拟捕食刺激对所有臂成群时间占比均有显著影响(图 4D—F), 表现为捕食刺激导致隐蔽所臂的成群时间占比显著上升, 但食物臂和空白臂显著下降(P<0.05)。另外, 鱼群组成对空白臂的成群时间占比亦有显著影响(P =0.025), 在无捕食刺激条件下, 7F1S组在空白臂的分布显著高于4F4S组(P<0.05)。
3. 讨论
3.1 实验鱼在迷宫的分布偏好及鱼群组成的影响
从正常摄食的德玛森小岩鲷鱼群(即8F0S组)的数据来看, 实验鱼偏好分布于隐蔽所臂, 隐蔽所臂密度分布是食物臂和空白臂的2—4倍。这说明在陌生环境中, 逃避敌害为德玛森小岩鲷在行为上的首要选择。这与大多数鱼类的研究结果相似[18, 19]。通过8F0S组的成群动态的数据分析发现, 该鱼群隐蔽所臂鱼群成群频率较高, 持续时间较长, 因此处于成群状态的时间占比远高于食物臂和普通臂。这说明鱼群密度分布主要是受鱼群成群动态变化的影响。集群是鱼类逃避敌害的主要行为策略之一, 德玛森小岩鲷在隐蔽场所集群的行为方式, 可能会有效降低其被捕食的概率[20, 21]。这可能是因为作为慈鲷科鱼类的德玛森小岩鲷起源于非洲热带湖泊, 其自然生境捕食压力高, 生境结构复杂, 隐蔽物多[22]。另外, 以往的研究还发现, 鱼类可以利用隐蔽所减少活动, 降低能量消耗[23]。因此, 有效利用隐蔽物进化为鱼类以及其他类群动物高效的反捕食策略[19, 24]。
本实验发现随着饥饿个体比例增加, 鱼群在隐蔽所臂和食物臂密度分布的差异逐渐缩小, 直至没有差异。这说明在饥饿条件下德玛森小岩鲷觅食需求上升[12, 25]。值得指出的是, 即使是全饥饿的同质性鱼群(0F8S组)依然在隐蔽所臂有较高的密度分布和成群频率。这进一步说明德玛森小岩鲷对隐蔽所依赖性较高。鱼群的群体决策机制研究近年来受到广泛关注[26, 27]。研究发现, 鱼群的行为可能主要由少数个体决定或群体成员共同决定[28]。如果群体行为主要由少数个体决定的话, 少数异质性个体的加入可能导致鱼群产生较大的变化。然而, 本实验的研究结果发现鱼群在隐蔽所和食物臂分布密度的差异随鱼群饥饿成员比例的上升, 整体上呈线性下降趋势。这表明在本实验设定的生态场景下, 德玛森小岩鲷的群体行为可能为群体共同决定。这和以往德玛森小岩鲷在完成空间探索任务时的决策方式一致[27]。
以往的研究发现, 鱼类可能通过改变成群频率和持续时间以解决逃避敌害和觅食需求的矛盾[12]。虽然鱼群密度分布整体上随鱼群中饥饿成员比例的上升呈线性变化趋势, 然而从成群动态参数来看: 鱼群成群频率、持续时间和成群时间占比与鱼群组成关系较为混乱。二者的变化并非完全一致, 这说明随着饥饿成员比例的上升, 非成群状态实验鱼的觅食行为对鱼群整体的分布产生了较大的影响。
3.2 模拟捕食刺激对鱼群动态的影响
本实验的结果发现模拟捕食刺激导致鱼群在隐蔽所臂的分布大幅度上升, 在空白臂、迷宫中心和食物臂的分布下降。这一方面进一步说明利用隐蔽场所是德玛森小岩鲷的重要反捕食策略。另一方面说明德玛森小岩鲷有较高的方位感, 即空间认知能力。这在以往的研究中也得到证实: 德玛森小岩鲷在遭遇捕食刺激后能够100%迅速进入隐蔽场所, 而该比例在多数鲤科鱼类不足50%[29]。研究者认为, 这种高的空间认知能力与生境复杂程度密切相关[30]。值得一提的是与空白臂和中心相比, 模拟捕食刺激导致食物臂下降的幅度较小。可能因素包括: (1)食物的吸引作用部分抵消了反捕食行为; (2)食物臂的结构可能对于少数个体也能起到一定程度的隐蔽所作用; (3)部分鱼群受刺激后先逃逸至隐蔽所, 但随后又重新回到食物臂。需要指出的是模拟捕食刺激后隐蔽所臂密度分布和成群时间占比远远高于食物臂(5—12倍), 表明绝大多数德玛森小岩鲷能够正确区分本实验设置的隐蔽所臂和食物臂。
鱼群整体及群体内不同成员的营养状况不同, 其逃避敌害能力可能存在差异[5]。因此, 鱼群在觅食和避敌策略上可能存在鱼群间的差异及内部的分歧[12]。然而, 除觅食需求的上升导致刺激前成群频率随饥饿个体比例的上升而下降外, 鱼群组成并未显著影响鱼群对模拟捕食刺激的响应。这可能是因为捕食刺激是非常强烈的逆境刺激[8], 在本实验条件下, 无论何种群体组成, 均表现为较为一致的避敌反应。例如本实验鱼群成群动态数据发现模拟捕食刺激后, 所有鱼群在隐蔽所臂的成群频率均接近1, 群体时间占比在80%以上, 而其他臂的成群时间占比非常低。这说明在模拟捕食刺激后, 德玛森小岩鲷基本成群隐匿于隐蔽所臂。
总之, 德玛森小岩鲷幼鱼总体上偏好利用隐蔽所, 但随着鱼群饥饿个体的增加, 鱼群觅食需求逐渐上升。在捕食胁迫下, 无论饥饿个体的占比如何, 鱼群均对隐蔽所有极为强烈的偏好。该行为策略可能是德玛森小岩鲷在结构复杂、捕食压力高的生境中通过长期演化而形成的, 且与其对复杂生境的认知能力密切关联。这一结论进一步佐证了鱼类行为表型与生境的高度协调性, 探讨了鱼类在行为上的适应性进化, 具有较为重要的理论意义。
-
图 2 禁渔前后鄱阳湖生态系统食物网结构
不同大小的圆表示不同功能组的生物量(以t/km2为单位); 灰色连线表示能量在生态系统中的流动路径; 各功能组的名称详见表 1。为了满足Ecopath软件的要求, 我们设置了一个渔业捕捞组, 用Fleet1来表示。由于渔业捕捞不属于生态系统内部生物之间的相互作用, 所以在表 1中没有列出该组名称
Figure 2. Food web structure of Poyang Lake ecosystem before and after the 10-Year Fishing Ban
Different-sized circles represent the biomass (t/km2) of different functional groups; gray lines indicate the flow of energy within the ecosystem; the names of each functional group can be found in Tab. 1. A fishing fleet, denoted as Fleet1, has been included to represent fishing activities, as per the requirements of the Ecopath software. Since fishing activities do not involve interactions among the internal biota of the ecosystem, they have not been listed in Tab. 1
表 1 基于Ecopath模型的鄱阳湖生态系统功能组划分及物种组成
Table 1 Functional group and component of ecopath model in Poyang Lake
编号
No.功能组
Functional group组成
CompositionG1 Piscivorous fishes 鳜Siniperca chuatsi, 斑鳜Siniperca scherzeri, 大眼鳜Siniperca kneri, 鳡Elopichthys bambusa, 鳤Ochetobius elongatus G2 Demersal carnivorous 乌鳢Channa argus, 鲇Silurus asotus, 河川沙塘鳢Odontobutis potamophilus, 日本鳗鲡Anguilla japonica, 大口鲇Silurus meridionalis G3 Culters 蒙古鲌Chanodichthys mongolicus, 达氏鲌Chanodichthys dabryi, 红鳍原鲌 Cultrichthys erythropterus, 翘嘴鲌Culter alburnus, 拟尖头鲌Culter oxycephaloides等 G4 Siluriformes 黄颡鱼Pelteobagrus fulvidrac, 光泽黄颡鱼Pelteobaggrus nitidus , 瓦氏黄颡鱼Pelteobagrus vachelli, 长须黄颡鱼Pelteobagrus eupogon, 白边拟鲿Pseudobagrus albomarginatus , 乌苏拟鲿Pseudobagrus ussuriensis, 长吻鮠Leiocassis longirostris, 粗唇鮠Leiocassis crassilabris, 大鳍鳠Hemibagrus macropterus G5 Black carp 青鱼Mylopharyngodon piceus G6 C-carps 鲤Cyprinus carpio, 鲫Carassius auratus G7 Anchovy 短颌鲚Coilia brachygnathus, 刀鲚Coilia nasus G8 Silver carp 鲢Hypophthalmichthys molitrix G9 Bighead carp 鳙Aristichthys nobilis G10 Grass carp 草鱼Ctenopharyngodon idellus G11 Bream 团头鲂Megalobrama amblycephala, 鲂Megalobrama skolkovii, 鳊Parabramis pekinensis等 G12 Xenocypris 圆吻鲴Distoechodon tumirostris, 银鲴Xenocypris argentea, 细鳞鲴Xenocypris microlepis, 黄尾鲴Xenocypris davidi, 似鳊Pseudobrama simoni等 G13 S-pelagic 贝氏䱗Hemiculter bleekeri , 䱗Hemiculter leucisculus, 飘鱼Pseudolaubuca sinensis, 寡鳞飘鱼Pseudolaubuca engraulis, 圆尾斗鱼Macropodus chinensis, 叉尾斗鱼Macropodus opercularis, 麦穗鱼Pseudorasbora parva, 似鱎Toxabramis swinhonis, 马口鱼Opsariichthys bidens等 G14 S-demersal 蛇鮈Saurogobio dabryi, 光唇蛇鮈Saurogobio gymnocheilus, 长蛇鮈Saurogobio dumerili, 银鮈Squalidus argentatus, 吻鮈Rhinogobio typus, 棒花鱼Abbottina rivularis, 大鳍鱊 Acheilognathus macropterus, 华鳈Sarcocheilichthys sinensis, 黑鳍鳈Sarcocheilichthys nigripinnis, 花䱻Hemibarbus maculatus, 唇䱻Hemibarbus labeo, 似刺鳊鮈Paracanthobrama guichenoti, 紫薄鳅Leptobotia taeniaps等 G15 Shrimps 沼虾(日本沼虾Macrobrachium nipponense) G16 Zoobenthos 底栖动物(摇蚊属Chironomus, 水丝蚓属Limnodrilus) G17 Cladocera-copepoda 枝角、桡足类 G18 Microzooplankton 小型浮游动物(轮虫和原生动物等) G19 Attached algae 附着藻类 G20 Phytoplankton 浮游植物(微囊藻属Microcystis spp.、鱼腥藻属Anabaena spp.、颗粒直链藻Melosira granulata、小环藻属Cyclotella spp.、刚毛藻属Cladophora spp.等) G21 Macrophyte 大型水生植物(苔草Carex spp.、虉草Phalaris arundinacea、南荻Miscanthus lutarioriparius、蓼子草Persicaria criopolitana, 黑藻Hydrilla verticillata, 苦草Vallisneria natans 等) G22 Detritus 碎屑 表 2 模型平衡的生态学和热力学原则
Table 2 Ecological and thermodynamic principles of model balance
指标Index 取值范围
Value range生态营养效率Ecological efficiency (EE) 0<EE≤1.00 食物总转换效率Gross food conversion efficiency (GE=P/Q) 0.100<GE<0.300 净效率Net food conversion efficiency (NE) NE>GE 呼吸量Respiratory (R) R>0 表 3 禁渔前后鄱阳湖生态系统总体特征参数对比
Table 3 Comparison of general characteristic parameters of Poyang Lake ecosystem before and after the 10-Year Fishing Ban
参数
Parameter禁渔前
Pre-ban 2018禁渔后
Post-ban 2021与成熟生态系统的关系
Relationship with mature ecosystem单位
Unit生态系统成熟度参数Ecosystem Maturity 净系统生产量 (NSP) 7.77×103 5.62×103 成熟系统≈0 t/(km2·
year)总初级生产量/总呼吸量(TP/TR) 4.77 2.86 成熟系统≈1 总初级生产量/总生物量(TP/TB) 22.9 14.8 负相关 总生物量 (TB) 430 583 正相关 t/km2 生态系统稳定性参数Ecosystem Stability 连接指数 (CI) 0.28 0.34 正相关 系统杂食指数 (SOI) 0.21 0.44 正相关 循环指数 (FCI) 2.43% 9.12% 成熟系统>0.5 % 总路径数 (TP) 725 2.95×103 正相关 附表 S1 2018年和2021年鄱阳湖生态系统基本信息
Appendix S1 Basic information of Poyang Lake ecosystem in 2018 and 2021
年份
Year密度Density
(tail/m3)水位
Water level (m)鱼平均体重
Average weight of fish (g)面积
Area (km2)捕捞量
(t)生物量Catch
biomass (t/km2)2018 35.6 17.64 9.1 3000 28000 6.48 2021 65.0 16.68 10.0 2800 0 13.00 注: 鱼的密度来自于内部鱼探仪测量数据; 鱼类个体平均体重和捕捞量数据来自内部资料; 其他水文信息参考鄱阳湖水文资源监测中心、江西水利厅Note: The fish density is derived from internal fish finder measurement data; average individual weight and catch data of fish come from internal sources; other hydrological information is referenced from the Poyang Lake Hydrological Resources Monitoring Center and the Jiangxi Water Resources Department 附表 S2 2018年和2021年鄱阳湖鱼类物种重量及数量百分比
Appendix S2 Weight and number percentage of fish species in Poyang Lake in 2018 and 2021
名称
Common name拉丁名
Latin name编号
Group No.2018年总重量占比
2018 total weight
percentage2018年总数量占比
2018 total number
percentage2021年总重量占比
2021 total weight
percentage2021年总数量占比
2021 total number
percentage鳗鲡 Anguilla japonica 2 0.01 — — — 间下鱵 Hyporamphus intermedius 0 0.10 1.89 — 0.09 短颌鲚 Coilia brachygnathus 7 0.71 4.13 2.11 14.84 刀鲚 Coilia nasus 7 0.03 0.03 0.95 2.14 大斑花鳅 Cobitis macrostigma 14 0.01 0.07 — — 中华花鳅 Cobitis sinensis 14 — 0.12 — 0.01 紫薄鳅 Leptobotia taeniops 14 0.01 0.16 — — 泥鳅 Misgurnus anguillicaudatus 14 0.01 0.07 — — 花斑副沙鳅 Parabotia fasciata 14 0.02 0.19 — 0.03 大鳞副泥鳅 Paramisgurnus dabryanus 14 — 0.01 — — 武昌副沙鳅 Parabotia banarescui 14 — — — — 江西副沙鳅 Parabotia kiangsiensis 14 — 0.01 — — 棒花鱼 Abbottina rivularis 14 0.08 1.63 — — 大鳍鱊 Acheilognathus macropterus 14 0.54 3.72 0.13 1.49 兴凯鱊 Acheilognathus chankaensis 14 0.08 1.32 — — 越南鱊 Acheilognathus tonkinensis 14 0.01 0.08 — — 无须鱊 Acheilognathus gracilis 14 — 0.04 — — 大口鱊 Acheilognathus macromandibularis 14 — 0.01 0.00 0.05 寡鳞鱊 Acheilognathus hypselonotus 14 — — 0.47 7.17 鲫 Carassius auratus 6 5.00 13.96 5.92 13.17 达氏鲌 Chanodichthys dabryi 3 1.92 1.28 2.24 2.39 红鳍原鲌 Chanodichthys erythropterus 3 1.64 2.34 0.50 0.92 蒙古鲌 Chanodichthys mongolicus 3 3.98 1.64 1.55 1.23 尖头鲌 Chanodichthys oxycephalus 3 — — — 麦瑞加拉鲮 Cirrhinus mrigala 12 0.17 0.03 0.94 1.23 鲮 Cirrhinus molitorella 12 — — 0.68 0.44 铜鱼 Coreius heterodon 14 0.01 0.01 — — 草鱼 Ctenopharyngodon idellus 10 7.87 0.51 14.60 3.41 翘嘴鲌 Culter alburnus 3 9.93 3.35 6.93 3.09 拟尖头鲌 Culter oxycephaloides 3 — — 0.00 0.01 鲤 Cyprinus carpio 6 26.53 5.69 3.10 0.99 圆吻鲴 Distoechodon tumirostris 12 — — — — 细鳞鲴 Plagiognathops microlepis 12 — — 0.02 0.03 鳡 Elopichthys bambusa 1 0.72 0.03 0.13 0.01 短须颌须鮈 Gnathopogon imberbis 14 — — — — 花䱻 Hemibarbus maculatus 14 0.71 1.23 0.31 0.47 唇䱻 Hemibarbus labeo 14 — 0.01 0.00 0.01 贝氏䱗 Hemiculter bleekeri 13 0.30 1.93 0.42 5.56 䱗 Hemiculter leucisculus 13 0.90 4.30 0.06 0.43 鲢 Hypophthalmichthys molitrix 8 6.77 0.58 24.28 5.50 鳙 Hypophthalmichthys nobilis 9 5.39 0.21 17.18 1.15 鲂 Megalobrama skolkovii 11 1.98 1.57 6.40 8.02 团头鲂 Megalobrama amblycephala 11 0.45 0.08 0.99 0.52 福建小鳔鮈 Microphysogobio fukiensis 14 — 0.06 — — 青鱼 Mylopharyngodon piceus 5 0.46 0.13 0.22 0.16 鳤 Ochetobius elongatus 1 — — 0.01 0.02 稀有白甲鱼 Onychostoma rarum 12 0.01 0.01 — — 马口鱼 Opsariichthys bidens 13 0.1 0.18 — 0.00 鳊 Parabramis pekinensis 11 2.18 1.14 0.75 1.45 似刺鳊鮈 Paracanthobrama guichenoti 14 0.23 0.14 0.10 0.07 彩副鱊 Paracheilognathus imberbis 14 — 0.01 0.01 0.35 长须片唇鮈 Platysmacheilus longibarbatus 14 — 0.03 — — 似鳊 Pseudobrama simoni 12 2.7 20.49 0.75 8.06 似鮈 Pseudogobio vaillanti 14 0.01 0.02 — — 寡鳞飘鱼 Pseudolaubuca engraulis 13 0.04 0.1 0.04 0.38 飘鱼 Pseudolaubuca sinensis 13 0.26 0.51 0.06 0.23 斑点蛇鮈 Saurogobio punctatus 14 — — 0.00 0.01 光唇蛇鮈 Saurogobio gymnocheilus 14 0.04 0.51 0.02 0.45 长蛇鮈 Saurogobio dumerili 14 0.01 — 0.00 0.01 银鮈 Squalidus argentatus 14 0.09 2.03 0.00 0.62 点纹银鮈 Squalidus wolterstorffi 14 — 0.01 — — 赤眼鳟 Squaliobarbus curriculus 11 0.92 0.39 0.20 0.16 似鱎 Toxabramis swinhonis 13 0.07 0.10 0.00 0.02 银鲴 Xenocypris macrolepis 12 0.39 1.23 0.42 1.23 黄尾鲴 Xenocypris davidi 12 0.14 0.08 0.01 0.02 大口黑鲈 Micropterus salmoides 1 0.02 — — — 乌鳢 Channa argus 2 1.78 0.31 0.43 0.12 粘皮鲻虾虎鱼 Mugilogobius myxodermus 14 — — — — 子陵吻虾虎鱼 Rhinogobius giurinus 14 0.02 0.65 0.00 1.08 波氏吻虾虎鱼 Rhinogobius cliffordpopei 14 — — — — 小黄䱂鱼 Micropercops swinhonis 14 — 0.01 — — 河川沙塘鳢 Odontobutis potamophila 2 0.01 0.06 — — 叉尾斗鱼 Macropodus opercularis 13 0 0.01 — — 圆尾斗鱼 Macropodus chinensis 13 0 0.01 — — 鳜 Siniperca chuatsi 1 2.61 1.34 3.45 1.41 斑鳜 Siniperca scherzeri 1 0.02 0.01 — — 长身鳜 Siniperca roulei 1 — — — — 大眼鳜 Siniperca kneri 1 0.01 — — — 大鳍半鲿 Mystus macropterus 4 0.01 — — — 长吻鮠 Leiocassis longirostris 4 0.01 0.01 0.00 0.01 瓦氏黄颡鱼 Pelteobagrus vachelli 4 0.3 0.25 0.12 0.07 长须黄颡鱼 Pelteobagrus eupogon 4 0.13 0.34 0.32 3.68 白边拟鲿 Pseudobagrus albomarginatus 4 0.06 0.19 0.02 0.05 粗唇鮠 Pseudobagrus crassilabris 4 0.18 0.24 0.01 0.02 圆尾拟鲿 Pseudobagrus tenuis 4 — — — — 细体拟鲿 Pseudobagrus pratti 4 — — 0.00 0.02 乌苏拟鲿 Pelteobagrus ussuriensis 4 — — 0.00 0.01 光泽疯鲿 Tachysurus nitidus 4 0.2 1.31 0.10 0.92 黄颡鱼 Tachysurus fulvidraco 4 1.91 4.17 0.35 1.07 纵带疯鲿 Tachysurus argentivittatus 4 0 0.05 0.00 0.01 黑尾䱀 Liobagrus nigricauda 4 — — — — 革胡子鲇 Clarias gariepinus 2 — — — — 鲇 Silurus asotus 2 7.47 4.38 1.73 1.78 南方鲇 Silurus meridionalis 2 0.53 0.03 0.59 0.03 中华刺鳅 Sinobdella sinensis 14 0.01 0.09 0.00 0.03 黄鳝 Monopterus albus 14 0.02 0.04 — — 附表 S3 2018年和2021年鄱阳湖各鱼类功能组的重量百分比及生物量
Appendix S3 Weight percentage and biomass of all fish groups in Poyang Lake in 2018 and 2021
编号Group No. 重量比Weight ratio of group (%) 栖息地生物量占比Biomass in habitat area (t/km2) 2018 2021 2018 2021 G1 3.38 3.59 0.22 0.47 G2 9.80 2.74 0.63 0.36 G3 17.47 11.24 1.13 1.46 G4 2.80 0.92 0.18 0.12 G5 0.46 0.22 0.03 0.03 G6 31.53 9.02 2.04 1.17 G7 0.74 3.06 0.05 0.40 G8 6.77 24.28 0.44 3.16 G9 5.39 17.18 0.35 2.23 G10 7.87 14.60 0.51 1.90 G11 5.53 8.35 0.36 1.09 G12 3.41 2.83 0.22 0.37 G13 1.67 0.58 0.11 0.08 G14 1.91 1.05 0.12 0.14 附表 S4 P/B和Q/B系数计算所需参数汇总
Appendix S4 Summary of required parameters for calculation of P/B and Q/B coefficient
编号Group No. 组成Composition Lmean (cm) Lmin (cm) Lmax (cm) Linf (cm) K Mest P/B Q/B 7 短颌鲚Coilia brachygnathus,
刀鲚Coilia nasus15.08 3.00 30.00 31.58 0.44 0.76 0.60 8.50 9 鳙Aristichthys nobilis 36.76 9.20 91.00 95.79 0.53 0.36 1.14 9.60 8 鲢Hypophthalmichthys molitrix 23.84 4.60 92.00 96.84 0.33 0.47 1.25 7.30 5 青鱼Mylopharyngodon piceus 14.42 8.10 57.00 60.00 0.22 0.39 1.59 4.00 10 草鱼Ctenopharyngodon idellus 29.27 6.70 92.00 96.84 0.21 0.33 0.63 7.40 11 团头鲂Megalobrama amblycephala 11.72 5.80 66.80 70.32 0.22 0.37 2.18 8.30 11 鲂Megalobrama skolkovii 12.50 3.70 40.00 42.11 0.30 0.53 1.01 17.20 11 鳊Parabramis pekinensis 15.03 3.50 31.50 33.16 0.31 0.58 0.49 16.20 11 赤眼鳟Squaliobarbus curriculus 20.02 6.00 32.70 34.42 0.37 0.66 0.38 12.40 13 贝氏䱗Hemiculter bleekeri 8.48 3.20 14.30 15.05 0.70 1.20 0.87 15.10 13 䱗Hemiculter leucisculus 9.93 3.10 44.00 46.32 0.15 0.31 0.80 12.10 13 飘鱼Pseudolaubuca sinensis 14.54 6.40 21.20 22.32 0.79 1.23 0.75 16.60 14 光唇蛇鮈Saurogobio
gymnocheilus7.22 4.00 10.50 11.05 0.44 0.81 0.52 14.30 14 蛇鮈Saurogobio dabryi 10.82 5.50 19.60 20.63 0.62 1.09 1.14 18.90 14 银鮈Squalidus argentatus 6.32 3.40 13.20 13.89 0.85 1.52 2.20 17.60 14 棒花鱼Abbottina rivularis 5.83 2.70 17.90 18.84 0.23 0.54 0.96 20.40 14 华鳈Sarcocheilichthys
sinensis,
黑鳍鳈Sarcocheilichthys
nigripinnis8.27 4.60 13.40 14.11 0.86 1.53 1.37 22.50 14 花䱻Hemibarbus maculatus,
唇䱻Hemibarbus labeo13.23 7.00 29.00 30.53 0.19 0.41 0.53 6.80 14 铜鱼Coreius heterodon 15.58 10.50 19.80 20.84 0.4 0.79 0.41 9.60 14 紫薄鳅Leptobotia taeniaps 6.28 4.60 11.00 11.58 0.44 0.97 1.39 16.90 14 花斑副沙鳅Parabotia fasciata 6.99 3.50 15.00 15.79 0.41 0.86 1.03 18.70 14 中华刺鳅Sinobdella sinensis 11.67 7.00 16.20 17.05 0.41 0.84 0.47 22.80 14 中华花鳅Cobitis sinensis 5.80 3.80 12.90 13.58 0.43 0.89 1.67 21.10 14 黄鳝Monopterus albus 26.8 10.00 37.30 39.26 0.41 0.69 0.30 9.50 14 子陵吻虾虎鱼Rhinogobius giurinus,
小黄䱂鱼Micropercops swinhonis4.12 1.90 8.00 8.42 0.65 1.41 1.26 14.60 1 鳡Elopichthys bambusa 40.35 19.50 96.50 101.58 0.24 0.36 0.70 8.20 3 达氏鲌Chanodichthys dabryi 16.41 6.40 44.20 46.53 0.36 0.60 1.08 5.50 3 红鳍原鲌Chanodichthys erythropterus 13.59 3.50 29.70 31.26 1.17 1.58 2.05 6.60 3 蒙古鲌Chanodichthys mongolicus 19.26 2.70 46.70 49.16 0.41 0.65 0.74 4.80 3 翘嘴鲌Culter alburnus 21.52 3.00 74.00 77.89 0.26 0.41 0.79 4.20 1 鳜Siniperca chuatsi,
斑鳜Siniperca scherzeri,
长身鳜Siniperca roulei,
大眼鳜Siniperca kneri,14.83 5.80 56.60 59.58 0.45 0.66 2.23 4.10 2 鲇Silurus asotus,
大口鲇Silurus meridionalis22.45 5.40 90.90 95.68 0.22 0.35 0.94 3.70 2 河川沙塘鳢Odontobutis potamophila 7.77 4.30 12.80 13.47 0.86 1.27 1.41 5.90 2 乌鳢Channa argus 23.38 7.40 51.00 53.68 0.59 0.83 1.12 4.90 4 粗唇鮠Pseudobagrus crassilabris,
长吻鮠Leiocassis longirostris,
细体拟鲿Pseudobagrus pratti12.03 4.40 27.80 29.26 0.25 0.51 0.56 15.00 4 光泽黄颡鱼Pelteobaggrus nitidus,
长须黄颡鱼Pelteobagrus eupogon9.65 3.00 21.00 22.11 0.40 0.77 0.75 12.90 4 黄颡鱼Tachysurus fulvidraco 10.92 2.40 33.20 34.94 0.21 0.43 0.59 6.20 4 瓦氏黄颡鱼Pelteobagrus vachelli 16.10 7.90 28.30 29.79 0.38 0.69 0.63 11.10 6 鲫Carassius auratus 8.20 2.70 55.90 58.84 0.57 0.80 5.25 6.50 6 鲤Cyprinus carpio 17.95 1.00 84.70 89.16 0.25 0.39 1.05 9.10 12 黄尾鲴Xenocypris davidi,
圆吻鲴Distoechodon tumirostris16.52 8.30 30.00 31.58 0.37 0.67 0.68 10.40 12 银鲴Xenocypris macrolepis 10.77 5.50 26.00 27.37 0.33 0.64 1.04 16.40 12 似鳊Pseudobrama simoni 8.35 3.00 99.20 104.429 0.64 0.75 11.49 16.10 14 大鳍鱊Acheilognathus macropterus,
兴凯鱊Acheilognathus chankaensis,
无须鱊Acheilognathus gracilis,
大口鱊Acheilognathus macromandibularis6.25 2.50 7.40 7.79 0.92 1.85 0.38 32.70 14 高体鳑鲏Rhodeus ocellatus ,
中华鳑鲏Rhodeus sinensis3.99 2.70 6.20 6.53 1.43 2.70 2.82 35.80 附表 S5 各鱼类功能组的P/B、Q/B系数
Appendix S5 P/B and Q/B coefficients of each fish functional group
编号Group No. P/B Q/B G1 2.93 12.30 G2 3.48 14.50 G3 4.66 21.10 G4 2.54 45.20 G5 1.59 4.00 G6 6.30 15.60 G7 0.60 8.50 G8 1.25 7.30 G9 1.14 9.60 G10 0.63 7.40 G11 4.05 54.10 G12 13.21 42.90 G13 2.43 43.80 G14 16.46 282.20 附表 S6 2018年鄱阳湖生态系统的渔业捕捞数据(Fleet1表示唯一的渔业捕捞功能组)
Appendix S6 Fishery data of the Poyang Lake ecosystem in 2018 (Fleet1 represents the only-one fishing function group)
编号Group No. 功能组Group name Fleet1 合计Total 1 Piscivorous fishes 0.38 0.38 2 Demersal carnivorous 1.10 1.10 3 Culters 1.96 1.96 4 Siluriformes 0.31 0.31 5 Black carp 0.05 0.05 6 C-carps 3.53 3.53 7 Anchovy 0.08 0.08 8 Silver carp 0.76 0.76 9 Bighead carp 0.60 0.60 10 Grass carp 0.88 0.88 11 Bream 0.62 0.62 12 Xenocypris 0.38 0.38 13 S-pelagic 0.20 0.20 14 S-demersal 0.33 0.33 15 Shrimps 0 0 16 Zoobenthos 0 0 17 Cladocera-copepoda 0 0 18 Microzooplankton 0 0 19 Attached algae 0 0 20 Phytoplankton 0 0 21 Macrophyte 0 0 22 Detritus 0 0 23 Sum 11.19 11.19 附表 S7 鄱阳湖生态系统模型的食物组成矩阵(上: 2018; 下2021)
Appendix S7 Matrix of diet composition for the Poyang Lake ecosystem model (Up: 2018; down: 2021)
被捕食者Predator 捕食者Prey G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G1 0.01 G2 0.01 G3 0.15 0.02 G4 0.05 G5 0.01 G6 0.183 0.14 0.181 G7 0.11 G8 0.02 0.01 G9 0.01 0.02 0.01 G10 0.01 0.02 0.05 G11 0.016 0.03 0.05 G12 0.12 0.1 0.144 0.016 G13 0.101 0.01 0.07 0.02 0.05 G14 0.18 0.24 0.32 0.303 0.01 0.05 0.06 G15 0.05 0.083 0.02 0.252 0.25 0.09 0.3 0.041 0.065 G16 0.06 0.11 0.03 0.352 0.65 0.667 0.26 0.32 0.409 0.25 0.3 G17 0.1 0.02 0.101 0.2 0.08 0.6 0.05 0.05 0.09 0.2 0.06 0.06 0.2 0.3 0.2 G18 0.008 0.003 0.04 0.08 0.02 0.19 0.006 0.09 0.005 0.01 0.05 0.15 0.05 G19 0.05 0.8 0.1 0.03 0.03 0.144 0.02 0.14 0.03 0.05 0.3 0.4 G20 0.01 0.11 0.15 0.2 0.024 0.204 0.08 0.09 0.02 0.12 0.12 G21 0.049 0.012 0.75 0.7 0.073 0.09 0.17 G22 0.095 0.022 0.1 0.092 0.1 0.014 0.02 0.349 0.036 0.25 0.51 0.51 0.13 0.23 总计Sum 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 被捕食者Predator 捕食者Prey G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G1 0.01 G2 0.002 0.1 G3 0.15 0.02 G4 0.01 0.05 0.02 0.03 G5 0.01 0.01 G6 0.181 0.05 0.23 0.013 G7 0.11 0.02 0.001 G8 0.06 0.03 G9 0.06 0.1 G10 0.026 0.06 0.05 G11 0.03 0.06 0.04 G12 0.04 0.06 0.14 0.036 0.16 G13 0.101 0.02 0.09 0.051 0.2 G14 0.04 0.02 0.23 0.25 0.25 0.065 G15 0.01 0.12 0.148 0.15 0.15 0.24 0.05 0.2 0.141 G16 0.11 0.11 0.12 0.2 0.09 0.2 0.22 0.309 0.15 0.3 0.07 G17 0.04 0.02 0.05 0.05 0.103 0.05 0.06 0.06 0.22 0.15 0.05 G18 0.06 0.11 0.06 0.293 0.1 0.13 0.13 0.15 0.3 0.106 0.17 0.19 0.096 0.135 0.11 0.15 0.05 0.05 G19 0.1 0 0.3 0.2 0.1 0.05 0.33 0.03 0.194 0.16 0.13 0.11 0.12 0.3 G20 0.1 0.2 0.24 0.2 0.04 0.14 0.21 0.09 0.174 0.1 0.144 0.104 0.16 0.1 0.05 0.05 0.27 G21 0.066 0.1 0.15 0.05 0.05 0.15 G22 0.09 0.03 0.072 0.08 0.23 0 0.15 0.2 0.04 0.3 0.149 0.14 0.38 0.3 0.35 0.48 0.33 总计Sum 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 附表 S8 2018年鄱阳湖生态系统模型基本输入与输出参数
Appendix S8 Basic input and estimated parameters of Poyang Lake ecosystem model during 2018
编号
No.功能组
Group营养级
TL生物量
B (t/km2)生产量/
生物量P/B消耗量/
生物量 Q/B生态营养
效率EE生产量/
消耗量 P/Q1 Fierce carnivorous 3.63 0.194 2.94 12.3 0.664 0.239 2 Demersal carnivorous 3.48 0.564 3.48 14.5 0.581 0.240 3 Culters 3.31 1.01 4.66 16.1 0.443 0.290 4 Siluriformes 3.03 0.161 4.80 16.3 0.945 0.294 5 Black carp 2.98 0.0500 2.85 12.0 0.935 0.238 6 C-carps 2.93 1.81 5.20 15.6 0.856 0.333 7 Anchovy 2.96 0.426 2.20 8.50 0.369 0.259 8 Silver carp 2.12 0.620 1.80 7.30 0.898 0.247 9 Bigheadcarp 2.46 0.580 2.50 9.60 0.880 0.260 10 Grasscarp 2.07 0.530 4.40 12.0 0.875 0.367 11 Bream 2.06 0.480 4.50 22.1 0.867 0.204 12 Xenocyprididae 2.46 0.330 12.0 32.9 0.693 0.365 13 S-pelagic 2.68 0.310 8.00 20.3 0.962 0.394 14 S-demersal 2.54 0.700 20.0 50.0 0.960 0.400 15 Shrimps 2.41 1.91 7.50 36.0 0.374 0.208 16 Zoobenthos 2.08 30.5 2.00 34.0 0.903 0.059 17 Cladocera-copepoda 2.29 24.0 13.0 42.0 0.434 0.310 18 Microzooplankton 2.05 20.4 22.0 70.0 0.621 0.314 19 Attachedalgae 1.00 20.0 99.0 — 0.510 — 20 Phytoplankton 1.00 55.0 110 — 0.154 — 21 Macrophyte 1.00 270 6.70 — 0.107 — 22 Detritus 1.00 470 — — 0.119 — 注: 粗体为模型计算; “—”表示无数据输出Note: Bolds represent results calculated by the model; “—” represents no output data 附表 S9 2021年鄱阳湖生态系统模型基本输入与输出参数
Appendix S9 Basic input and estimated parameters of Poyang Lake ecosystem model during 2021
编号
No.功能组
Group营养级
TL生物量
B (t/km2)生产量/
生物量P/B消耗量/
生物量 Q/B生态营养
效率EE生产量/
消耗量 P/Q1 Fierce carnivorous 3.86 0.668 2.94 12.3 0.0420 0.239 2 Demersal carnivorous 3.45 0.650 3.48 14.5 0.424 0.240 3 Culters 3.17 1.46 3.66 16.1 0.318 0.228 4 Siluriformes 2.88 1.20 5.00 16.3 0.685 0.307 5 Black carp 2.64 0.0300 4.00 12.0 0.815 0.333 6 C-carps 2.80 1.73 5.20 15.6 0.895 0.333 7 Anchovy 3.26 1.00 2.20 8.50 0.589 0.259 8 Silver carp 2.92 3.16 0.800 7.30 0.307 0.110 9 Bigheadcarp 3.19 2.23 3.00 9.60 0.534 0.313 10 Grasscarp 2.51 1.90 2.20 7.40 0.468 0.297 11 Bream 2.74 1.08 5.00 22.1 0.765 0.226 12 Xenocyprididae 2.87 0.830 13.1 42.9 0.912 0.305 13 S-pelagic 2.88 0.810 7.00 23.0 0.856 0.304 14 S-demersal 2.56 1.60 15.8 45.0 0.875 0.351 15 Shrimps 2.66 4.00 8.50 35.0 0.496 0.243 16 Zoobenthos 2.55 76.0 10.0 26.0 0.287 0.385 17 Cladocera-copepoda 2.24 50.0 21.0 56.0 0.921 0.375 18 Microzooplankton 2.12 24.0 29.0 77.0 0.848 0.377 19 Attachedalgae 1.00 15.7 110 — 0.667 — 20 Phytoplankton 1.00 45.0 101 — 0.175 — 21 Macrophyte 1.00 350 6.80 — 0.222 — 22 Detritus 1.00 180 — — 0.328 — 注: 粗体为模型计算; “—”表示无数据输出Note: Bolds represent results calculated by the model; “—” represents no output data -
[1] 张堂林, 李钟杰. 鄱阳湖鱼类资源及渔业利用 [J]. 湖泊科学, 2007, 19(4): 434-444. Zhang T L, Li Z J. Fish resources and fishery utilization of Lake Poyang [J]. Journal of Lake Sciences, 2007, 19(4): 434-444.
[2] 韩耀全, 何安尤, 施军, 等. 珠江水域(广西段)三年禁渔期效果评估 [J]. 水产科技情报, 2015, 42(3): 135-139. Han Y Q, He A Y, Shi J, et al. Effect evaluation of three-year fishing ban in Pearl River waters (Guangxi section) [J]. Fisheries Science & Technology Information, 2015, 42(3): 135-139.
[3] 施炜纲, 刘凯, 张敏莹, 等. 春季禁渔期间长江下游鱼虾蟹类物种多样性变动(2001—2004年) [J]. 湖泊科学, 2005, 17(2): 169-175. Shi W G, Liu K, Zhang M Y, et al. Changes of biodiversity of fishery species in the lower reaches of the Yangtze River during the spring closed season [J]. Journal of Lake Science, 2005, 17(2): 169-175.
[4] 夏治俊, 刘飞, 余梵冬, 等. 赤水河流域鱼类物种、功能和分类多样性研究 [J]. 水生态学杂志, 2022, 43(5): 89-98. Xia Z J, Liu F, Yu F D, et al. Species, functional and taxonomic diversity of fish in the Chishui River Basin [J]. Journal of Hydroecology, 2022, 43(5): 89-98.
[5] Hossain M M, Matsuishi T, Arhonditsis G. Elucidation of ecosystem attributes of an oligotrophic lake in Hokkaido, Japan, using Ecopath with Ecosim (EwE) [J]. Ecological Modelling, 2010, 221(13/14): 1717-1730.
[6] Matsuishi T, Muhoozi L, Mkumbo O, et al. Are the exploitation pressures on the Nile perch fisheries resources of Lake Victoria a cause for concern [J]? Fisheries Management and Ecology, 2006, 13(1): 53-71.
[7] Christensen V. Ecological networks in fisheries: predicting the future [J]? Fisheries, 2013, 38(2): 76-81.
[8] Guo C, Ye S, Lek S, et al. The need for improved fishery management in a shallow macrophytic lake in the Yangtze River Basin: evidence from the food web structure and ecosystem analysis [J]. Ecological Modelling, 2013(267): 138-147.
[9] Fetahi T, Mengistou S. Trophic analysis of Lake Awassa (Ethiopia) using mass-balance Ecopath model [J]. Ecological Modelling, 2007, 201(3/4): 398-408.
[10] 冯德祥, 陈亮, 李云凯, 等. 基于营养通道模型的淀山湖生态系统结构与能量流动特征 [J]. 中国水产科学, 2011, 18(4): 867-876. Feng D X, Chen L, Li Y K, et al. Structure and energy flow of Dianshan Lake ecosystem based on the Ecopath model [J]. Journal Fishery Sciences of China, 2011, 18(4): 867-876.
[11] 王晓红, 李适宇, 彭人勇. 南海北部大陆架海洋生态系统演变的Ecopath模型比较分析 [J]. 海洋环境科学, 2009, 28(3): 288-292. Wang X H, Li S Y, Peng R Y. Establishment and comparative analysis of Ecopath model of ecosystem evolvement in northern continental shelf of the South China Sea [J]. Marine Environmental Science, 2009, 28(3): 288-292.
[12] Díaz López B, Bunke M, Bernal Shirai J A. Marine aquaculture off Sardinia Island (Italy): Ecosystem effects evaluated through a trophic mass-balance model [J]. Ecological Modelling, 2008, 212(3/4): 292-303.
[13] Yunkai-Li, Chen Y, Song B, et al. Ecosystem structure and functioning of Lake Taihu (China) and the impacts of fishing [J]. Fisheries Research, 2009, 95(2/3): 309-324.
[14] Coll M, Palomera I, Tudela S, et al. Food web dynamics in the South Catanla Sea ecosystem (NW Mediterrannean) for 1978-2003 [J]. Ecological Modelling, 2008, 217(1/2): 95116.
[15] 江红, 程和琴, Francisco Arreguín-Sánchez. 多准则渔业管理政策优选研究——以东海为例 [J]. 资源科学, 2010, 32(4): 612-619. Jiang H, Cheng H Q, ArreguínSánchez F. Exploring fisheries strategies for multi-criteria decision making: a case study of the East China Sea [J]. Resources Science, 2010, 32(4): 612-619.
[16] 陈作志, 邱永松, 贾晓平. 基于生态通道模型的北部湾渔业管理策略的评价 [J]. 生态学报, 2007, 27(6): 2334-2341. Chen Z Z, Qiu Y S, Jia X P. An evaluation of the fisheries management strategies in the Beibu Gulf: using Ecopath with Ecosim [J]. Acta Ecologica Sinica, 2007, 27(6): 2334-2341.
[17] 杨巧言. 江西省自然地理志 [M]. 北京: 方志出版社, 2003. Yang Q Y. Physical Geography of Jiangxi Province [M]. Beijing: Fangzhi Publishing House, 2003.
[18] 戴雪, 何征, 万荣荣, 等. 近35a长江中游大型通江湖泊季节性水情变化规律研究 [J]. 长江流域资源与环境, 2017, 26(1): 118-125. Dai X, He Z, Wan R R, et al. Variation of seasonal water-level fluctuations in riverconnected lakes in the middle reaches of Yangtze River in the recent three decades [J]. Resources and Environment in the Yangtze Basin, 2017, 26(1): 118-125.
[19] 李华栋. 鄱阳湖文化志 [M]. 南昌: 江西人民出版社, 2014. Li H D. The Poyang Lake Cultural Annals [M]. Nanchang: Jiangxi People’s Publishing House, 2014.
[20] Liu X, Qin J, Xu Y, et al. Biodiversity pattern of fish assemblages in Poyang Lake Basin: threat and conservation [J]. Ecology and Evolution, 2019, 9(20): 11672-11683.
[21] Li M, Liu C, Liu F, et al. Decrease in fishery yields in response to hydrological alterations in the largest floodplain lake (Poyang Lake) in China [J]. Frontiers in Earth Science, 2022(10): 878439.
[22] Christensen V, Pauly D. ECOPATH II-a software for balancing steady-state ecosystem models and calculating network characteristics [J]. Ecological Modelling, 1992, 61(3/4): 169-185.
[23] Christensen V, Waltersc J, Pauly D. Ecopath with Ecosim: A User’s Guide [M]. Vancouver: Fisheries Centre, University of British Columbia, 2005: 12-13.
[24] Tesfaye G, Wolff M. Modeling trophic interactions and the impact of an introduced exotic carp species in the Rift Valley Lake Koka, Ethiopia [J]. Ecological Modelling, 2018(378): 26-36.
[25] 叶少文, 冯广朋, 张彬, 等. 牛山湖小型鱼类群落结构特征及生物量估算 [J]. 中国水产科学, 2012, 19(5): 854-862. Ye S W, Feng G P, Zhang B, et al. Characteristics of community structure and biomass estimates of small-size fishes in Niushan Lake, Hubei Province, China [J]. Journal of Fishery Sciences of China, 2012, 19(5): 854-862.
[26] 尹然. 城市湖泊富营养化状况评价及应对策略——以武汉市南湖为例 [J]. 安徽农业科学, 2020, 48(24): 66-70. Yin R. Evaluation of eutrophication of urban lakes and coping strategies-a case study of Nanhu Lake of Wuhan city [J]. Journal of Anhui Agricultural Sciences, 2020, 48(24): 66-70.
[27] Pauly D, Christensen V, Ofsea I. Trophic Models of Aquatic Ecosystems [M]. International Center for Living Aquatic Resources Management, International Council for the Exploration of the Sea, Danish International Developmant Agency, 1993: 1-13.
[28] 简敏菲, 简美锋, 李玲玉, 等. 鄱阳湖典型湿地沉水植物的分布格局及其水环境影响因子 [J]. 长江流域资源与环境, 2015, 24(5): 765-772. Jian M F, Jian M F, Li L Y, et al. Distribution pattern of submerged plants in typical wetlands of Poyang Lake and its influencing factors of water environment [J]. Resources and Environment in the Yangtze Basin, 2015, 24(5): 765-772.
[29] 杨富亿, 刘兴土, 赵魁义, 等. 鄱阳湖的自然渔业功能 [J]. 湿地科学, 2011, 9(1): 82-89. Yang F Y, Liu X T, Zhao K Y, et al. Natural fishery function of Poyang Lake [J]. Wetland Science, 2011, 9(1): 82-89.
[30] 杨潇, 马吉顺, 张欢, 等. 鄱阳湖不同水文期浮游生物群落结构特征和影响因素及水质评价 [J]. 水生生物学报, 2021, 45(5): 1093-1103. doi: 10.7541/2021.2020.148 Yang X, Ma J S, Zhang H, et al. Community structure and the water quality during different hydrological periods in Poyang Lake [J]. Acta Hydrobiologica Sinica, 2021, 45(5): 1093-1103. doi: 10.7541/2021.2020.148
[31] Gulland J A. Fish Stock Assessment: Amanual of Basic Methods [M]. New York, Johan Wiley and Sons, 1983: 56-76.
[32] Pauly D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks [J]. ICES Journal of Marine Science, 1980, 39(2): 175-192. doi: 10.1093/icesjms/39.2.175
[33] Brey T. A collection of empirical relations for use in ecological modelling [J]. Naga, 1999(22): 24-28.
[34] Palomares M L, Pauly D. A multiple regression model for prediction the food consumption of marine fish populations [J]. Marine and Freshwater Research, 1989, 40(3): 259. doi: 10.1071/MF9890259
[35] Christensen V, Walters C J. Ecopath with Ecosim: methods, capabilities and limitations [J]. Ecological Modelling, 2004, 172(2/3/4): 109-139.
[36] Odum E P. Fundamentals of Ecology [M]. 3d ed. Philadelphia: Saunders, 1971.
[37] 张欢, 何亮, 张培育, 等. 食物链长度理论研究进展 [J]. 生态学报, 2013, 33(24): 7630-7643. Zhang H, He L, Zhang P Y, et al. Food chain length theory: a review [J]. Acta Ecologica Sinica, 2013, 33(24): 7630-7643.
[38] Bourdaud P, Gascuel D, Bentorcha A, et al. New trophic indicators and target values for an ecosystem-based management of fisheries [J]. Ecological Indicators, 2016(61): 588-601. doi: 10.1016/j.ecolind.2015.10.010
[39] Pauly D, Christensen V, Guénette S, et al. Towards sustainability in world fisheries [J]. Nature, 2002, 418(6898): 689-695. doi: 10.1038/nature01017
[40] Pauly D, Palomares M L, Froese R, et al. Fishing down Canadian aquatic food webs [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58(1): 51-62. doi: 10.1139/f00-193
[41] Morissette L, Hammill M O, Savenkoff C. The trophic role of marine mammals in the northern gulf of St. Lawrence [J]. Marine Mammal Science, 2006, 22(1): 74-103. doi: 10.1111/j.1748-7692.2006.00007.x
[42] Christensen V, Walters C J, Pauly D, et al. Ecopath with Ecosim Version 6 User Guide [M]. 2008: 35-36.
[43] 金显仕, 唐启升. 渤海渔业资源结构、数量分布及其变化 [J]. 中国水产科学, 1998, 5(3): 18-24. doi: 10.3321/j.issn:1005-8737.1998.03.004 Jin X S, Tang Q S. Structure, quantitative distribution and changes of fishery resources in Bohai Sea [J]. Journal of Fishery Sciences of China, 1998, 5(3): 18-24. doi: 10.3321/j.issn:1005-8737.1998.03.004
[44] Zhang Y, Chen Y. Modeling and evaluating ecosystem in 1980s and 1990s for American lobster (Homarus americanus) in the Gulf of Maine [J]. Ecological Modelling, 2007, 203(3/4): 475-489.
[45] Jake Vander Zanden M, Fetzer W W. Global patterns of aquatic food chain length [J]. Oikos, 2007, 116(8): 1378-1388. doi: 10.1111/j.0030-1299.2007.16036.x
[46] 林群, 金显仕, 郭学武, 等. 基于Ecopath模型的长江口及毗邻水域生态系统结构和能量流动研究 [J]. 水生态学杂志, 2009, 30(2): 28-36. Lin Q, Jin X S, Guo X W, et al. Study on the structure and energy flow of the Yangtze River Estuary and adjacent waters ecosystem based on Ecopath model [J]. Journal of Hydroecology, 2009, 30(2): 28-36.
[47] Heymans J J, Coll M, Libralato S, et al. Global patterns in ecological indicators of marine food webs: a modelling approach [J]. PLoS One, 2014, 9(4): e95845. doi: 10.1371/journal.pone.0095845
[48] Lindeman R L. The trophic-dynamic aspect of ecology [J]. Bulletin of Mathematical Biology, 1991, 53(1): 167-191.
[49] Christensen V. Ecosystem maturity-towards quantification [J]. Ecological Modelling, 1995, 77(1): 3-32. doi: 10.1016/0304-3800(93)E0073-C
[50] 贾佩峤, 胡忠军, 武震, 等. 基于ecopath模型对滆湖生态系统结构与功能的定量分析 [J]. 长江流域资源与环境, 2013, 22(2): 189-197. Jia P Q, Hu Z J, Wu Z, et al. Quantitative analysis on the structure and function of the Gehu Lake ecosystem based on ecopath modeling [J]. Resources and Environment in the Yangtze River Basin, 2013, 22(2): 189-197.
[51] 宋兵. 太湖渔业和环境的生态系统模型研究 [D]. 上海: 华东师范大学, 2004: 38-55. Song B. Ecosystem Modeling Study on the Fishery and Environment of Taihu Lake [D]. Shanghai: East China Normal University, 2004: 38-55.
[52] 赵旭昊, 徐东坡, 任泷, 等. 基于Ecopath模型的太湖鲢鳙生态容量评估 [J]. 中国水产科学, 2021, 28(6): 785-795. doi: 10.12264/JFSC2020-0306 Zhao X H, Xu D P, Ren L, et al. Assessment of the ecological carrying capacity of silver and bighead carp in the Taihu Lake based on Ecopath model [J]. Journal of Fishery Sciences of China, 2021, 28(6): 785-795. doi: 10.12264/JFSC2020-0306
[53] 黄孝锋, 邴旭文, 陈家长. 基于Ecopath模型的五里湖生态系统营养结构和能量流动研究 [J]. 中国水产科学, 2012, 19(3): 471-481. Huang X F, Bing X W, Chen J C. Energy flow and trophic structure of the Wuli Lake ecosystem based on an Ecopath model [J]. Journal of Fishery Sciences of China, 2012, 19(3): 471-481.
[54] Nielsen C O, Odum E P, Odum H T. Fundamentals of ecology [J]. Ecology, 1960, 41(2): 400.
[55] Vasconcellos M, Mackinson S, Sloman K, et al. The stability of trophic mass-balance models of marine ecosystems: a comparative analysis [J]. Ecological Modelling, 1997, 100(1/2/3): 125-134.
[56] 于佳, 刘佳睿, 王利, 等. 基于Ecopath模型的千岛湖生态系统结构和功能分析 [J]. 水生生物学报, 2021, 45(2): 308-317. doi: 10.7541/2021.2019.128 Yu J, Liu J R, Wang L, et al. Analysis on the ecosystem structure and function of Lake Qiandao based on the Ecopath model [J]. Acta Hydrobiologica Sinica, 2021, 45(2): 308-317. doi: 10.7541/2021.2019.128
[57] Wolff M. A trophic model for Tongoy Bay-a system exposed to suspended scallop culture (Northern Chile) [J]. Journal of Experimental Marine Biology and Ecology, 1994, 182(2): 149-168. doi: 10.1016/0022-0981(94)90048-5
[58] Tsehaye I, Nagelkerke L A J. Exploring optimal fishing scenarios for the multispecies artisanal fisheries of Eritrea using a trophic model [J]. Ecological Modelling, 2008, 212(3/4): 319-333.
[59] Pinnegar J K, Polunin N V C. Predicting indirect effects of fishing in Mediterranean rocky littoral communities using a dynamic simulation model [J]. Ecological Modelling, 2004, 172(2/3/4): 249-267.
[60] 王银平, 邓艳敏, 刘思磊, 等. 禁捕初期长江下游鱼类群落现状分析及禁渔效果初步评估 [J]. 水产学报, 2023, 47(2): 206-218. Wang Y P, Deng Y M, Liu S L, et al. Status analysis of fish community in the lower reaches of the Yangtze River at the beginning of 10-year fishing ban and assessment of fishing ban effect [J]. Journal of Fisheries of China, 2023, 47(2): 206-218.
[61] 姜涛, 杨健, 轩中亚, 等. 长江禁渔对鄱阳湖溯河洄游型刀鲚资源恢复效果初报 [J]. 渔业科学进展, 2022, 43(1): 24-30. Jiang T, Yang J, Xuan Z Y, et al. Preliminary report on the effects of resource recovery on anadromous Coilia nasus in Poyang Lake under the national 10-year fishing ban [J]. Progress in Fishery Sciences, 2022, 43(1): 24-30.
[62] 刘飞, 刘定明, 袁大春, 等. 近十年来赤水河不同江段鱼类群落年际变化特征 [J]. 水生生物学报, 2020, 44(1): 122-132. doi: 10.7541/2020.015 Liu F, Liu D M, Yuan D C, et al. Interannual variations of fish assemblage in the Chishui River over the last decade [J]. Acta Hydrobiologica Sinica, 2020, 44(1): 122-132. doi: 10.7541/2020.015
[63] 贾春艳, 王珂, 李慧峰, 等. 禁渔初期东洞庭湖鱼类资源的空间分布与密度变化 [J]. 南方水产科学, 2022, 18(3): 48-56. doi: 10.12131/20210148 Jia C Y, Wang K, Li H F, et al. Spatial distribution and density changes of fish resources in East Dongting Lake during early fishing ban period [J]. South China Fisheries Science, 2022, 18(3): 48-56. doi: 10.12131/20210148
[64] Zhang H, Kang M, Shen L, et al. Rapid change in Yangtze fisheries and its implications for global freshwater ecosystem management [J]. Fish and Fisheries, 2020, 21(3): 601-620. doi: 10.1111/faf.12449