COMPARATIVE STUDY OF METABOLIC CHARACTERISTICS AND SWIMMING PERFORMANCE BETWEEN BRACHYMYSTAX TSINLINGENSIS AND PHOXINUS LAGOWSKII
-
摘要:
为探究秦岭细鳞鲑(Brachymystax tsinlingensis)与其主要猎物鱼拉氏鱥(Phoxinus lagowskii)游泳能力的种间差异及其生理机制, 采用鱼类游泳代谢仪, 分别测定了两种实验鱼野生种群有氧运动能力[步法转换速度Gait transition speed (Ugait)和临界游泳速度Critical swimming speed (Ucrit)]、无氧运动能力[匀加速游泳速度Constant acceleration test speed (Ucat)]、静止代谢率(Resting metabolic rate, RMR)、最大代谢率(Maximum metabolic rate, MMR)、有氧代谢空间(Aerobic metabolic scope, MS)、运动耗氧率以及单位距离运动能耗(Energetic cost of transport, COT)等。结果表明: (1)秦岭细鳞鲑Ucrit和Ucat高于拉氏鱥(P<0.05), 但二者rUgait、rUcrit和rUcat差异不显著(P>0.05); (2)秦岭细鳞鲑RMR、MMR、MS等代谢特征均显著高于拉氏鱥(P<0.05), 并且特定流速下秦岭细鳞鲑运动耗氧率以及COT高于拉氏鱥; (3)秦岭细鳞鲑Ucrit与MS和MMR呈现出显著正相关或正相关的趋势, 拉氏鱥Ucrit与其MS和MMR均无显著相关性(P>0.05)。研究结果提示, 整体上秦岭细鳞鲑与拉氏鱥的相对游泳能力相近, 但秦岭细鳞鲑的游泳效率更低; 秦岭细鳞鲑的代谢潜能更大, 代谢潜能是维持其运动表现的重要动力。
Abstract:Qinling lenok Brachymystax tsinlingensis, a threatened salmonid species endemic to the Qinling Mountain Range, is a second-class state-protected wild animal in China Red Data Book of Endangered Animals. This species is landlocked and adapted to cold-water environments, specifically occurring in Qinling streams together with Phoxinus lagowskii. In order to explore the interspecific differences in swimming performance and metabolic characteristics between B. tsinlingensis and their main prey fish P. lagowskii, the anaerobic exercise ability (i.e., constant acceleration test speed, Ucat), aerobic exercise ability (i.e., gait transition speed, Ugait and critical swimming speed, Ucrit), resting metabolic rate (RMR), maximum metabolic rate (MMR), aerobic metabolic scope (MS), and the energetic cost of transport (COT) of wild populations of both species were measured using a Brett-type swimming tunnel respirometer. The results showed that: (1) the Ucrit and Ucat of B. tsinlingensis were higher than those of P. lagowskii (P<0.05), but there was no significant difference in the relative swimming abilities (including rUgait, rUcrit and rUcat) between the two species (P>0.05). (2) The RMR, MMR, and MS of B. tsinlingensis were significantly higher than those of P. lagowskii (P<0.05). Morover, both the oxygen consumption rate and COT at a specific swimming speed were higher than those of P. lagowskii. (3) The Ucrit of B. tsinlingensis showed a significant positive correlation or a trend of positive correlation with MS and MMR, while the Ucrit of P. lagowskii was not correlated with either MS or MMR (P>0.05). The results suggest that the relative swimming performance of B. tsinlingensis is similar to that of P. lagowskii, whereas the swimming efficiency of B. tsinlingensis is lower. On the other hand, B. tsinlingensis have greater metabolic potential, which is an important driving force for supporting their swimming performance. These findings are expected to provide a theoretical reference for studying the conservation physiology of B. tsinlingensis and understanding the dynamics of interspecific relationships in Qinling stream ecosystems.
-
-
图 1 秦岭细鳞鲑与拉氏鱥游泳能力的比较
Ucrit . 临界游泳速度; Ugait. 步法转换速度; Ucat. 匀加速游泳速度; rUcrit. 相对临界游泳速度; rUgait. 相对步法转换速度; rUcat. 相对匀加速游泳速度a—b, x—y上标字母不同分布表示两物种Ucrit和Ucat种间差异显著
Figure 1. Comparison of swimming performance between Brachymystax tsinlingensis and Phoxinus lagowskii
Ucrit. Critical swimming speed; Ugait. Gait transition speed; Ucat. Constant acceleration test speed; rUcrit. Relative critical swimming speed; rUgait. Relative gait transition speed; rUcat. Relative constant acceleration test speed; Different letters on a—b and x—y indicate significant interspecific differences in Ucrit and Ucat, respectively
图 2 秦岭细鳞鲑与拉氏鱥代谢特征的比较
RMR. 静止代谢率; MMR. 最大代谢率; MS. 有氧代谢空间a—b, m—n, x—y上标字母不同分布表示两物种RMR、MMR 和MS种间差异显著
Figure 2. Comparison of metabolic characteristics between Brachymystax tsinlingensis and Phoxinus lagowskii
RMR; Resting metabolic rate; MMR. Maximum metabolic rate; MS. Aerobic metabolic scope; Different letters on a—b, m—n and x—y indicate significant interspecific differences in RMR, MMR and MS, respectively
表 1 实验鱼规格大小(平均值±标准误)
Table 1 The body size of the experimental fish (mean±SE)
指标Index 种类
Species体长
Body length (cm)体重
Body weight (g)样本量
nUgait和Ucat测定
Measurement of Ugait and Ucat秦岭细鳞鲑
Brachymystax tsinlingensis9.41±1.59 8.58±0.43 8 拉氏鱥
Phoxinus lagowskii8.69±0.66 8.39±0.20 15 Ucrit及代谢测定
Measurement of metabolism and Ucrit秦岭细鳞鲑
Brachymystax tsinlingensis9.16±0.43 10.98±1.49 15 拉氏鱥
Phoxinus lagowskii8.05±0.25 8.18±0.83 15 -
[1] 付世建, 曹振东, 曾令清, 等. 鱼类游泳运动—策略与适应性进化 [M]. 北京: 科学出版社, 2014.] Fu S J, Cao Z D, Zeng L Q, et al. Fish locomotion: strategies and adaptive evolution [M]. Beijing: Science Press, 2014. [
[2] Blake R W. Fish functional design and swimming performance [J]. Journal of Fish Biology, 2004, 65(5): 1193-1222. doi: 10.1111/j.0022-1112.2004.00568.x
[3] Langerhans R B, Reznick D N. Ecology and Evolution of Swimming Performance in Fishes: Predicting Evolution with Biomechanics [M]//Domenici P, Kapoor B G (Eds.), 2010. Fish Locomotion: an Etho-ecological Perspective. British Isles: Science Publishers, 2009: 200-248.
[4] Cooke S J, Bergman J N, Twardek W M, et al. The movement ecology of fishes [J]. Journal of Fish Biology, 2022, 101(4): 756-779. doi: 10.1111/jfb.15153
[5] Cai L, Katopodis C, Johnson D, et al. Case study: Targeting species and applying swimming performance data to fish lift design for the Huangdeng Dam on the upper Mekong River [J]. Ecological Engineering, 2018(122): 32-38.
[6] Chen X F, Liu S K, Wang Y M, et al. Restoration of a fish-attracting flow field downstream of a dam based on the swimming ability of endemic fishes: A case study in the upper Yangtze River basin [J]. Journal of Environmental Management, 2023(345): 118694.
[7] Tran H Q, Van Doan H, Stejskal V. Does dietary Tenebrio molitor affect swimming capacity, energy use, and physiological responses of European perch Perca fluviatilis [J]? Aquaculture, 2021( 539) : 736610.
[8] Allen P J, Brokordt K, Oliva M, et al. Physiological insights for aquaculture diversification: Swimming capacity and efficiency, and metabolic scope for activity in cojinoba Seriolella violacea [J]. Aquaculture, 2021(531): 735968.
[9] Domenici P, Allan B J M, Lefrançois C, et al. The effect of climate change on the escape kinematics and performance of fishes: implications for future predator-prey interactions [J]. Conservation Physiology, 2019, 7(1): coz078. doi: 10.1093/conphys/coz078
[10] Domenici P, Claireaux G, McKenzie D J. Environmental constraints upon locomotion and predator-prey interactions in aquatic organisms: an introduction [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362(1487): 1929-1936. doi: 10.1098/rstb.2007.2078
[11] Fulton C J, Bellwood D R, Wainwright P C. Wave energy and swimming performance shape coral reef fish assemblages [J]. Proceedings of the Royal Society B: Biological Sciences, 2005, 272(1565): 827-832. doi: 10.1098/rspb.2004.3029
[12] Reidy S P, Kerr S R, Nelson J A. Aerobic and anaerobic swimming performance of individual Atlantic cod [J]. Journal of Experimental Biology, 2000, 203(2): 347-357. doi: 10.1242/jeb.203.2.347
[13] Brett J R. The respiratory metabolism and swimming performance of young sockeye salmon [J]. Journal of the Fisheries Board of Canada, 1964, 21(5): 1183-1226. doi: 10.1139/f64-103
[14] Dalziel A C, Vines T H, Schulte P M. Reductions in prolonged swimming capacity following freshwater colonization in multiple threespine stickleback populations [J]. Evolution, 2012, 66(4): 1226-1239. doi: 10.1111/j.1558-5646.2011.01498.x
[15] Nelson J A, Gotwalt P S, Reidy S P, et al. Beyond Ucrit: matching swimming performance tests to the physiological ecology of the animal, including a new fish ‘drag strip’ [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2002, 133 (2): 289-302.
[16] Peake S J. Gait transition speed as an alternate measure of maximum aerobic capacity in fishes [J]. Journal of Fish Biology, 2008, 72(3): 645-655. doi: 10.1111/j.1095-8649.2007.01753.x
[17] Yan G J, He X K, Cao Z D, et al. An interspecific comparison between morphology and swimming performance in cyprinids [J]. Journal of Evolutionary Biology, 2013, 26(8): 1802-1815. doi: 10.1111/jeb.12182
[18] Domenici P, Blake R. The kinematics and performance of fish fast-start swimming [J]. Journal of Experimental Biology, 1997, 200(8): 1165-1178. doi: 10.1242/jeb.200.8.1165
[19] 黄艳, 彭敏锐, 夏继刚. 温度对中华倒刺鲃不同生理生态性能的影响: 驯化有益假说的验证 [J]. 生态学报, 2021, 41(6): 2496-2504.] Huang Y, Peng M R, Xia J G. Effects of temperature on different eco-physiological properties in Spinibarbus sinensis: testing the beneficial acclimation hypothesis [J]. Acta Ecologica Sinica, 2021, 41(6): 2496-2504. [
[20] Zhao Y H, Zhang C G. Threatened fishes of the world: Brachymystax lenok tsinlingensis Li, 1966 (Salmonidae) [J]. Environmental Biology of Fishes, 2009, 86(1): 11-12. doi: 10.1007/s10641-008-9337-7
[21] Xia J G, Ma Y J, Fu C, et al. Effects of temperature acclimation on the critical thermal limits and swimming performance of Brachymystax lenok tsinlingensis: a threatened fish in Qinling Mountain region of China [J]. Ecological Research, 2017, 32(1): 61-70. doi: 10.1007/s11284-016-1418-z
[22] Xia J G, Peng M R, Huang Y, et al. Acute warming in winter eliminates chemical alarm responses in threatened Qinling lenok Brachymystax lenok tsinlingensis [J]. Science of the Total Environment, 2021(764): 142807.
[23] 夏继刚, 陈梅, 肖静, 等. 秦岭细鳞鲑代谢及低氧耐受能力对温度驯化的响应 [J]. 水生生物学报, 2017, 41(1): 201-205.] Xia J G, Chen M, Xiao J, et al. The metabolism and hypoxia tolerance of Brachymystax lenok tsinlingensis in relation to temperature acclimation [J]. Acta Hydrobiologica Sinica, 2017, 41(1): 201-205. [
[24] 彭敏锐, 郑雪丽, 李平, 等. 温度和重复测定对秦岭细鳞鲑快速启动反应、游泳性能及力竭后代谢特征的影响 [J]. 生态学报, 2021, 41(6): 2505-2514.] Peng M R, Zheng X L, Li P, et al. Effects of temperature and repeat measurement on fast-start, swimming performance and post-exhaustion metabolic characteristics in Brachymystax lenok tsinlingensis [J]. Acta Ecologica Sinica, 2021, 41(6): 2505-2514. [
[25] 邓楚可, 黄青峰, 李平, 等. 不同生活史阶段秦岭细鳞鲑与同域物种拉氏鱥爆发游泳能力比较研究 [J]. 生态学报, 2024, 44(9): 3999-4008.] Deng C K, Huang Q F, Li P, et al. Comparative studies on burst swimming performance of Brachymystax tsinlingensis and sympatric Phoxinus lagowskii in different life history stages [J]. Acta Ecologica Sinica, 2024, 44(9): 3999-4008. [
[26] 陶渝镇, 王丽英, 黄青峰, 等. 秦岭细鳞鲑仔稚鱼分布模式及其栖息地环境特征 [J]. 水生生物学报, 2024, 48(10): 1716-1723.] Tao Y Z, Wang L Y, Huang Q F, et al. Distribution patterns and habitat environmental characteristics of Brachymystax tsinlingensis larval fish [J]. Acta Hydrobiologica Sinica, 2024, 48(10): 1716-1723. [
[27] 王丽英, 夏静怡, 邓楚可, 等. 秦岭细鳞鲑与同域物种拉氏鱥的光偏好: 生活史阶段效应及种间差异 [J]. 生态学报, 2024, 44(17): 7859-7870.] Wang L Y, Xia J Y, Deng C K, et al. Comparative studies on light color preference of Qinling lenok Brachymystax tsinlingensis and sympatric fish Phoxinus lagowskii in different life history stages [J]. Acta Ecologica Sinica, 2024, 44(17): 7859-7870. [
[28] 苟妮娜, 靳铁治, 张建禄, 等. 黑河国家级自然保护区秦岭细鳞鲑主要饵料生物—拉氏鱥种群特征及其季节变化 [J]. 西北农业学报, 2018, 27(9): 1258-1264.] Gou N N, Jin T Z, Zhang J L, et al. Population characteristics and seasonal variation of Brachymystax lenok tsinlingensis’s main bait organism Lagowskiella lagowskii in national nature reserves of rare aquatic wildlife of Heihe River [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2018, 27(9): 1258-1264. [
[29] Lear K O, Whitney N M, Morris J J, et al. Temporal niche partitioning as a novel mechanism promoting co-existence of sympatric predators in marine systems [J]. Proceedings of the Royal Society B: Biological Sciences, 2021, 288(1954): 20210816. doi: 10.1098/rspb.2021.0816
[30] Büchi L, Vuilleumier S. Coexistence of specialist and generalist species is shaped by dispersal and environmental factors [J]. The American Naturalist, 2014, 183(5): 612-624. doi: 10.1086/675756
[31] Pang X, Yuan X Z, Cao Z D, et al. The effect of temperature on repeat swimming performance in juvenile qingbo (Spinibarbus sinensis) [J]. Fish Physiology and Biochemistry, 2015, 41(1): 19-29. doi: 10.1007/s10695-014-0002-0
[32] Webb P W. Hydrodynamics and energetics of fish propulsion [J]. Bulletin of the Fisheries Research Board of Canada, 1975(190): 1-159.
[33] Roche D G, Binning S A, Bosiger Y, et al. Finding the best estimates of metabolic rates in a coral reef fish [J]. Journal of Experimental Biology, 2013, 216(11): 2103-2110.
[34] Fu C, Fu S J, Yuan X Z, et al. Predator-driven intra-species variation in locomotion, metabolism and water velocity preference in pale chub (Zacco platypus) along a river [J]. Journal of Experimental Biology, 2015, 218(2): 255-264.
[35] Tucker V A. Energetic cost of locomotion in animals [J]. Comparative Biochemistry and Physiology, 1970, 34(4): 841-846. doi: 10.1016/0010-406X(70)91006-6
[36] Nuismer S L, Harmon L J. Predicting rates of interspecific interaction from phylogenetic trees [J]. Ecology Letters, 2015, 18(1): 17-27. doi: 10.1111/ele.12384
[37] Zhang N, Elvidge C K, Li Q, et al. Does mutualism provide additional indirect benefits? Behavioral indicators of chemical communication in a temporally dynamic fish-mussel mutualism [J]. Behavioral Ecology and Sociobiology, 2024, 78(2): 21. doi: 10.1007/s00265-024-03440-z
[38] Vasseur D A, McCann K S. A mechanistic approach for modeling temperature-dependent consumer-resource dynamics [J]. The American Naturalist, 2005, 166(2): 184-198. doi: 10.1086/431285
[39] Cooper W E, Blumstein D T. Escaping from Predators: an Integrative View of Escape Decisions [M]. UK: Cambridge University Press. 2015.
[40] Brown J H, Gillooly J F, Allen A P, et al. Toward a metabolic theory of ecology [J]. Ecology, 2004, 85(7): 1771-1789. doi: 10.1890/03-9000
[41] Bigman J S, M’Gonigle L K, Wegner N C, et al. Respiratory capacity is twice as important as temperature in explaining patterns of metabolic rate across the vertebrate tree of life [J]. Science Advances, 2021, 7(19): eabe5163. doi: 10.1126/sciadv.abe5163
[42] Pettersen A K, Metcalfe N B. Consequences of the cost of living: is variation in metabolic rate evolutionarily significant? [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2024, 379(1896): 20220498. doi: 10.1098/rstb.2022.0498
[43] Gvoždík L. Individual variation in thermally induced plasticity of metabolic rates: ecological and evolutionary implications for a warming world [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2024, 379(1896): 20220494. doi: 10.1098/rstb.2022.0494
[44] Jutfelt F, Norin T, Åsheim E R, et al. ‘Aerobic scope protection’reduces ectotherm growth under warming [J]. Functional Ecology, 2021, 35(7): 1397-1407. doi: 10.1111/1365-2435.13811
[45] Clark T D, Sandblom E, Jutfelt F. Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations [J]. Journal of Experimental Biology, 2013, 216(15): 2771-2782. doi: 10.1242/jeb.084251
[46] Metcalfe N B, Van Leeuwen T E, Killen S S. Does individual variation in metabolic phenotype predict fish behaviour and performance [J]? Journal of Fish Biology, 2016, 88 (1): 298-321.
[47] Killen S S, Reid D, Marras S, et al. The interplay between aerobic metabolism and antipredator performance: vigilance is related to recovery rate after exercise [J]. Frontiers in Physiology, 2015(6): 111.
[48] Krams I, Kivleniece I, Kuusik A, et al. High repeatability of anti-predator responses and resting metabolic rate in a beetle [J]. Journal of Insect Behavior, 2014(27): 57-66.
[49] Hinch S G, Rand P S. Optimal swimming speeds and forward-assisted propulsion: energy-conserving behaviours of upriver-migrating adult salmon [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57(12): 2470-2478. doi: 10.1139/f00-238
[50] Fu S J, Dong Y W, Killen S S. Aerobic scope in fishes with different lifestyles and across habitats: trade-offs among hypoxia tolerance, swimming performance and digestion [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2022(272): 111277.