长江流域水生植物多样性格局与保护

吴志刚, 熊文, 侯宏伟

吴志刚, 熊文, 侯宏伟. 长江流域水生植物多样性格局与保护[J]. 水生生物学报, 2019, 43(S1): 27-41. DOI: 10.7541/2019.164
引用本文: 吴志刚, 熊文, 侯宏伟. 长江流域水生植物多样性格局与保护[J]. 水生生物学报, 2019, 43(S1): 27-41. DOI: 10.7541/2019.164
WU Zhi-Gang, XIONG Wen, HOU Hong-Wei. BIODIVERSITY PATTERN AND CONSERVATION OF AQUATIC VASCULAR PLANTS IN THE YANGTZE RIVER BASIN, CHINA[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(S1): 27-41. DOI: 10.7541/2019.164
Citation: WU Zhi-Gang, XIONG Wen, HOU Hong-Wei. BIODIVERSITY PATTERN AND CONSERVATION OF AQUATIC VASCULAR PLANTS IN THE YANGTZE RIVER BASIN, CHINA[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(S1): 27-41. DOI: 10.7541/2019.164

长江流域水生植物多样性格局与保护

基金项目: 支撑长江经济带可持续发展的生态环境保护战略对策研究
详细信息
    作者简介:

    吴志刚(1987—), 男, 湖北武汉人; 博士研究生; 主要从事植物生态学研究。E-mail: wuzg@ihb.ac.cn

    通信作者:

    侯宏伟(1968—), 男, 河南南阳人; 博士研究生; 主要从事植物生理学研究。E-mail: houhw@ihb.ac.cn

  • 中图分类号: S937

BIODIVERSITY PATTERN AND CONSERVATION OF AQUATIC VASCULAR PLANTS IN THE YANGTZE RIVER BASIN, CHINA

Funds: Supported by Fund of Strategic Countermeasures of Ecological and Environmental Protection in Supporting Sustainable Development of the Yangtze Economic Belt
    Corresponding author:
  • 摘要: 为对长江流域尺度的多样性进行分析, 研究以不同时期发表的长江流域水生植物相关文献、专著等为基础资料, 选取了22种环境因子, 分析了长江流域水生植物多样性时空格局, 并应用MaxEnt软件建立物种分布模型预测流域水生植物适生区及主要影响变量。结果表明长江流域已报道分布的水生维管植物共有298种, 隶属于52科、121属, 占我国水生维管植物物种数的57.6%, 是我国水生植物多样性重要区域, 其中长江中游流域的物种多样性最高。海拔和土地利用类型是影响长江流域水生植物空间分布格局的主要因素。水系对于水生植物的隔离效应较小, 而河湖一体的特征使得中下游各流域物种组成较为相近。MaxEnt模型结果表明洞庭湖、鄱阳湖和太湖以及连接三湖的中游干流、下游干流流域是水生植物的适生区域。过去的半个多世纪, 长江流域水生植被出现了明显的退化, 建议建立以“两湖”为核心的长江中下游整体保护体系, 设立或更新现有保护区和管理区时应兼顾水生植被的保护。
    Abstract: The Yangtze River is the largest river in China. It is a priority conservation area for biodiversity of the world, with its main river, branches and wetlands. As an essential part of freshwater ecosystem, aquatic vegetation has been well studied by Chinese researchers since 1950s, but large-scaled analysis on the biodiversity pattern is lacked. Based on published studies, we analyzed spatial and temporal pattern of aquatic plant diversity in the Yangtze River Basin, and calculated the suitable habitat area and underlying influence of environmental factors using MaxEnt software. A total of 298 species are recognized, belonging to 121 genera in 52 families, which is 57.6% of the total aquatic vascular plants in China. The Yangtze River Basin is the key area for aquatic plant diversity of China, especially the subregions of middle reaches. The elevation and land use are the key environmental variables to the spatial pattern of aquatic plants. The separation among water systems have weak influence on the spatial pattern of diversity in aquatic vascular plants, but potamo-lacustrine habitats facilitated the species homogenization of the flora in a sub-basin scale. The network consists of Poyang Lake, Dongting Lake, Tai Lake, and the middle and lower mainstream is the suitable area for the aquatic plants based on the MaxEnt model. In the past half century, the decline or loss of aquatic vegetation occurred in plenty of lakes in the Yangtze River Basin. We suggested that the protection of aquatic vegetation should be incorporated into the integrated conservation of the middle and lower Yangtze River.
  • 图  1   长江流域水生维管植物样点分布图

    Figure  1.   Sample sites of aquatic vascular plant in the Yangtze River Basin

    图  2   长江流域各亚区水生植物的物种数

    Figure  2.   Species number of aquatic vascular plants in the subregions of the Yangtze River Basin

    图  3   长江流域各亚区水生植物物种相似性

    Figure  3.   Similarity of aquatic flora among the subregions in the Yangtze River Basin

    图  4   MaxEnt模型受试者工作特征曲线(A. 长江流域所有水生植物; B. 长江流域珍稀濒危水生植物, AUC值为曲线下面积)

    Figure  4.   The receiver operating characteristic curve (ROC) of MaxEnt model for the potential distribution of aquatic vascular plants in the Yangtze River Basin (A. all species; B. endangered species. AUC is the area under the curve)

    图  5   基于MaxEnt模型的长江流域水生植物潜在分布概率图(A. 所有物种; B. 珍稀濒危物种)

    Figure  5.   Probability of potential distribution for the aquatic vascular plants in the Yangtze River Basin based on the MaxEnt model (A. All speeies; B. endangered speeies)

    图  6   1950年代至今长江流域水生植物优势种频度变化

    Figure  6.   Changes of observed frequency of dominant aquatic plants in the Yangtze River Basin since 1950s

    图  7   1950年代至今长江流域部分湖泊植被覆盖率变化

    数据来源于文献[1521, 2426, 3462]

    Figure  7.   Changes of aquatic vegetation coverage ratio in representative lakes of the Yangtze River basin since 1950s

    Reference [1521, 2426, 3462]

    表  1   长江流域水生植物各科属的种类数及分布

    Table  1   List and distribution of aquatic vascular plants in the Yangtze River Basin


    Family

    Genus
    物种数
    Number of species
    HW&UJSYLSMTSJLSWSLJSHSDTSPYSMMSLMSTS
    满江红科Azollaceae满江红属Azolla2110011111111
    木贼科Equisetaceae木贼Equisetum1001001100000
    水韭科Isoetaceae水韭属Isoetes 5100001011000
    苹科Marsileaceae苹属Marsilea 2000011111111
    水蕨科Parkeriaceae水蕨属Ceratopteris2000001111111
    水龙骨科Polypodiaceae星蕨属Microsorium1000000011000
    槐叶苹科Salviniaceae槐叶苹属Salvinia1000001111111
    爵床科Acanthaceae水蓑衣属Hygrophila1000001011001
    泽泻科Alismataceae泽泻属Alisma4111011111111
    泽苔草属Caldesia2000000011000
    毛茛泽泻属Ranalisma1000000011000
    慈姑属Sagittaria5110111111111
    苋科Amaranthaceae莲子草属Alternanthera2010101111111
    水蕹科Aponogetonaceae水蕹属Aponogeton1000000011000
    天南星科Araceae菖蒲属Acorus2110011111111
    水芋属Calla1010001000000
    大薸属Pistia1000001011011
    花蔺科Butomaceae花蔺属Butomus1000001000011
    莼菜科Cabombaceae莼属Brasenia 1000101011011
    水盾草属Cabomba1000001000001
    水马齿科Callitricheaceae水马齿属Callitriche3111001011111
    下载: 导出CSV
    附录 1 长江流域珍稀濒危水生植物名录
    Appendix 1 List of endangered aquatic vascular plants in the Yangtze River Basin
     科  Family  属  Genus  种  Species 保护等级/IUCN
    水韭科 Isoetaceae 水韭属 Isoetes 高寒水韭 Isoetes hypsophila VU
    东方水韭 Isoetes orientalis CR
    中华水韭 Isoetes sinensis Ⅰ级, EN
    水蕨科 Parkeriaceae 水蕨属 Ceratopteris 粗梗水蕨 Ceratopteris pteridoides Ⅱ级, EN
    水蕨 Ceratopteris thalictroides Ⅱ级, VU
    泽泻科 Alismataceae 泽苔草属 Caldesia 宽叶泽苔草 Caldesia grandis CR
    泽苔草 Caldesia parnassifolia CR
    毛茛泽泻属 Ranalisma 长喙毛茛泽泻 Ranalisma rostrata Ⅰ级, CR
    慈姑属 Sagittaria 冠果草 Sagittaria guayanensis EN
    利川慈姑 Sagittaria lichuanensis VU
    小慈姑 Sagittaria potamogetifolia VU
    野慈姑 Sagittaria trifolia NT
    水蕹科 Aponogetonaceae 水蕹属 Aponogeton 水蕹 Aponogeton lakhonensis VU
    莼菜科 Cabombaceae 莼属 Brasenia 莼菜 Brasenia schreberi Ⅰ级, CR
    莎草科 Cyperaceae 石龙刍属 Lepironia 石龙刍 Lepironia articulata NT
    水葱属 Schoenoplectus 曲氏水葱 Schoenoplectus chuanus EN
    荆门水葱 Schoenoplectus jingmenensis VU
    谷精草科 Eriocaulaceae 谷精草属 Eriocaulon 谷精草 Eriocaulon buergerianum VU
    长苞谷精草 Eriocaulon decemflorum VU
    禾本科 Gramineae 莎禾属 Coleanthus 莎禾 Coleanthus subtilis EN
    水禾属 Hygroryza 水禾 Hygroryza aristata NT
    小二仙草科 Haloragaceae 狐尾藻属 Myriophyllum 互花狐尾藻 Myriophyllum alterniflorum VU
    二分果狐尾藻 Myriophyllum dicoccum NT
    东方狐尾藻 Myriophyllum oguraense NT
    四蕊狐尾藻 Myriophyllum tetrandrum RE
    乌苏里狐尾藻 Myriophyllum ussuriense Ⅱ级, VU
    杉叶藻科 Hippuridaceae 杉叶藻属 Hippuris 四叶杉叶藻 Hippuris tetraphylla NT
    水鳖科 Hydrocharitaceae 水筛属 Blyxa 无尾水筛 Blyxa aubertii VU
    光滑水筛 Blyxa leiosperma VU
    水车前属 Ottelia 海菜花 Ottelia acuminata VU
    龙舌草 Ottelia alismoides VU
    水菜花 Ottelia cordata Ⅱ级, RE
    苦草属 Vallisneria 刺苦草 Vallisneria spinulosa NT
    睡菜科 Menyanthaceae 荇菜属 Nymphoides 水金莲花 Nymphoides aurantiaca NT
    小荇菜 Nymphoides coreana NT
    茨藻科 Najadaceae 茨藻属 Najas 弯果茨藻 Najas ancistrocarpa VU
    多孔茨藻 Najas foveolata VU
    纤细茨藻 Najas gracillima Ⅱ级, LC
    澳古茨藻 Najas oguraensis EN
    莲科 Nelumbonaceae 莲属 Nelumbo Nelumbo nucifera Ⅱ级
    睡莲科 Nymphaeaceae 萍蓬草属 Nuphar 萍蓬草 Nuphar pumila Ⅱ级, VU
    眼子菜科 Potamogetonaceae 眼子菜属 Potamogeton 浮叶眼子菜 Potamogeton natans NT
    白茎眼子菜 Potamogeton praelongus VU
    菱科 Trapaceae 菱属 Trapa 细果野菱 Trapa incisa Ⅱ级, DD
    香蒲科 Typhaceae 黑三棱属 Sparganium 线叶黑三棱 Sparganium angustifolium NT
    矮黑三棱 Sparganium natans VU
    伞形科 Umbelliferae 水芹属 Oenanthe 短辐水芹 Oenanthe benghalensis VU
    下载: 导出CSV

    表  2   影响长江流域水生植物分布格局的环境变量及其贡献度

    Table  2   Contributions of environmental variables to spatial pattern of aquatic vascular plants in the Yangtze River Basin

    环境变量Environmental variable缩写Code贡献率Percent contribution
    所有物种
    All species
    珍稀濒危物种Endangered species
    年平均气温BIO100
    月均日温差BIO20.71.1
    月均日温差和年均极温差比值BIO34.64.1
    温度季度变化BIO42.23.4
    最暖季度均温BIO1016.6
    最冷季度均温BIO111.22
    年降水BIO120.30
    降水量季度变化BIO151.40.1
    土壤分类Soil_100
    表层土壤砾石含量Soil_20.31.7
    表层土壤砂石含量Soil_300
    表层土壤淤泥含量Soil_400.1
    表层土壤黏粒含量Soil_500
    表层土壤容重Soil_80.50.8
    表层土壤有机碳含量Soil_90.80.9
    表层土壤酸碱度Soil_101.72.8
    表层土壤碱度Soil_170.30.2
    表层土壤盐度海拔Soil_181.71.7
    海拔Elevation61.8 60.5
    坡度Slope4.63.8
    坡向Aspect5.92.2
    土地利用类型Landuse118
    下载: 导出CSV
  • [1]

    Carpenter S R, Lodge D M. Effects of submersed macrophytes on ecosystem processes [J]. Aquatic Botany, 1986, 26: 341—370 doi: 10.1016/0304-3770(86)90031-8

    [2]

    Engelhardt K A M, Ritchie M E. Effects of macrophyte species richness on wetland ecosystem functioning and services [J]. Nature, 2001, 411: 687—689 doi: 10.1038/35079573

    [3]

    van Donk E, Gulati R D, Iedema A, et al. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake [A]. In: Hillbricht-Ilkowska A, Pieczyńska E (Eds.), Nutrient Dynamics and Retention in Land/Water Ecotones of Lowland, Temperate Lakes and Rivers [C]. Dordrecht: Springer Netherlands. 1993, 19—26

    [4]

    Wetzel R G. Structure and productivity of aquatic ecosystems [A]. In: Wetzel R G (Eds.), Limnology [C]. San Diego: Academic Press. 2001, 129—150

    [5]

    Heegaard E, Birks H H, Gibson C E, et al. Species-environmental relationships of aquatic macrophytes in Northern Ireland [J]. Aquatic Botany, 2001, 70(3): 175—223 doi: 10.1016/S0304-3770(01)00161-9

    [6]

    Valley R D, Cross T K, Radomski P. The Role of Submersed Aquatic Vegetation as Habitat for Fish in Minnesota Lakes, Including the Implications of Non-native Plant Invasions and Their Management [M]. Special Publication, Saint Paul: Minnesota Department of Natural Resources. 2004, 160

    [7]

    Madsen J D, Chambers P A, James W F, et al. The interaction between water movement, sediment dynamics and submersed macrophytes [J]. Hydrobiologia, 2001, 444(1): 71—84

    [8]

    Pluntke T, Kozerski H-P. Particle trapping on leaves and on the bottom in simulated submerged plant stands [J]. Hydrobiologia, 2003, 506(1): 575—581

    [9]

    Hosper H, Meijer M L. Biomanipulation, will it work for your lake? A simple test for the assessment of chances for clear water, following drastic fish-stock reduction in shallow, eutrophic lakes [J]. Ecological Engineering, 1993, 2(1): 63—72 doi: 10.1016/0925-8574(93)90027-D

    [10]

    Scheffer M, Hosper S H, Meijer M L, et al. Alternative equilibria in shallow lakes [J]. Trends in Ecology and Evolution, 1993, 8(8): 275—279 doi: 10.1016/0169-5347(93)90254-M

    [11]

    Scheffer M. Ecology of Shallow Lakes [M]. Dordrecht: Kluwer Academic Publishers. 2004

    [12]

    Jeppesen E, Sondergaard M, Sondergaard M, et al. The Structuring Role of Submerged Macrophytes in Lakes [M]. New York: Springer Science and Business Media, 2012

    [13]

    Cook C D K. Aquatic Plant Book [M]. The Hague: SPB Academic Publishing. 1990

    [14] 曾祥琮. 长江水系渔业资源. 北京: 海洋出版社. 1990

    Zeng X C. Fishery Resources of the Yangtze River Basin [M]. Beijing: Marine Press. 1990

    [15] 陈洪达, 何楚华. 武昌东湖水生维管束植物的生物量及其在渔业上的合理利用问题. 水生生学集刊, 1975, 5(3): 410—420

    Chen H D, He C H. Standing crop of the macrophytes of Lake Donghu, Wuchang, with reference to the problem of its rational piscicultural utilization [J]. Acta Hydrobiologica Sinica, 1975, 5(3): 410—420

    [16] 陈洪达. 武汉东湖水生维管束植物群落的结构和动态. 海洋与湖沼, 1980, 11(3): 275—284

    Chen H D. Structure and dynamic of macrophyte communities in Lake Donghu, Wuhan [J]. Oceanologia et Limnologia Sinica, 1980, 11(3): 275—284

    [17] 王祖熊. 梁子湖湖沼学资料. 水生生物学集刊, 1959, 3: 352—368

    Wang Z X. A Limnological survey of lake Liang-tze [J]. Acta Hydrobiologica Sinica, 1959, 3: 352—368

    [18] 陈洪达. 洪湖水生植被. 水生生物学集刊, 1963, 16(3): 69—81

    Chen H D. Aquatic vegetation in Honghu Lake [J]. Acta Hydrobiologica Sinica, 1963, 16(3): 69—81

    [19] 吴文谱. 鄱阳湖草滩植被与钉螺分布的初步调查. 南昌大学学报(理科版), 1977, 1: 77—83

    Wu W P. Preliminary investigation on the distribution of vegetation and oncomelania snailes in the Poyang Lake [J]. Journal of Nanchang University (Natural Science), 1977, 1: 77—83

    [20] 官少飞. 鄱阳湖水生植物区系的植物地理学特征. 湖泊科学, 1990, 2(1): 44—49

    Guan S F. Phytogeographic characteristics of aquatic flora in Poyang Lake [J]. Scientia Limnologica Sinica, 1990, 2(1): 44—49

    [21] 葛刚, 陈少风. 鄱阳湖湿地植物. 北京: 科学出版社. 2015

    Ge G, Chen S F. Wetland Plants of Poyang Lake [M]. Beijing: Science Press. 2015

    [22] 彭德纯, 袁正科, 廖起凤, 等. 洞庭湖区湖沼植被. 生态学杂志, 1986, 5(2): 28—32

    Peng D C, Yuan Z K, Liao Q F, et al. Vegetations in lakes and bogs of Dongting Lake district [J]. Chinese Journal of Ecology, 1986, 5(2): 28—32

    [23] 简永兴, 王建波, 何国庆, 等. 洞庭湖区三个湖泊水生植物多样性的比较研究. 水生生物学报, 2002, 26(2): 160—167 doi: 10.3321/j.issn:1000-3207.2002.02.009

    Jian Y X, Wang J B, He G Q, et al. A comparative study on aquatic plant diversity and its long-term changes in the three lakes of Dongtinghu district in China [J]. Acta Hydrobiologica Sinica, 2002, 26(2): 160—167 doi: 10.3321/j.issn:1000-3207.2002.02.009

    [24] 曹萃禾. 水生维管束植物在太湖生态系统中的作用. 生态学杂志, 1987, 6(1): 21—41

    Cao C H. Effects of aquatic vascular plants on the Taihu Lake ecosystem [J]. Chinese Journal of Ecology, 1987, 6(1): 21—41

    [25] 张圣照, 王国祥, 濮培民, 等. 东太湖水生植被及其沼泽化趋势. 植物资源与环境学报, 1999, 8(2): 1—6

    Zhang S Z, Wang G X, Pu P M, et al. Succession of hydrophytic vegetation and swampy tendency in the East Taihu Lake [J]. Journal of Plant Resources and Environment, 1999, 8(2): 1—6

    [26] 赵凯, 周彦锋, 蒋兆林, 等. 1960年以来太湖水生植被演变. 湖泊科学, 2017, 29(2): 351—362

    Zhao K, Zhou Y E, Jiang Z L, et al. Changes of aquatic vegetation in Lake Taihu since 1960s [J]. Journal of Lake Sciences, 2017, 29(2): 351—362

    [27] 卢心固. 巢湖水生植被调查. 安徽农业大学学报, 1984, (2): 95—102

    Lu X G. Aquatic vegetation survey in the Chaohu lake [J]. Journal of Anhui Agricultural University, 1984, (2): 95—102

    [28] 王金霞, 孟炜淇, 李国祥, 等. 巢湖流域水生植物多样性. 湖泊科学, 2017, 29(6): 1386—1397

    Wang J X, Meng W Q, Li G X, et al. Diversity of aquatic plants in Chaohu basin [J]. Journal of Lake Sciences, 2017, 29(6): 1386—1397

    [29]

    Lovett J C, Rudd S, Taplin J, et al. Patterns of plant diversity in Africa south of the Sahara and their implications for conservation management [J]. Biodiversity and Conservation, 2000, 9(1): 37—46 doi: 10.1023/A:1008956529695

    [30]

    Li Z, Yu D, Xiong W, et al. Aquatic plants diversity in arid zones of Northwest China: patterns, threats and conservation [J]. Biodiversity and Conservation, 2006, 15(11): 3417—3444 doi: 10.1007/s10531-005-0769-5

    [31]

    Viana D S, Santamaría L, Schwenk K, et al. Environment and biogeography drive aquatic plant and cladoceran species richness across Europe [J]. Freshwater Biology, 2014, 59(10): 2096—2106 doi: 10.1111/fwb.2014.59.issue-10

    [32] 水利部长江水利委员会. 长江流域地图集. 北京: 中国地图出版社. 1999

    Changjiang Hydrological Committee of Hydrology Ministry. Atlas of the Yangtze River Basin [M]. Beijing: China Map Press. 1999

    [33]

    Jaccard P. Nouvelles researches sur la distribution florale [J]. Bulletin de la Sociètè Vaudoise des Sciences Naturelles, 1908, 44: 223—270

    [34] 李恒. 云南高原湖泊水生植被的研究. 云南植物研究, 1980, 2(2): 113—141

    Li H. A study on the lake vegetation of Yunnan Plateau [J]. Acta Botanica Yunnanica, 1980, 2(2): 113—141

    [35] 黎尚豪, 俞敏娟, 李光正, 等. 云南高原湖泊调查. 海洋与湖沼, 1963, 5(2): 87—114

    Li S H, Yu M J, Li G Z, et al. Limnological survey of the lakes of Yunnan Plateau [J]. Oceanologia et Limnologia Sinica, 1963, 5(2): 87—114

    [36] 王寿兵, 徐紫然, 张洁. 滇池高等沉水植物50年变迁状况对生态修复的启示. 水资源保护, 2016, 32(6): 1—5

    Wang S B, Xu Z R, Zhang J. Dynamic changes of higher submerged macrophytes in Dianchi Lake in recent 50 years and implication for ecological restoration [J]. Water Resources Protection, 2016, 32(6): 1—5

    [37] 金伯欣, 邓兆仁, 李新民. 江汉湖群综合研究. 武汉: 湖北科学技术出版社. 1992

    Jin B X, Deng Z R, Li X M. Comprehensive Study of Jianghan Lakes Area [M]. Wuhan: Hubei Science and Technology Publishing House. 1992

    [38] 李伟. 洪湖水生植被及其演替研究. 博士学位论文, 中国科学院水生生物研究所, 武汉. 1995

    Li W. Studies on aquatic vegetation and its succession in Honghu Lake [D]. Thesis for Doctor of Science. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan. 1995

    [39] 陈宜瑜, 许蕴玕. 洪湖水生生物及其资源开发. 北京: 科学出版社. 1995

    Chen Y Y, Xu W X. Hydrobiology and Resources Exploitation in Honghu Lake [M]. Beijing: Science Press. 1995

    [40] 彭映辉, 简永兴, 王建波, 等. 湖北省五大湖泊水生植物多样性的比较研究. 水生生物学报, 2004, 28(5): 464—470 doi: 10.3321/j.issn:1000-3207.2004.05.002

    Peng Y H, Jian Y X, Wang J B, et al. A Comparative study on aquatic plant diversity in five largest lakes of Hubei province in China [J]. Acta Hydrobiologica Sinica, 2004, 28(5): 464—470 doi: 10.3321/j.issn:1000-3207.2004.05.002

    [41] 刘毅, 任文彬, 舒潼, 等. 洪湖湖滨带植被现状以及近五十年的变化分析. 长江流域资源与环境, 2015, 24(Z1): 38—45

    Liu Y, Ren W B, Shu T, et al. Current status and the long-term change of riparian vegetation in last fifty years of Lake Honghu [J]. Resources and Environment in the Yangtze Basin, 2015, 24(Z1): 38—45

    [42] 冯灿, 王学雷, 王增学, 等. 长湖水生维管束植物群落研究. 武汉植物学研究, 1989, 7(2): 123—130

    Feng C, Wang X L, Wang Z X, et al. Studies on the communities of aquatic vascular plants in Changhu Lake [J]. Journal of Wuhan Botanical Research, 1989, 7(2): 123—130

    [43] 彭映辉, 简永兴, 倪乐意, 等. 长湖水生植物多样性及其变化. 云南植物研究, 2003, 25(2): 173—180 doi: 10.3969/j.issn.2095-0845.2003.02.006

    Peng Y H, Jian Y X, Ni L Y, et al. Aquatic plant diversity and its changes in Changhu Lake of Hubei Province in China [J]. Acta Botanica Yunnanica, 2003, 25(2): 173—180 doi: 10.3969/j.issn.2095-0845.2003.02.006

    [44] 郝孟曦. 江汉湖群主要湖泊水生植物多样性及群落演替规律研究. 硕士学位论文, 湖北大学, 武汉. 2014

    Hao M X. Diversity and community succession of macrophytes in Jianghan Lake Groups—the cases of lake Liangzi, lake Changhu, lake Futou and lake Zhangdu [D]. Thesis for Master of Science. Hubei University, Wuhan. 2014

    [45] 李伟. 斧头湖水生维管束植物区系分析. 山西师范大学学报(自然科学版), 1993, (S2): 1—6

    Li W. Floristic analysis on the aquatic vascular plants in Futouhu Lake [J]. Journal of Shanxi Teacher’s University (Natural Science Edition), 1993, (S2): 1—6

    [46] 李中强, 任慧, 郝孟曦, 等. 斧头湖水生植物多样性及群落演替研究. 水生生物学报, 2012, 36(6): 1018—1026

    Li Z Q, Ren H, Hao M X, et al. Diversity variation and community succession of aquatic macrophytes in Lake Futou [J]. Acta Hydrobiologica Sinica, 2012, 36(6): 1018—1026

    [47] 王卫民, 杨干荣, 樊启学, 等. 梁子湖水生植被. 华中农业大学学报, 1994, 13(3): 281—290

    Wang W M, Yang G R, Fan Q X, et al. Aquatic vegetation in Liangzi Lake [J]. Journal of Huazhong Agricultural University, 1994, 13(3): 281—290

    [48] 葛继稳, 蔡庆华, 李建军, 等. 梁子湖水生植被1955-2001年间的演替. 北京林业大学学报, 2004, 26(1): 14—20 doi: 10.3321/j.issn:1000-1522.2004.01.004

    Ge J W, Cai Q H, Li J J, et al. On aguatic vegetation succession of Lake Liangzihu from 1955 to 2001 [J]. Journal of Beijing Forestry Uniuersity, 2004, 26(1): 14—20 doi: 10.3321/j.issn:1000-1522.2004.01.004

    [49] 姚作五, 李益健, 夏盛林. 武汉东湖水维管束植物与富营养化. 重庆环境科学, 1990, 12(4): 26—30

    Yao Z W, Li Y J, Xia S L. Studies of the aquatic vascular plants and eutrophication in Wuhan East Lake [J]. Chongqing Environmental Science, 1990, 12(4): 26—30

    [50] 吴振斌, 陈德强, 邱东茹. 武汉东湖水生植被现状调查及群落演替分析. 重庆环境科学, 2003, 25(8): 54—58 doi: 10.3969/j.issn.1674-2842.2003.08.018

    Wu Z B, Chen D Q, Qiu D R. Investigation of the distribution of the aquatic vegetation in Lake Donghu, Wuhan [J]. Chongqing Environmental Sciences, 2003, 25(8): 54—58 doi: 10.3969/j.issn.1674-2842.2003.08.018

    [51] 钟爱文, 宋鑫, 张静, 等. 2014年武汉东湖水生植物多样性及其分布特征. 环境科学研究, 2017, 30(3): 398—405

    Zhong A W, Song X, Zhang J, et al. Diversity and distribution of aquatic plants in Lake Donghu in Wuhan in 2014 [J]. Research of Environmental Sciences, 2017, 30(3): 398—405

    [52] 官少飞, 郎青, 张本. 鄱阳湖水生植被. 水生生物学报, 1987, 11(1): 9—21

    Guan S F, Lang Q, Zhang B. Aquatic vegetation of Poyang Lake [J]. Acta Hydrobiologica Sinica, 1987, 11(1): 9—21

    [53] 简永兴. 两湖平原湖泊湿地水生植物多样性编目与评价. 博士学位论文, 武汉大学, 武汉. 2000

    Jian Y X. Inventory and assessment of aquatic plant diversity in the lake wetlands of Lianghu Plain [D]. Thesis for Doctor of Sciences. Wuhan University, Wuhan. 2000

    [54] 彭映辉, 简永兴, 李仁东. 鄱阳湖平原湖泊水生植物群落的多样性. 中南林学院学报, 2003, 23(4): 22—27 doi: 10.3969/j.issn.1673-923X.2003.04.014

    Peng Y H, Jian Y X, Li R D. Community diversity of aquatic plants in the lakes of Poyang plain district of China [J]. Journal of Central South Forestry University, 2003, 23(4): 22—27 doi: 10.3969/j.issn.1673-923X.2003.04.014

    [55] 蒙仁宪. 升金湖的水生植物. 安徽大学学报(自然科学版), 1979, (1): 73—82

    Meng R X. Aquatic vascular plants of Shengjin Lake [J]. Journal of Anhui University (Natural Sciences), 1979, (1): 73—82

    [56] 马淑勇. 升金湖湿地维管植物群落结构研究. 硕士学位论文, 安徽大学, 合肥. 2011

    Ma S Y. Study on vegetation community characteristics in wetland of Shengjin Lake in Anhui Province [D]. Thesis for Master of Sciences. Anhui University, Hefei. 2011

    [57] 刘靓靓. 安徽宿松华阳河湖群和升金湖自然保护区维管植物研究. 硕士学位论文, 安徽大学, 合肥. 2016

    Liu L L. Study on vascular plant in Susong Huayang Lake nature reserves and Shengjin Lake nature reserves, Anhui Province [D]. Thesis for Master of Sciences. Anhui University, Hefei. 2016

    [58] 中国科学南京地理研究所. 太湖综合调查初步报告. 北京: 科学出版社. 1965

    Nanjing Institute of Geography, Chinese Academy of Sciences. Preliminary Reports of Comprehensive Investigation on Lake Taihu [M]. Beijing: Science Press. 1965

    [59] 雷泽湘. 太湖大型水生植被及其环境效应研究. 博士学位论文, 暨南大学, 广州. 2006

    Lei Z X. Study on aquatic macrophyte vegetations and their environment effects in Taihu Lake [D]. Thesis for Doctor of Sciences. Jinan University, Guangzhou. 2006

    [60] 宋永昌, 王云, 戚仁海. 淀山湖富营养化及其防治研究. 上海: 华东师范大学出版社. 1992

    Song Y C, Wang Y, Qi R H. The Research of Eutrophication and Control in Dianshan Lake [M]. Shanghai: East China Normal University Press. 1992

    [61] 由文辉. 淀山湖水生维管束植物群落研究. 湖泊科学, 1994, 6(4): 317—324

    You W H. A Study on the communities of aquatic vascular plants in Dianshan Lake [J]. Journal of Lake Sciences, 1994, 6(4): 317—324

    [62] 施文. 淀山湖水生植被动态格局及成因分析. 硕士学位论文, 华东师范大学, 上海. 2011

    Shi W. Study on the temporal and spatial pattern of aquatic vegetation and their influences in Dianshan Lake [D]. Thesis for Master of Sciences. East China Normal University, Shanghai. 2011

    [63]

    Stuckey R L. Phytogeographical outline of aquatic and wetland angiosperms in continental eastern North America [J]. Aquatic Botany, 1993, 44(2-3): 259—301 doi: 10.1016/0304-3770(93)90073-6

    [64]

    Santamaría L. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment [J]. Acta Oecologica, 2002, 23(3): 137—154 doi: 10.1016/S1146-609X(02)01146-3

    [65]

    Walter H. Vegetation of the Earth in Relation to Climate and the Eco-physiological Conditions [M]. New York: Springer-Verlag. 1973

    [66]

    Crow G E. Species diversity in aquatic angiosperms: latitudinal patterns [J]. Aquatic Botany, 1993, 44(2): 229—258

    [67]

    Sun H, Niu Y, Chen Y S, et al. Survival and reproduction of plant species in the Qinghai–Tibet Plateau [J]. Journal of Systematics and Evolution, 2014, 52(3): 378—396 doi: 10.1111/jse.v52.3

    [68] 王东. 青藏高原水生植物地理研究. 博士学位论文, 武汉大学, 武汉. 2003

    Wang D. The geography of aquatic vascular plants of Qinghai-Xizang (Tibet) Plateau [D]. Thesis for Doctor of Sciences. Wuhan University, Wuhan. 2003

    [69]

    Fér T, Hroudová Z. Detecting dispersal of Nuphar lutea in river corridors using microsatellite markers [J]. Freshwater Biology, 2008, 53(7): 1409—1422 doi: 10.1111/j.1365-2427.2008.01973.x

    [70]

    Reynolds C, Miranda N A F, Cumming G S. The role of waterbirds in the dispersal of aquatic alien and invasive species [J]. Diversity and Distributions, 2015, 21(7): 744—754 doi: 10.1111/ddi.2015.21.issue-7

    [71]

    Wu Y, Colwell R K, Han N, et al. Understanding historical and current patterns of species richness of babblers along a 5000-m subtropical elevational gradient [J]. Global Ecology and Biogeography, 2014, 23(11): 1167—1176 doi: 10.1111/geb.12197

    [72]

    Barrett S C H, Eckert C G, Husband B C. Evolutionary processes in aquatic plant populations [J]. Aquatic Botany, 1993, 44(2-3): 105—145 doi: 10.1016/0304-3770(93)90068-8

    [73]

    Madsen J D, Smith D H. Vegetative spread of Eurasian watermilfoil colonies [J]. Journal of Aquatic Plant Management, 1997, 35: 63—68

    [74]

    Chen Y, Li X, Yin L, et al. Genetic diversity and migration patterns of the aquatic macrophyte Potamogeton malaianus in a potamo-lacustrine system [J]. Freshwater Biology, 2009, 54(6): 1178—1188 doi: 10.1111/fwb.2009.54.issue-6

    [75]

    Fu C, Wu J, Chen J, et al. Freshwater fish biodiversity in the Yangtze River basin of China: patterns, threats and conservation [J]. Biodiversity and Conservation, 2003, 12(8): 1649—1685 doi: 10.1023/A:1023697714517

    [76] 方精云, 赵淑清, 唐志尧, 等. 长江中游湿地生物多样性保护的生态学基础. 北京: 高等教育出版社. 2006

    Fang J Y, Zhao S Q, Tang Z Y, et al. Ecological Basis of Regional Biodiversity Conservation of Wetlands in the Central Yangtze [M]. Beijing: Higher Education Press. 2006

    [77] 刘新, 何隆华, 周驰. 长江中下游近30年来湖泊的水域面积变化研究. 华东师范大学学报(自然科学版), 2008, (4): 124—129 doi: 10.3969/j.issn.1000-5641.2008.04.016

    Liu X, He L H, Zhou C. Study on lake surface area change in the mid-low reaches of the the Yangtze River based on the remote sensing technique [J]. Journal of East China Normal University ( Natural Science ) , 2008, (4): 124—129 doi: 10.3969/j.issn.1000-5641.2008.04.016

    [78] 杨桂山, 马荣华, 张路, 等. 中国湖泊现状及面临的重大问题与保护策略. 湖泊科学, 2010, 22(6): 799—810

    Yang G S, Ma R H, Zhang L, et al. Lake status, major problems and protection strategy in China [J]. Journal of Lake Sciences, 2010, 22(6): 799—810

    [79] 施葵初. 安徽湿地. 合肥: 合肥工业大学出版社. 2003

    Shi K C. Wetlands in Anhui Province [M]. Hefei: Hefei Univerisity of Technology Publishing House. 2003

    [80] 于丹, 康辉, 陈宜瑜. 湖湾效应对长江中游湖泊水生植物多样性的影响. 生态学报, 1996, 16(5): 476—483

    Yu D, Kang H, Chen Y Y. Lake bend effect and its influence on the specific diversity of aquatic plants in the lakes of middle basins of Changjiang river [J]. Acta Ecologica Sinica, 1996, 16(5): 476—483

    [81] 李俊杰, 何隆华, 戴锦芳, 等. 基于遥感影像纹理信息的湖泊围网养殖区提取. 湖泊科学, 2006, 18(4): 337—342 doi: 10.3321/j.issn:1003-5427.2006.04.003

    Li J J, He L H, Dai J F, et al. Extract enclosure culture in lakes bases on remote sensing image texture information [J]. Journal of Lake Sciences, 2006, 18(4): 337—342 doi: 10.3321/j.issn:1003-5427.2006.04.003

    [82] 班璇, 余成, 魏珂, 等. 围网养殖对洪湖水质的影响分析. 环境科学与技术, 2010, 33(9): 125—129

    Ban X, Yu C, Wei K, et al. Analysis of influence of enclosure aquaculture on water quality of Honghu Lake [J]. Environmental Science and Technology, 2010, 33(9): 125—129

    [83] 严国安, 马剑敏, 邱东茹, 等. 武汉东湖水生植物群落演替的研究. 植物生态学报, 1997, 21(4): 319—327 doi: 10.3321/j.issn:1005-264X.1997.04.004

    Yan G A, Ma J M, Qiu D R, et al. Succession and species replacement of aquatic plant communities in East Lake, Wuhan [J]. Acta Phytoecologica Sinica, 1997, 21(4): 319—327 doi: 10.3321/j.issn:1005-264X.1997.04.004

    [84] 金相灿, 刘鸿夷, 居清谈, 等. 中国湖泊富营养化. 北京: 中国环境科学出版社. 1990

    Jin X C, Liu H Y, Ju Q T, et al. Eutrophication of Chinese Lakes [M]. Beijing: China Environmental Science Press. 1990

    [85] 秦伯强. 长江中下游浅水湖泊富营养化发生机制与控制途径初探. 湖泊科学, 2002, 14(3): 193—202 doi: 10.3321/j.issn:1003-5427.2002.03.001

    Qin B Q. Approaches to mechanisms and control of eutrophication of shallow lakes in the middle and lower reaches of the Yangze River [J]. Journal of Lake Sciences, 2002, 14(3): 193—202 doi: 10.3321/j.issn:1003-5427.2002.03.001

    [86] 邱东茹, 吴振斌. 富营养化浅水湖泊沉水水生植被的衰退与恢复. 湖泊科学, 1997, 9(1): 82—88

    Qiu D R, Wu Z B. On the decline and restoration of submerged vegetation in eutrophic shallow lakes [J]. Journal of Lake Sciences, 1997, 9(1): 82—88

    [87] 马凤娇, 蔺丹清, 张晓可, 等. 安庆西江长江江豚迁地保护基地河岸带植物群落结构特征. 水生生物学报, 2019, 43(3): 623—633

    Ma F J, Lin D Q, Zhang X K, et al. Characteristics of riparian plant community in Yangtze finless porpoise ex-situ reserve in Xijiang Oxbow, Anqing City [J]. Acta Hydrobiologica Sinica, 2019, 43(3): 623—633

    [88]

    Zhao X, Wang D, Turvey S T, et al. Distribution patterns of Yangtze finless porpoises in the Yangtze River: implications for reserve management [J]. Animal Conservation, 2014, 16(5): 509—518

    [89] 黄心一, 李帆, 陈家宽. 基于系统保护规划法的长江中下游鱼类保护区网络规划. 中国科学:生命科学, 2015, 45(12): 1244—1257

    Huang X Y, Li F, Chen J K. Reserve network planning for fishes in the middle and lower Yangtze River basin by systematic conservation approaches [J]. Scientia Sinica Vitae, 2015, 45(12): 1244—1257

    [90] 国家环境保护局自然保护司. 全国自然保护区名录(2014). 北京: 中国环境出版社. 2015

    Nature Reserves Department, State Environmental Protection Administration of China. Catalog of China Nature Reserves (2014) [M]. Beijing: Chinese Environment Science Press. 2015

图(7)  /  表(3)
计量
  • 文章访问数:  7581
  • HTML全文浏览量:  3027
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-26
  • 修回日期:  2018-06-17
  • 网络出版日期:  2018-12-20
  • 发布日期:  2019-11-30

目录

    /

    返回文章
    返回