长江中下游湖泊水生植被的生态水位管理策略

袁赛波, 张晓可, 刘学勤, 王洪铸

袁赛波, 张晓可, 刘学勤, 王洪铸. 长江中下游湖泊水生植被的生态水位管理策略[J]. 水生生物学报, 2019, 43(S1): 104-109. DOI: 10.7541/2019.173
引用本文: 袁赛波, 张晓可, 刘学勤, 王洪铸. 长江中下游湖泊水生植被的生态水位管理策略[J]. 水生生物学报, 2019, 43(S1): 104-109. DOI: 10.7541/2019.173
YUAN Sai-Bo, ZHANG Xiao-Ke, LIU Xue-Qin, WANG Hong-Zhu. ECOLOGICAL WATER LEVEL MANAGEMENT STRATEGY FOR AQUATIC VEGETATION IN THE MID-LOWER YANGTZE SHALLOW LAKES[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(S1): 104-109. DOI: 10.7541/2019.173
Citation: YUAN Sai-Bo, ZHANG Xiao-Ke, LIU Xue-Qin, WANG Hong-Zhu. ECOLOGICAL WATER LEVEL MANAGEMENT STRATEGY FOR AQUATIC VEGETATION IN THE MID-LOWER YANGTZE SHALLOW LAKES[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(S1): 104-109. DOI: 10.7541/2019.173

长江中下游湖泊水生植被的生态水位管理策略

基金项目: 国家重点研发计划(2018YFC0407200); 支撑长江经济带可持续发展的生态环境保护战略对策研究; 国家自然科学基金(41371054和51579234)资助
详细信息
    作者简介:

    袁赛波(1990-), 女, 湖南长沙人; 博士研究生; 主要研究方向为水文生态学。E- mail: yuansaibo_ihb2013@163.com

    通信作者:

    刘学勤(1979-), 男, 副研究员; 主要从事河流-泛滥平原生态学及水文生态学研究。E-mail: xqliu@ihb.ac.cn

  • 中图分类号: Q948.8

ECOLOGICAL WATER LEVEL MANAGEMENT STRATEGY FOR AQUATIC VEGETATION IN THE MID-LOWER YANGTZE SHALLOW LAKES

Funds: Supported by the National Key Research and Development Program (2018YFC0407200); the Strategic Countermeasures of Ecological and Environmental Protection in Supporting Sustainable Development of the Yangtze Economic Belt; the National Natural Science Foundation of China (41371054, 51579234)
    Corresponding author:
  • 摘要: 近年来, 湖泊生态水文调控受到较大的关注, 但有关水生生物的水文需求还缺乏系统研究。文章较系统地总结了长江中下游湖泊水生植物分布及水位现状、水位波动对水生植物的影响及水生植物的水位波动需求模式, 介绍了以水生植物为指标的湖泊生态水位评估新方法, 针对不同功能类型的湖泊, 提出了相应的生态水位管理建议。
    Abstract: Eco-hydrological regulation of lakes have received more and more attentions in recent years, but systemic research on hydrological requirements of aquatic organisms is still limited. We systematically summarized the current status of aquatic plants and water level in the mid-lower Yangtze shallow lakes, influences of water level fluctuations on aquatic plants, and the requirement mode of water level fluctuation of aquatic plants. We also introduced a new method assessing ecological water level in shallow lakes based on aquatic plants, and provided corresponding strategies of water level regulations for lakes with different functions.
  • 图  1   长江中下游湖泊的三种水位波动型式

    Figure  1.   Three types of water level fluctuations in Yangtze-floodplain lakes

    图  2   长江中下游湖泊不同生活型植物的水位波动需求模式

    Figure  2.   The requirement mode of water level fluctuation of different life form plants in Yangtze floodplain lakes

    图  3   浅水湖泊水生植物分布的高程梯度

    Figure  3.   Elevational gradients of aquatic plants in shallow lakes

  • [1]

    Wang H Z, Liu X Q, Wang H J. The Yangtze River floodplain: threats and rehabilitation [J]. American Fisheries Society Symposium, 2016, 84: 263—291

    [2] 王洪铸, 王海军, 刘学勤, 等. 实施环境-水文-生态-经济协同管理战略, 保护和修复长江湖泊群生态环境. 长江流域资源与环境, 2015, 24(3): 353—357 doi: 10.11870/cjlyzyyhj201503001

    Wang H Z, Wang H J, Liu X Q, et al. Holistic management strategy: integrate environmental-hydrological-ecological-economic measures to conserve and rehabilitate the Yangtze lake ecosystems [J]. Resources and Environment in the Yangtze Basin, 2015, 24(3): 353—357 doi: 10.11870/cjlyzyyhj201503001

    [3]

    Liu X Q, Yang Z D, Yuan S B, et al. A novel methodology for the assessment of water level requirements in shallow lakes [J]. Ecological Engineering, 2017, 102: 31—38 doi: 10.1016/j.ecoleng.2017.02.004

    [4] 张晓可. 长江泛滥平原湖泊植物水位波动需求研究. 博士学位论文, 中国科学院水生生物研究所, 武汉. 2013

    Zhang X K. Water level fluctuation requirements of plants in the Yangtze floodplain lakes [D]. Thesis for Doctor of Science. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan. 2013

    [5]

    Yuan S B, Yang Z D, Liu X Q, et al. Key parameters of water level fluctuations determining the distribution of Carex in shallow lakes [J]. Wetlands, 2017, (1-3): 1—10

    [6]

    Poff N L, Allan J D, Bain M B, et al. The natural flow regime [J]. BioScience, 1997, 47: 769—784 doi: 10.2307/1313099

    [7]

    Lytle D A, Poff N L. Adaption to natural flow regimes [J]. Trends in Ecology & Evolution, 2004, 19: 94—100

    [8] 王洪铸, 王海军. 长江中下游江湖阻隔的生态学效应及修复方略. 见: 王兆印, 长江流域水沙生态综合管理. 北京: 科学出版社. 2009, 379—396

    Wang H Z, Wang H J. Ecological Effects of River-lake Disconnection and Restoration Strategies in the Mid-lower Yangtze River [A]. In: Wang Z Y (Eds.), Ecological Management on Water and Sediment in the Yangtze River Basin [M]. Beijing: Science Press. 2009, 379—396

    [9] 胡振鹏, 葛刚, 刘成林, 等. 鄱阳湖湿地植物生态系统结构及湖水位对其影响研究. 长江流域资源与环境, 2010, 19(6): 597—605

    Hu Z P, Ge G, Liu C L, et al. Structure of Poyang Lake wetland plants ecosystem and influence of lake water level for the structure [J]. Resources and Environment in the Yangtze Basin, 2010, 19(6): 597—605

    [10] 胡振鹏, 葛刚, 刘成林. 鄱阳湖湿地植被退化原因分析及其预警. 长江流域资源与环境, 2015, 24(3): 381—386 doi: 10.11870/cjlyzyyhj201503005

    Hu Z P, Ge G, Liu C L. Cause analysis and early warning for wetland vegetation degradation in Poyang Lake [J]. Resources and Environment in the Yangtze Basin, 2015, 24(3): 381—386 doi: 10.11870/cjlyzyyhj201503005

    [11] 陈昌才. 巢湖水生植物对生态水位的需求研究. 中国农村水利水电, 2013, 2: 4—7 doi: 10.3969/j.issn.1007-2284.2013.02.002

    Chen C C. A study of ecological water level requirement of Chaohu aquatic plant [J]. China Rural Water and Hydropower, 2013, 2: 4—7 doi: 10.3969/j.issn.1007-2284.2013.02.002

    [12]

    Zhang X K, Liu X Q, Wang H Z. Developing water level regulation strategies for macrophytes restoration of a large river-disconnected lake, China [J]. Ecological Engineering, 2014, 68: 25—31 doi: 10.1016/j.ecoleng.2014.03.087

    [13] 吴晓东, 王国祥, 魏宏农, 等. 模拟水位上升对黑藻生长的影响. 湖泊科学, 2012, 24(3): 384—390 doi: 10.3969/j.issn.1003-5427.2012.03.009

    Wu X D, Wang G X, Wei H N, et al. Growth responses of Hydrilla verticillata to increasing water levels [J]. Journal of Lake Sciences, 2012, 24(3): 384—390 doi: 10.3969/j.issn.1003-5427.2012.03.009

    [14]

    Wang Q L, Chen J R, Liu F, et al. Morphological changes and resource allocation of Zizania latifolia (Griseb.) Stapf in response to different submergence depth and duration [J]. Flora, 2014, 209: 279—284 doi: 10.1016/j.flora.2014.03.006

    [15]

    Zhang X K, Wan A, Wang H L, et al. The overgrowth of Zizania latifolia in a subtropical floodplain lake: changes in its distribution and possible water level control measures [J]. Ecological Engineering, 2016, 89: 114—120 doi: 10.1016/j.ecoleng.2016.01.069

    [16] 胡豆豆, 欧阳惠克, 戴征煌, 等. 鄱阳湖湿地灰化苔草草甸群落特征及多样性. 草业科学, 2013, 30(6): 844—848

    Hu D D, Ouyang H K, Dai Z H, et al. Investigation on community characteristics and α-diversity of Carex cinerascens meadow steppe in Poyang Lake wetland [J]. Pratacultural Science, 2013, 30(6): 844—848

    [17] 魏华, 成水平, 吴振斌. 水文特征对水生植物的影响. 农业基础科学, 2010, 7: 1—16

    Wei H, Cheng S P, Wu Z B. Effects of hydrological characteristics on aquatic plants [J]. Modern Agricultural Science and Technology, 2010, 7: 1—16

    [18]

    Webb J A, Wallis E M, Stewardson M J. A systematic review of published evidence linking wetland plants to water regime components [J]. Aquatic Botany, 2012, 103: 1—14 doi: 10.1016/j.aquabot.2012.06.003

    [19]

    Zhang X K, Liu X Q, Ding Q Z. Morphological responses to water-level fluctuations of two submerged macrophytes, Myriophyllum spicatum and Hydrilla verticillata [J]. Journal of Plant Ecology, 2013, 6(1): 64—70 doi: 10.1093/jpe/rts009

    [20]

    Jing L, Lu C, Xia Y, et al. Effects of hydrological regime on development of Carex wet meadows in East Dongting Lake, a Ramsar Wetland for wintering waterbirds [J]. Scientific Reports, 2017, 7: 41761 doi: 10.1038/srep41761

    [21]

    Bernard J M. Life history and vegetative reproduction in Carex [J]. Canadian Journal of Botany, 1990, 68: 1441—1448 doi: 10.1139/b90-182

    [22]

    Yuan S B, Yang Z D, Liu X Q, et al. Water level fluctuation requirements of a Carex hygrophyte in Yangtze floodplain lakes [J]. Ecological Engineering, 2019, 129: 29—37 doi: 10.1016/j.ecoleng.2019.01.006

    [23]

    Deegan B M, White S D, Ganf G G. The influence of water level fluctuations on the growth of four emergent macrophyte species [J]. Aquatic Botany, 2007, 86: 309—315 doi: 10.1016/j.aquabot.2006.11.006

    [24] 曹昀. 江滩湿地植物恢复的影响因子与技术研究. 博士学位论文, 南京师范大学, 南京. 2007

    Cao Y. Study on impact factor and technique of vegetation restoration for flood beaches wetlands along the Yangtze River [D]. Thesis for Doctor of Science. Nanjing Normal University, Nanjing. 2007

    [25]

    Wang H Z, Wang H J, Liang X M, et al. Empirical modelling of submersed macrophytes in Yangtze lakes [J]. Ecological Modelling, 2005, 188(2): 483—491

    [26]

    Tharme R E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers [J]. River Research and Applications, 2003, 19: 397—441 doi: 10.1002/(ISSN)1535-1467

    [27] 崔保山, 赵翔, 杨志峰. 基于生态水文学原理的湖泊最小生态需水量计算. 生态学报, 2005, 25(7): 1788—1795 doi: 10.3321/j.issn:1000-0933.2005.07.036

    Cui B S, Zhao X, Yang Z F. Eco-hydrology-based calculation of the minimum water level requirement for lakes [J]. Acta Ecological Sinica, 2005, 25(7): 1788—1795 doi: 10.3321/j.issn:1000-0933.2005.07.036

    [28] 徐志侠, 陈敏建, 董增川. 湖泊最低生态水位计算方法. 生态学报, 2004, 24(10): 2324—2328 doi: 10.3321/j.issn:1000-0933.2004.10.035

    Xu Z X, Chen M J, Dong Z C. Researches on the calculation methods of the lowest ecological water level of lake [J]. Acta Ecological Sinica, 2004, 24(10): 2324—2328 doi: 10.3321/j.issn:1000-0933.2004.10.035

    [29] 叶少文, 杨洪斌, 陈永柏, 等. 三峡水库生态渔业发展策略与关键技术研究分析. 水生生物学报, 2015, 39(5): 1035—1040 doi: 10.7541/2015.135

    Ye S W, Yang H B, Chen Y B, et al. Analysis on the development strategies and key techniques of ecological fisheries in the Three Gorges Reservoir, China [J]. Acta Hydrobiologica Sinica, 2015, 39(5): 1035—1040 doi: 10.7541/2015.135

图(3)
计量
  • 文章访问数:  6149
  • HTML全文浏览量:  2062
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-28
  • 修回日期:  2019-03-27
  • 网络出版日期:  2019-06-20
  • 发布日期:  2019-11-30

目录

    /

    返回文章
    返回