饲料脂肪水平对杂交鲟幼鱼生长、饲料消化率、抗氧化水平和肌肉脂肪酸组成的影响

邢薇, 郁欢欢, 于凤祥, 刘洋, 李铁梁, 马志宏, 姜娜, 罗琳

邢薇, 郁欢欢, 于凤祥, 刘洋, 李铁梁, 马志宏, 姜娜, 罗琳. 饲料脂肪水平对杂交鲟幼鱼生长、饲料消化率、抗氧化水平和肌肉脂肪酸组成的影响[J]. 水生生物学报, 2021, 45(2): 250-258. DOI: 10.7541/2021.2019.256
引用本文: 邢薇, 郁欢欢, 于凤祥, 刘洋, 李铁梁, 马志宏, 姜娜, 罗琳. 饲料脂肪水平对杂交鲟幼鱼生长、饲料消化率、抗氧化水平和肌肉脂肪酸组成的影响[J]. 水生生物学报, 2021, 45(2): 250-258. DOI: 10.7541/2021.2019.256
XING Wei, YU Huan-Huan, YU Feng-Xiang, LIU Yang, LI Tie-Liang, MA Zhi-Hong, JIANG Na, LUO Lin. EFFECTS OF DIETARY LIPID LEVELS ON GROWTH PERFORMANCE, FEED DIGESTIBILITY, ANTIOXIDANT STATUS AND FILLET FATTY ACID COMPOSITIONS OF JUVENILE HYBRID STURGEON[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(2): 250-258. DOI: 10.7541/2021.2019.256
Citation: XING Wei, YU Huan-Huan, YU Feng-Xiang, LIU Yang, LI Tie-Liang, MA Zhi-Hong, JIANG Na, LUO Lin. EFFECTS OF DIETARY LIPID LEVELS ON GROWTH PERFORMANCE, FEED DIGESTIBILITY, ANTIOXIDANT STATUS AND FILLET FATTY ACID COMPOSITIONS OF JUVENILE HYBRID STURGEON[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(2): 250-258. DOI: 10.7541/2021.2019.256

饲料脂肪水平对杂交鲟幼鱼生长、饲料消化率、抗氧化水平和肌肉脂肪酸组成的影响

基金项目: 鲟鱼鲑鳟鱼北京市创新团队项目(08-2020)资助
详细信息
    作者简介:

    邢薇(1987—), 女, 学士; 研究方向为水产动物营养。E-mail: xingwei2008cool@163.com

    通信作者:

    罗琳(1971—), E-mail: luo_lin666@sina.com

  • 中图分类号: S965.2

EFFECTS OF DIETARY LIPID LEVELS ON GROWTH PERFORMANCE, FEED DIGESTIBILITY, ANTIOXIDANT STATUS AND FILLET FATTY ACID COMPOSITIONS OF JUVENILE HYBRID STURGEON

Funds: Supported by Beijing Agriculture Innovation Consortium, BAIC (08-2020)
    Corresponding author:
  • 摘要: 研究旨在探究饲料中不同脂肪水平对西伯利亚杂交鲟(Acipenser baerii Brandt ♀ × A. schrenckii Brandt ♂)幼鱼生长、饲料消化率、血清生化指标及肌肉脂肪酸组成的影响。以鱼油为脂肪源, 配制4种脂肪水平分别为5%(D05)、10%(D10)、15%(D15)和20%(D20)的等氮饲料。选用初始体重为(152.83±0.67) g的杂交鲟, 随机分为4组, 每组3个重复, 每个重复25尾鱼。养殖周期为12周。结果显示, 饲料中不同脂肪水平对杂交鲟的生长性能有显著影响(P<0.05)。其中, D15组杂交鲟幼鱼的末均重(FBW)、增重率(WGR)和特定生长率(SGR)显著高于D05、D10和D20组(P<0.05), 饲料效率(FE)显著高于D05和D10组(P<0.05)。随着饲料中脂肪含量的增加, 杂交鲟幼鱼脏体比(VSI)、肝体比(HSI)及肌肉、肝脏中的脂肪含量显著上升(P<0.05)。饲料中不同脂肪水平对干物质(ADCd)、蛋白质(ADCp)表观消化率无显著影响(P>0.05)。D10、D15和D20组脂肪表观消化率(ADCf)显著高于D05组(P<0.05)。D15组能量表观消化率在各组中最高, 显著高于D05和D10组(P<0.05)。随着饲料中脂肪水平的增加, 血清超氧化物歧化酶(SOD)、总抗氧化能力(T-AOC)和髓过氧化物酶(MPO)的活性均显著升高, 谷胱甘肽过氧化物酶(GSH-Px)活性显著下降(P<0.05)。此外, 肝功能指标谷丙转氨酶(ALT)、谷草转氨酶(AST)、碱性磷酸酶(ALP)和乳酸脱氢酶(LDH)的活性也随饲料中脂肪水平的升高呈递增趋势(P<0.05)。肌肉中的各脂肪酸含量与饲料中脂肪酸含量呈显著的线性正相关(R2>0.90, P<0.05)。综合各指标因素判断, 西伯利亚杂交鲟幼鱼饲料中适宜的脂肪水平为15%, P/E为23.54 mg/kJ。
    Abstract: To investigate the effects of dietary different lipid levels on the growth performance, feed digestibility, antioxidant status, and fillet fatty acid compositions of juvenile hybrid sturgeon (Acipenser baerii Brandt ♀ × A. schrenckii Brandt ♂), four isonitrogenous (42% crude protein) experimental diets were formulated with various lipid levels at 5% (D05), 10% (D10), 15% (D15) and 20% (D20), respectively. Hybrid sturgeon with an initial body weight of (152.83±0.67) g were randomly divided into 4 groups with 3 replicates in each group and 25 fish per replicate for a 12-week trial. The results showed that dietary different lipid levels had significant effect on the growth performance of juvenile hybrid sturgeon. Among them, final body weight (FBW), weight gain rate (WGR) and specific growth rate (SGR) in D15 group were significantly higher than those in D05, D10 and D20 groups (P<0.05). Feed efficiency (FE) in D15 group was significantly higher than that in D05 and D10 groups (P<0.05). With the enhanced dietary lipid level, viscerasomatic index (VSI), hepatosomatic index (HSI) and crude fat in fillet and liver increased significantly (P<0.05). Dietary different lipid levels had no significant effects on the apparent digestibility of dry matter (ADCd) and protein (ADCp) (P>0.05). The apparent digestibility of fat (ADCf) in D10, D15 and D20 groups was significantly higher than that in the D05 group (P<0.05). The highest apparent digestibility of energy (ADCe) was in D15 group, which was significantly higher than that in D05 and D10 groups (P<0.05). When the dietary lipid level increased from 5% to 20%, the activities of total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and myeloperoxidase (MPO) were boosted (P<0.05) while glutathione peroxidase (GSH-Px) activity reduced significantly (P<0.05) in serum of juvenile hybrid sturgeon. The activities of the four liver function indicators, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactic dehydrogenase (LDH), also showed an increasing trend (P<0.05). There was a significant positive linear correlation between the content of fillet fatty acids and the fatty acid content in the diets (R2>0.90, P<0.05). These results revealed that the optimal lipid level in the diet of juvenile hybrid sturgeon was 15%, and P/E was 23.54 mg/kJ.
  • 表  1   饲料组成及营养水平(%风干基础)

    Table  1   Composition and nutrient levels of the experimental diets (% air-dry basis)

    原料IngredientD05D10D15D20
    鱼粉Fish meal a25.0025.0025.0025.00
    豆粕Soybean meal b27.0027.0027.0027.00
    面粉Wheat flour c33.7927.6921.1914.69
    谷朊粉Wheat gluten c10.0010.8012.0013.30
    预混料Vitamin and mineral premix d1.901.901.901.90
    鱼油Fish oil a2.307.6012.9018.10
    三氧化二钇Y2O30.010.010.010.01
    合计Total100.00100.00100.00100.00
    营养水平Nutrient level
    水分Moisture6.606.005.405.30
    粗蛋白Crude protein42.1042.3042.4042.60
    粗脂肪Crude lipid4.909.9014.7020.00
    灰分Ash8.608.808.308.60
    总能Gross energy (MJ/kg)15.6016.8918.0119.04
    P/E (mg/KJ)26.9825.0923.5422.37
    必需氨基酸(g/kg粗蛋白)Essential amino acid (g/kg crude protein)
    Lys56.1055.6055.3054.90
    Met21.6021.5021.5021.60
    Thr36.4036.1035.9035.80
    Arg54.0054.4055.2055.90
    Ile34.6034.9035.5036.20
    Leu63.8064.3065.5066.50
    Val40.3040.7041.5042.20
    His22.5022.7023.1023.50
    Phe39.6040.1040.9041.70
    注: a鱼粉和鱼油由三九鱼制品有限公司(埃斯比约,丹麦)提供; b豆粕由益海嘉里投资有限公司(上海, 中国)提供; c面粉和谷朊粉由古船集团(北京, 中国)提供; d预混料参照Xu等[20]Note: aFish meal and fish oil were supplied by Triple Nine Fish product Co., Esbjerg, Denmark; bSoybean meal was supplied by Yihai Kerry Investment Company Limited, Shanghai, China; cWheat flour and wheat gluten were supplied by Guchan Group, Beijing, China; dVitamin and mineral premix were prepared according to Xu, et al[20]
    下载: 导出CSV

    表  2   饲料中脂肪酸含量(g/100 g饲料)

    Table  2   Fatty acid content of the experimental diets (g/100 g diet)

    D05D10D15D20
    C14﹕00.170.330.430.56
    C15﹕00.010.030.030.04
    C16﹕00.981.802.452.90
    C17﹕00.010.030.030.05
    C18﹕00.210.420.620.79
    ∑SFAa1.382.613.564.34
    C16﹕10.160.380.590.72
    C18﹕11.193.024.846.35
    C20﹕10.160.270.360.41
    C24﹕10.030.050.060.06
    ∑MUFAb1.543.725.857.54
    C18﹕2n-61.582.823.954.81
    C18﹕3n-30.230.530.811.06
    C20﹕4n-60.030.050.050.11
    C20﹕5n-3 (EPA)0.270.520.780.89
    C22﹕6n-3 (DHA)0.490.840.991.29
    ∑PUFAc2.604.766.588.26
    注: a SFA. 饱和脂肪酸; b MUFA. 单不饱和脂肪酸; c PUFA. 多不饱和脂肪酸Note: a SFA. saturated fatty acid; b MUFA. monounsaturated fatty acid; c PUFA. polyunsaturated fatty acids
    下载: 导出CSV

    表  3   饲料中不同脂肪含量对杂交鲟幼鱼生长、形体指标的影响(平均值±标准误, n=3)

    Table  3   Growth performance and morphometric parameters of juvenile hybrid sturgeon fed experimental diets with different lipid levels (Mean±SE, n=3)

    指标IndexD05D10D15D20
    末均重
    FBW (g)
    464.63±
    17.23a
    475.41±
    10.69ab
    564.62±
    13.12c
    512.87±
    3.18b
    增重率
    WGR (%)
    204.29±
    10.50a
    211.35±
    5.63ab
    269.90±
    9.72c
    234.50±
    3.28b
    特定生长率
    SGR (%/d)
    1.32±
    0.04a
    1.35±
    0.02ab
    1.56±
    0.03c
    1.44±
    0.01b
    饲料效率
    FE (%)
    66.37±
    3.61a
    70.35±
    3.58ab
    87.48±
    1.94c
    81.39±
    1.59bc
    体长
    BL (cm)
    48.38±
    1.09
    47.66±
    1.31
    48.56±
    1.24
    49.66±
    1.38
    肥满度
    CF
    0.78±
    0.03
    0.84±
    0.05
    0.89±
    0.03
    0.87±
    0.05
    脏体比
    VSI
    9.97±
    0.38a
    10.35±
    0.25a
    11.69±
    0.63b
    13.38±
    0.39c
    肝体比
    HSI
    2.98±
    0.19a
    3.26±
    0.17a
    3.69±
    0.20b
    4.12±
    0.23c
    注: 同一行数据标有不同上标表示存在显著差异(P<0.05); 下同Note: Values in the same row with different superscripts were significantly different (P<0.05). The same applies below
    下载: 导出CSV

    表  4   饲料中不同脂肪水平对杂交鲟幼鱼肌肉组成和肝脏脂肪含量的影响(平均值±标准误, n=3)

    Table  4   Fillet proximate compositions and hepatic fat content of juvenile hybrid sturgeon fed experimental diets with different lipid levels (Mean±SE, n=3)

    组分
    Composition (%)
    D05D10D15D20
    肌肉Muscle composition
    水分Moisture76.58±0.4574.73±0.7173.68±0.4571.87±0.71
    粗蛋白Crude protein17.52±0.1917.08±0.2817.30±0.2317.26±0.30
    粗脂肪Crude fat4.39±0.56a6.50±0.83b7.59±0.65b9.49±0.84c
    灰分Ash1.11±0.011.11±0.011.08±0.021.09±0.01
    肝脏Liver composition
    粗脂肪Crude fat30.19±1.47a40.95±2.32b45.57±0.88c46.04±0.90c
    下载: 导出CSV

    表  5   饲料中不同脂肪水平对杂交鲟幼鱼表观消化率的影响(平均值±标准误, n=3)

    Table  5   ADC of dry matter, protein, fat and energy of juvenile hybrid sturgeon fed experimental diets with different lipid levels (Mean±SE, n=3)

    表观消化率ADC (%)D05D10D15D20
    ADCd76.93±1.3876.49±0.8877.59±0.4578.42±0.15
    ADCp91.86±0.7590.99±0.2491.51±0.2191.64±0.21
    ADCf89.13±1.21a93.63±0.24b94.17±1.01b92.75±0.35b
    ADCe81.57±1.16a82.20±0.69a84.88±0.35b83.46±0.27ab
    下载: 导出CSV

    表  6   饲料中不同脂肪含量对杂交鲟血清中抗氧化指标和肝脏功能的影响(平均值±标准误, n=3)

    Table  6   Serum antioxidant parameters and liver functions of juvenile hybrid sturgeon fed experimental diets with different lipid levels (Mean±SE, n=3)

    指标IndexD05D10D15D20
    抗氧化指标Antioxidant parameters
    SOD (U/mL)70.47±
    4.17a
    76.93±
    2.71a
    79.88±
    3.28a
    96.91±
    4.75b
    T-AOC (U/mL)8.76±
    0.32a
    9.24±
    0.08ab
    9.30±
    0.04b
    9.41±
    0.01b
    GSH-Px (U/mL)866.71±
    35.12b
    865.88±
    21.63b
    752.21±
    40.66a
    715.20±
    36.68a
    MPO (U/L)35.47±
    2.72a
    36.69±
    2.22a
    42.25±
    3.03ab
    46.23±
    1.23b
    肝脏功能Liver function
    AST (U/L)238.88±
    19.10a
    252.14±
    37.58ab
    256.33±
    46.14ab
    326.13±
    24.81b
    ALT (U/L)3.25±
    0.75a
    5.25±
    0.37b
    5.38±
    0.63b
    5.57±
    0.20b
    ALP (U/L)66.71±
    4.39a
    76.63±
    8.90a
    81.88±
    5.47a
    113.67±
    15.05b
    LDH (U/L)655.29±
    47.71a
    750.29±
    69.56ab
    768.43±
    43.04ab
    810.38±
    30.80b
    下载: 导出CSV

    表  7   饲料中不同脂肪水平对杂交鲟幼鱼肌肉脂肪酸含量的影响(g/100 g肌肉, 平均值±标准误, n=3)

    Table  7   Fatty acid content in fillets of juvenile hybrid sturgeon fed experimental diets with different lipid levels (g/100 g fillet, Mean±SE, n=3)

    脂肪酸Fatty acidD05D10D15D20
    C14﹕00.07±0.01a0.12±0.02b0.13±0.01b0.18±0.02c
    C15﹕00.012±0.00a0.013±0.00ab0.013±0.00ab0.018±0.00b
    C16﹕00.84±0.10a1.11±0.14ab1.17±0.11ab1.31±0.10b
    C17﹕00.012±0.00a0.014±0.00ab0.016±0.00ab0.018±0.00b
    C18﹕00.15±0.01a0.19±0.02b0.21±0.01bc0.24±0.02c
    ∑SFA1.09±0.13a1.45±0.18ab1.54±0.14b1.77±0.13b
    C16﹕10.12±0.02a0.19±0.03b0.23±0.02b0.30±0.03c
    C18﹕1n91.26±0.17a2.03±0.30b2.35±0.24bc2.77±0.23c
    C20﹕10.08±0.01a0.12±0.02b0.14±0.01bc0.16±0.01c
    C24﹕10.012±0.000.011±0.000.013±0.000.012±0.00
    ∑MUFA1.46±0.20a2.34±0.34b2.73±0.28bc3.24±0.27c
    C18﹕2n60.85±0.11a1.35±0.18b1.60±0.14bc1.94±0.14c
    C20﹕2n30.04±0.01a0.06±0.01ab0.08±0.01b0.15±0.01c
    C18﹕3n30.09±0.01a0.19±0.03b0.25±0.03b0.35±0.03c
    C20﹕4n60.046±0.00a0.049±0.00ab0.053±0.00ab0.057±0.00b
    C20﹕5n3
    (EPA)
    0.10±0.01a0.17±0.02b0.23±0.02c0.31±0.02d
    C22﹕6n3
    (DHA)
    0.30±0.04a0.44±0.05b0.50±0.03b0.64±0.04c
    ∑PUFA1.44±0.18a2.26±0.29b2.71±0.22c3.45±0.25d
    下载: 导出CSV

    表  8   肌肉和饲料中脂肪酸含量相关性分析

    Table  8   Correlation coefficients (R2) and P values of fatty acid concentrations in fillets vs. dietary fatty acid concentrations

    脂肪酸Fatty acid线性回归方程 Liner regressionR2P
    C14:0Fillet C14﹕0=0.03+0.28×dietary C14﹕00.96<0.05
    C16﹕0Fillet C16﹕0=0.68+0.24×dietary C16:00.96<0.05
    C18﹕0Fillet C18:0=0.11+0.17×dietary C18﹕00.99<0.05
    ∑SFAFillet ∑SFA=0.80+0.20×dietary ∑SFA0.97<0.05
    C16﹕1Fillet C16﹕1=0.0714+0.28×dietary C16﹕10.97<0.05
    C18﹕1n9cFillet C18﹕1n9c=0.67+0.33×dietary C18﹕1n9c0.97<0.05
    C20﹕1Fillet C20﹕1=0.04+0.27×dietary C20﹕10.99<0.05
    ∑MUFAFillet ∑MUFA=0.64+0.36×dietary ∑MUFA0.98<0.05
    C18﹕2n6cFillet C18﹕2n6c=0.50+0.30×dietary C18﹕2n6c0.99<0.05
    C20﹕2Fillet C20﹕2=0.04+0.48×dietary C20﹕20.99<0.05
    C18﹕3n3Fillet C18﹕3n3=–0.01+0.30×dietary C18﹕3n30.99<0.05
    C20﹕4n6Fillet C20﹕4n6=0.05+0.10×dietary C20﹕4n60.93<0.05
    C20﹕5n3 (EPA)Fillet C20﹕5n3=0.03+0.36×dietary C20﹕5n30.96<0.05
    C22﹕6n3 (DHA)Fillet C22﹕6n3=0.14+0.40×dietary C22﹕6n31.00<0.05
    ∑PUFAFillet ∑PUFA=0.29+0.36×dietary ∑PUFA0.99<0.05
    下载: 导出CSV
  • [1]

    Pšenička M. A novel method for rapid elimination of sturgeon egg stickiness use sodium hypochlorite [J]. Aquaculture, 2016(453): 73-76.

    [2]

    Geraylou Z, Souffreau C, Rurangwa E, et al. Effects of dietary arabinoxylan-oligosaccharides (AXOS) and endogenous probiotics on the growth performance, non-specific immunity and gut microbiota of juvenile Siberian sturgeon (Acipenser baerii) [J]. Fish & Shellfish Immunology, 2013, 35(3): 766-775.

    [3]

    Wei Q, He J, Yang D, et al. Status of sturgeon aquaculture and sturgeon trade in China: a review based on two recent nationwide surveys [J]. Journal of Applied Ichthyology, 2004, 20(5): 321-332. doi: 10.1111/j.1439-0426.2004.00593.x

    [4]

    Williot P, Sabeau L, Gessner J, et al. Sturgeon farming in Western Europe: recent developments and perspectives [J]. Aquatic Living Resources, 2001, 14(6): 367-374. doi: 10.1016/S0990-7440(01)01136-6

    [5]

    Shi Z G, Dong S L, Wang Y S, et al. The aquaculture situation and problem analysis about sturgeon in China [J]. Chinese Fisheries Economics, 2008, 26(2): 58-62.

    [6]

    Cho C Y, Cowey C. Rainbow trout, Oncorynchus mykiss [M]. Handbook of Nutrient Requirements of Finfish. Boca Raton: CRC Press, 1991: 131-143.

    [7]

    Meng Y Q, Qian K K, Ma R, et al. Effects of dietary lipid levels on subadult triploid rainbow trout (Oncorhynchus mykiss): 1. Growth performance, digestive ability, health status and expression of growth-related genes [J]. Aquaculture, 2019, 513(15): 1-9.

    [8]

    Karalazos V, Bendiksen E A, Dick J R, et al. Effects of dietary protein, and fat level and rapeseed oil on growth and tissue fatty acid composition and metabolism in Atlantic salmon (Salmo salar L.) reared at low water temperatures [J]. Aquaculture Nutrition, 2007, 13(4): 256-265. doi: 10.1111/j.1365-2095.2007.00471.x

    [9]

    Antti F, Kari R. Dynamics of protein and lipid intake regulation of rainbow trout studies with a wide lipid range of encapsulated diets and self-feeders [J]. Physiology & Behavior, 2009, 96(1): 85-90.

    [10]

    Lü F, Liu F, Yu Y B, et al. Effects of dietary lipid levels on growth, body composition and antioxidants of clamworm (Perinereis aibuhitensis) [J]. Aquaculture Reports, 2017(6): 1-7.

    [11]

    Chang J, Niu H X, Jia Y D, et al. Effects of dietary lipid levels on growth, feed utilization, digestive tract enzyme activity and lipid deposition of juvenile Manchurian trout, Brachymystax lenok (Pallas) [J]. Aquaculture Nutrition, 2017, 24(2): 694-701.

    [12]

    Wang A M, Yang W P, Shen Y L, et al. Effects of dietary lipid levels on growth performance, whole body composition and fatty acid composition of juvenile gibel carp (Carassius auratus gibelio) [J]. Aquaculture Research, 2014, 46(11): 2819-2828.

    [13]

    Zhang Y L, Song L, Liu R P, et al. Effects of dietary protein and lipid levels on growth, body composition and flesh quality of juvenile topmouth culter, Culter alburnus Basilewsky [J]. Aquaculture Research, 2015, 47(8): 2633-2641.

    [14]

    Bonvini E, Parma L, Mandrioli L, et al. Feeding common sole (Solea solea) juveniles with increasing dietary lipid levels affects growth, feed utilization and gut health [J]. Aquaculture, 2015(449): 87-93.

    [15]

    Zhu H, He A, Chen L, et al. Effects of dietary lipid level and n-3/n-6 fatty acid ratio on growth, fatty acid composition and lipid peroxidation in Russian sturgeon Acipenser gurldenstaedtii [J]. Aquaculture Nutrition, 2017, 23(4): 879-890. doi: 10.1111/anu.12454

    [16] 刘阳洋, 于海波, 武文一, 等. 饲料脂肪水平对匙吻鲟生长、体组成、消化酶活性、血清生化及抗氧化性能的影响 [J]. 水产学报, 2018, 42(12): 86-102.

    Liu Y Y, Yu H B, Wu W Y, et al. Effects of dietary lipid levels on growth, body composition, digestive enzyme activities, serum biochemical indexes and antioxidant performance of Polyodon spathula [J]. Journal of Fisheries of China, 2018, 42(12): 86-102. [

    [17] 侯俊利. 施氏鲟 (Acipenser schrenckii) 幼鱼对盐度的适应性及其脂肪营养需求研究 [D]. 上海: 华东师范大学, 2006: 67-114.

    Hou J L. Studies on salinity adaptability and requirement of dietary lipid in juvenile Amur sturgeon (Acipenser schrenckii) [D]. Shanghai: East China Normal University, 2006: 67-114.

    [18]

    Luo L, Ai L C, Liang X F, et al. Effect of dietary DHA/EPA ratio on the early development, antioxidant response and lipid metabolism in larvae of Siberia sturgeon (Acipenser baerii, Brandt) [J]. Aquaculture Nutrition, 2019(25): 239-248.

    [19]

    Luo L, Ai L C, Liang X F, et al. n-3 long-chain polyunsaturated fatty acids improve the sperm, egg, and offspring quality of Siberian sturgeon (Acipenser baerii) [J]. Aquaculture, 2017(473): 266-271.

    [20]

    Xu G L, Xing W, Li T L, et al. The effects of different fishmeal level diets with or without phytase supplementation on growth performance, body composition, digestibility, immunological and biochemical parameters of juvenile hybrid sturgeon (Acipenser baeri Brandt♀× A. schrenckii Brandt♂) [J]. Aquaculture Nutrition, 2019, 26(2): 261-274.

    [21]

    Catacutan M R, Eusebio P S, Teshima S. Apparent digestibility of selected feedstuffs by mud crab, Scylla serrata [J]. Aquaculture, 2003, 216(1-4): 253-261. doi: 10.1016/S0044-8486(02)00408-8

    [22]

    Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International [M]. 18th Edition, Gaithersburgs, MD, 2006.

    [23] 田莹, 何艮, 周慧慧, 等. 大菱鲆幼鱼对玉米蛋白粉中营养物质的表观消化率及添加胆汁酸和酶制剂对其产生的影响 [J]. 动物营养学报, 2017, 29(9): 3211-3219. doi: 10.3969/j.issn.1006-267x.2017.09.024

    Tian Y, He G, Zhou H H, et al. Nutrient apparent digestibility coefficients of corn gluten meal for juvenile turbot (Scophthalmus maximus L.) and effects of adding bile acid and enzyme preparation on them [J]. Chinese Journal of Animal Nutrition, 2017, 29(9): 3211-3219. [ doi: 10.3969/j.issn.1006-267x.2017.09.024

    [24]

    Caballero M, Obach A, Rosenlund G, et al. Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss [J]. Aquaculture, 2002, 214(1): 253-271.

    [25]

    Pei Z, Xie S, Lei W, et al. Comparative study on the effect of dietary lipids level on growth and feed utilization for gibel carp (Carassius auratus gibelio) and Chinese longsnout catfish (Leiocassis longirostris Gunther) [J]. Aquaculture Nutrition, 2004, 10(4): 209-216. doi: 10.1111/j.1365-2095.2004.00291.x

    [26]

    Luo Z, Liu Y J, Mai K S, et al. Effect of dietary lipid level on growth performance, feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous diets in floating net cages [J]. Aquaculture International, 2005(13): 257-269.

    [27]

    Mohseni M, Sajjadi M, Pourkazemi M. Growth performance and body composition of sub-yearling Persian sturgeon, (Acipenser persicus, Borodin, 1897), fed different dietary protein and lipid levels [J]. Journal of Applied Ichthyology, 2007, 23(3): 204-208. doi: 10.1111/j.1439-0426.2007.00866.x

    [28]

    Ai Q H, Zhao J Z, Mai K S, et al. Optimal dietary lipid level for large yellow croaker (Pseudosciaena crocea) larvae [J]. Aquaculture Nutrition, 2008, 14(6): 515-522. doi: 10.1111/j.1365-2095.2007.00557.x

    [29]

    Sun P, Jin M, Jiao L, et al. Effects of dietary lipid level on growth, fatty acid profiles, antioxidant capacity and expression of genes involved in lipid metabolism in juvenile swimming crab, Portunus trituberculatus [J]. British Journal of Nutrition, 2020, 123(2): 149-160. doi: 10.1017/S0007114519002563

    [30] 朱婷婷, 李琦, 朱浩拥, 等. 饲料脂肪水平对俄罗斯鲟幼鱼生长、血液生化指标及抗氧化性能的影响 [J]. 海洋渔业, 2017, 39(1): 58-67. doi: 10.3969/j.issn.1004-2490.2017.01.007

    Zhu T T, Li Q, Zhu H Y, et al. Effects of dietary lipid level on growth performance, blood biochemical index and antioxidant status of juvenile Acipenser gueldenstaedtii [J]. Marine Fisheries, 2017, 39(1): 58-67. [ doi: 10.3969/j.issn.1004-2490.2017.01.007

    [31]

    Han T, Li X, Wang J, et al. Effect of dietary lipid level on growth, feed utilization and body composition of juvenile giant croaker Nibea japonica [J]. Aquaculture, 2014(434): 145-150.

    [32]

    Han C Y, Wen X B, Zheng Q M, et al. Effects of dietary lipid levels on lipid deposition and activities of lipid metabolic enzymes in hybrid tilapia (Oreochromis niloticus×O. aureus) [J]. Journal of Animal Physiology & Animal Nutrition, 2011, 95(5): 609-615.

    [33] 高擘为, 杨航, 何明, 等. 亚东鲑幼鱼饲料蛋白和脂肪适宜水平的研究 [J]. 水生生物学报, 2020, 44(3): 470-478. doi: 10.7541/2020.057

    Gao B W, Yang H, He M, et al. A study on the proper protein and lipid levels in the diet of Salmon trutta juveniles [J]. Acta Hydrobiologica Sinica, 2020, 44(3): 470-478. [ doi: 10.7541/2020.057

    [34]

    Gawlicka A, Herold M A, Barrows F T, et al. Effects of dietary lipids on growth, fatty acid composition, intestinal absorption and hepatic storage in white sturgeon (Acipenser transmontanus R.) larvae [J]. Journal of Applied Ichthyology, 2002, 18(4-6): 673-681. doi: 10.1046/j.1439-0426.2002.00371.x

    [35]

    Rueda-Jasso R, Conceiçao L E C, Dias J, et al. Effect of dietary non-protein energy levels on condition and oxidative status of Senegalese sole (Solea senegalensis) juveniles [J]. Aquaculture, 2004, 231(1-4): 417-433. doi: 10.1016/S0044-8486(03)00537-4

    [36]

    Boujard T, Médale F. Regulation of voluntary feed intake in juvenile rainbow trout fed by hand or by self-feeders with diets containing two different protein/energy ratios [J]. Aquatic Living Resources, 1994, 7(3): 211-215. doi: 10.1051/alr:1994023

    [37]

    Azevedo P A., Leeson S, Cho C Y, et al Growth, nitrogen and energy utilization of juveniles from four salmonid species: diet, species and size effects [J]. Aquaculture, 2004, 234(1): 393-414.

    [38]

    NRC (National Research Council). Nutrient Requirements of Fish and Shrimp [M]. Washington, DC: The National Academies Press, 2011: 71-73.

    [39]

    Deng D F, Ju Z Y, Dominy W, et al. Optimal dietary protein levels for juvenile pacific threadfin (Polydactylus sexfilis) fed diets with two levels of lipid [J]. Aquaculture, 2011, 316(1): 25-30.

    [40]

    Mohseni M, Pourkazemi M, Hosseni M R, et al. Effects of the dietary protein levels and the protein to energy ratio in sub-yearling Persian sturgeon, Acipenser persicus (Borodin) [J]. Aquaculture Research, 2013, 44(3): 378-387. doi: 10.1111/j.1365-2109.2011.03041.x

    [41]

    Médale F, Blanc D, Kaushik S J. Studies on the nutrition of Siberian sturgeon Acipenser baeri. II. Utilization of dietary non-protein energy by sturgeon [J]. Aquaculture, 1991, 93(2): 143-154. doi: 10.1016/0044-8486(91)90213-Q

    [42]

    Wells R M, McIntyre R H, Morgan A K, et al. Physiological stress responses in big gamefish after capture: observations on plasma chemistry and blood factors [J]. Comparative Biochemistry and Physiology. A, Comparative Physiology, 1986, 84(3): 565-571. doi: 10.1016/0300-9629(86)90366-X

    [43]

    Hasnain A. Ontogenetic changes and developmental adjustments in lactate dehydrogenase isozymes of an obligate air-breathing fish Channa punctatus during deprivation of air access [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2005, 140(2): 271-278. doi: 10.1016/j.cbpc.2004.10.012

    [44]

    Rao J V. Toxic effects of novel organophosphorus insecticide (RPR-V) on certain biochemical parameters of euryhaline fish Oreochromis mossambicus [J]. Pesticide Biochemistry and Physiology, 2006, 86(2): 78-84. doi: 10.1016/j.pestbp.2006.01.008

    [45]

    Akrami R, Gharaei A, Mansour M R, et al. Effects of dietary onion (Allium cepa) powder on growth, innate immune response and hematoebiochemical parameters of beluga (Huso huso Linnaeus, 1754) juvenile [J]. Fish & Shellfish Immunology, 2015(45): 828-834.

    [46]

    Hyder M A, Hasan M, Mohieldein A H. Comparative levels of ALT, AST, ALP and GGT in liver associated diseases [J]. European Journal of Experimental Biology, 2013, 3(2): 280-284.

    [47]

    Nordberg J, Amér E S J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system [J]. Free Radical Biology and Medicine, 2001, 31(11): 1287-1312. doi: 10.1016/S0891-5849(01)00724-9

    [48]

    Boglione C, Gisbert E, Gavaia P, et al. Skeletal anomalies in reared European fish larvae and juveniles. Part 2: main typologies, occurrences and causative factors [J]. Reviews in Aquaculture, 2013, 5(s1): S121-S167.

    [49]

    Halliwell B, John M C G. Free radicals in biology and medicine [J]. Journal of Free Radicals in Biology & Medicine, 2007, 1(4): 331-332.

    [50]

    Winston G W, Di Giulio R T. Prooxidant and antioxidant mechanisms in aquatic organisms [J]. Aquatic Toxicology, 1991, 19(2): 137-161. doi: 10.1016/0166-445X(91)90033-6

    [51]

    Yu L L, Yu H H, Liang X F, et al. Dietary butylated hydroxytoluene improves lipid metabolism, antioxidant and anti-apoptotic response of largemouth bass (Micropterus salmoides) [J]. Fish & Shellfish Immunology, 2018(72): 220-229.

    [52]

    Aratani Y. Myeloperoxidase: its role for host defense, inflammation, and neutrophil function [J]. Archives of Biochemistry and Biophysics, 2018(640): 47-52.

    [53]

    Cheng D, Talib J, Stanley C P, et al. Inhibition of MPO (Myeloperoxidase) attenuates endothelial dysfunction in mouse models of vascular inflammation and atherosclerosis [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39(7): 1448-1457. doi: 10.1161/ATVBAHA.119.312725

    [54]

    Xu R, Hung S S O, German J B. White sturgeon tissue fatty acid compositions are affected by dietary lipids [J]. Journal of Nutrition, 1993, 123(10): 1685-1692. doi: 10.1093/jn/123.10.1685

    [55]

    Xu R, Hung S S O. Effects of dietary lipids on the fatty acids composition of triglycerides and phospholipids in tissue of white sturgeon [J]. Aquaculture Nutrition, 1996, 2(2): 101-109. doi: 10.1111/j.1365-2095.1996.tb00016.x

    [56]

    Vaccaro A M, Buffa G, Messina C M, et al. Fatty acid composition of a cultured sturgeon hybrid (Acipenser naccarii×A. baerii) [J]. Food Chemistry, 2005, 93(4): 627-631. doi: 10.1016/j.foodchem.2004.09.042

  • 期刊类型引用(17)

    1. 叶毅铭,何亮银,廖青青,林永翔,刘敏,陈虹坚,文宇鑫. 大黄鱼变形假单胞菌外膜蛋白OMPH和OMPW的原核表达及其多克隆抗体制备. 宁德师范学院学报(自然科学版). 2023(01): 57-64 . 百度学术
    2. 汪浩,汪玮,许文军,施慧,何杰,谢建军,王庚申. 大黄鱼源杀香鱼假单胞菌外膜蛋白OmpA的原核表达及免疫原性分析. 浙江海洋大学学报(自然科学版). 2019(01): 23-29 . 百度学术
    3. 黄华,刘锡胤,张秀梅,王鹤,王晓飞. 鱼类鮰爱德华菌与鮰爱德华菌病研究进展. 渔业信息与战略. 2019(04): 272-278 . 百度学术
    4. 段丽华,冯建军,郭松林,陈义航,阮彩章. 迟钝爱德华氏菌外膜蛋白基因工程表达产物的免疫原性. 华中农业大学学报. 2016(05): 97-104 . 百度学术
    5. 王二龙,秦振阳,汪开毓,陈德芳,王均,贺扬. 鲁氏耶尔森氏菌外膜蛋白ompF基因的分子克隆、生物信息学与免疫原性分析. 南方水产科学. 2016(03): 24-34 . 百度学术
    6. 黄艳青,刘港彪,王利. 鮰爱德华菌外膜蛋白OmpLC基因的生物信息学分析. 生物信息学. 2016(02): 61-70 . 百度学术
    7. 王二龙,王兴丽,杨帆,秦振阳,汪开毓,陈德芳,耿毅. 鮰爱德华菌外膜蛋白ompN2基因的克隆表达、分子特性与免疫原性分析. 中国兽医学报. 2016(01): 56-65+69 . 百度学术
    8. 陈亚楠,袁玲. 黄连根茎浸提物对隆线溞的急性毒性作用. 环境科学. 2015(10): 3892-3895 . 百度学术
    9. 王玉,冯建军,郭松林,林鹏. 嗜水气单胞菌与迟顿爱德华氏菌二联外膜蛋白的表达及其初步免疫原性. 华中农业大学学报. 2015(01): 96-102 . 百度学术
    10. 郭松林,冯建军,陆盼盼,曹伟棋,赵金平. 鳗鲡病原性嗜水气单胞菌与爱德华氏菌二联表达外膜蛋白的免疫原性. 中国水产科学. 2015(01): 113-120 . 百度学术
    11. 郭松林,王玉,冯建军,林鹏. 鳗鲡病原菌二联外膜蛋白基因工程表达载体的构建. 集美大学学报(自然科学版). 2014(05): 330-338 . 百度学术
    12. 胡林玲,郭松林,关瑞章,冯建军. 爱德华氏菌疫苗的研究进展. 安徽农业科学. 2013(25): 10353-10355 . 百度学术
    13. 甘玲玲,王蔚芳,雷霁霖,刘新富,温海深. 鲆鲽类渔用疫苗研究现状及展望. 渔业科学进展. 2013(02): 125-131 . 百度学术
    14. 郭松林,王玉,关瑞章,冯建军,林鹏,杨求华. 鳗鲡病原性气单胞菌外膜蛋白基因全长的克隆与抗原决定簇分析. 生物技术通报. 2013(07): 144-152 . 百度学术
    15. 熊静,关瑞章,郭松林,黄文树,关淑芳. 不同方法提取鳗鲡病原菌DNA模板的差异分析. 集美大学学报(自然科学版). 2012(03): 161-166 . 百度学术
    16. 张崇文,毛芝娟,于涟. 大黄鱼三种病原弧菌外膜蛋白交叉保护性抗原筛选. 生物工程学报. 2012(12): 1460-1472 . 百度学术
    17. 沈文英,傅玲琳,李卫芬. 枯草芽孢杆菌表达的VP28对南美白对虾免疫力和抗病毒感染的影响. 水生生物学报. 2012(02): 375-378 . 本站查看

    其他类型引用(18)

表(8)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 35
出版历程
  • 收稿日期:  2019-11-26
  • 修回日期:  2020-10-13
  • 网络出版日期:  2021-03-22
  • 发布日期:  2021-03-14

目录

    /

    返回文章
    返回