基于Ecopath模型的千岛湖生态系统结构和功能分析

于佳, 刘佳睿, 王利, 吴志旭, 虞佐名, 刘明亮, 韩轶才, 谢平

于佳, 刘佳睿, 王利, 吴志旭, 虞佐名, 刘明亮, 韩轶才, 谢平. 基于Ecopath模型的千岛湖生态系统结构和功能分析[J]. 水生生物学报, 2021, 45(2): 308-317. DOI: 10.7541/2021.2019.128
引用本文: 于佳, 刘佳睿, 王利, 吴志旭, 虞佐名, 刘明亮, 韩轶才, 谢平. 基于Ecopath模型的千岛湖生态系统结构和功能分析[J]. 水生生物学报, 2021, 45(2): 308-317. DOI: 10.7541/2021.2019.128
Yu Jia, Liu Jia-Rui, Wang Li, Wu Zhi-Xu, Yu Zuo-Ming, Liu Ming-Liang, Han Yi-Cai, Xie Ping. ANALYSIS ON THE ECOSYSTEM STRUCTURE AND FUNCTION OF LAKE QIANDAO BASED ON ECOPATH MODEL[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(2): 308-317. DOI: 10.7541/2021.2019.128
Citation: Yu Jia, Liu Jia-Rui, Wang Li, Wu Zhi-Xu, Yu Zuo-Ming, Liu Ming-Liang, Han Yi-Cai, Xie Ping. ANALYSIS ON THE ECOSYSTEM STRUCTURE AND FUNCTION OF LAKE QIANDAO BASED ON ECOPATH MODEL[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(2): 308-317. DOI: 10.7541/2021.2019.128

基于Ecopath模型的千岛湖生态系统结构和功能分析

基金项目: 千岛湖基于水环境安全的渔业发展模式调控及渔业管理方案研究(CACGZF[2016]22)资助
详细信息
    作者简介:

    于佳(1988—),女,博士研究生; 研究方向为湖泊生态学。E-mail: yujia19880318@163.com

    通信作者:

    谢平(1961—),男,研究员; 研究方向为湖泊生态学。E-mail: xieping@ihb.ac.cn

ANALYSIS ON THE ECOSYSTEM STRUCTURE AND FUNCTION OF LAKE QIANDAO BASED ON ECOPATH MODEL

Funds: Supported by the Research on Fishery Development Mode Regulation and Fishery Management Scheme Based on Water Environmental Safety in Qiandao Lake (CACGZF[2016]22)
    Corresponding author:
  • 摘要: 为探索千岛湖生态系统现状及其历史变化, 根据2016年千岛湖的渔业资源与生态环境调查数据, 构建了千岛湖生态系统的 Ecopath 模型, 综合分析系统的能量流动过程、营养级结构和生态系统总体特征。2016年千岛湖 Ecopath 模型由18个功能组组成, 有效营养级范围为1—3.41, 牧食食物链的能量流动占系统总能量的56%。系统杂食指数(SOI)、联结指数(CI)、Finn循环指数分别为0.13, 0.26和5.15%。千岛湖与其他湖泊和水库比较, 其生态系统的各功能组的聚合度较高, 联结程度较为紧密, 物质再循环比例较高, 系统较为成熟。但千岛湖的系统总流量较低为24698.27 t/(km2·a), 总初级生产量与总呼吸量的比值为6.51, 表明系统总体规模较小且仍处于发展阶段。根据千岛湖生态系统历年变化趋势分析: 千岛湖生态系统的总体规模有变大趋势, 稳定性和复杂性有所增强, 但营养交互关系变弱, 系统抵抗外界干扰的能力仍较低。同时, 千岛湖生态系统的初级生产者转化效率较低, 食物网趋于简单, 应采取适当的管理措施, 以保障千岛湖生态系统的健康发展。
    Abstract: To explore the current status and historical change of the Lake Qiandao ecosystem, the Ecopath model of the Lake Qiandao ecosystem was constructed based on the survey data of fishery resources and water environment in Lake Qiandao in 2016. And the trophic level structure, energy flow and ecosystem characteristics were analyzed based on this model. The Ecopath pedigree index (P index) was 0.54, with high data reliability. Ecopath model was consisted of 18 functional groups, and the fractional trophic levels ranged from 1 to 3.14. Energy flow of Lake Qiandao ecosystem was dominated by grazing food chain, which accounted for 56% of the energy source. Parameters reflected the complexity of the ecosystem, For example, the system connectance index (CI), the omnivory index (SOI), the Finn cycling index and the Finn mean path length were 0.26, 0.13, 5.15% and 2.46, respectively. Compared with other reservoirs, it showed that the functional groups of Lake Qiandao ecosystem had a higher polymerization, a closer connection, a higher rate of material recycling and the ecosystem was more mature. However, the total system throughput of Lake Qiandao in 2016 was low with 24698.27 t/(km2·a), and the total primary production was 6.51 folds of the total respiration, which indicate that the scale of Lake Qiandao ecosystem was small and still in a developmental stage. According to the historical analyses of the Lake Qiandao ecosystem, the scale of this ecosystem has become larger, and the stability and complexity have been enhanced, but the nutrient interaction relationship was weakened, and the ability of the ecosystem to resist external interference was still weak. At the same time, the conversion efficiency of primary producers of Lake Qiandao ecosystem was low, and the food web was simple. So appropriate management measures should be taken to ensure healthy development of Lake Qiandao ecosystem.
  • 图  1   千岛湖采样图

    Figure  1.   Sampling sites of Lake Qiandao

    图  2   千岛湖生态系统各营养级间的物质流动 (t/(km2·a))

    Figure  2.   Trophic flows transmitted through aggregated trophic levels in Lake Qiandao ecosystem (t/(km2·a))

    图  3   千岛湖生态系统 Ecopath 模型敏感性分析

    a. 各鱼类功能组B的变化对相应功能组EE的敏感度变化(除底栖动物和浮游动物功能组), b. 底栖动物B的变化对底栖动物EE的敏感度变化, c. 浮游动物B的变化对浮游动物EE的敏感度变化, d. 黄颡鱼B的变化对底栖动物EE的敏感度变化, e. 鳙B的变化对浮游动物EE的敏感度变化, f. 鲢B的变化对浮游动物EE的敏感度变化

    Figure  3.   Sensitivity analysis of Ecopath model for Lake Qiandao ecosystem

    a. Fish functional group (B) on same fish functional group (EE); b. Macrobenthos (B) on meiobenthos (EE); c. Zooplankton (B) on zooplankton (EE); d.Pelteobagrus fulvidraco (B) on meiobenthos (EE); e. Hypophthalmichthys nobilis (B) on zooplankton (EE); f.Hypophthalmichthys molitrix (B) on zooplankton (EE)

    表  1   千岛湖Ecopath 模型的功能组及主要种类组成

    Table  1   Functional groups and dominant species based on Ecopath model in Lake Qiandao

    编号Number功能组
    Functional group
    组成成分
    Species composition
    1SinipercaSiniperca chuatsi
    斑鳜Siniperca scherzeri
    大眼鳜Siniperca kneri Garman
    2太阳鱼Lepomis gibbosus蓝鳃太阳鱼Lepomis macrochirus
    绿太阳鱼 Lepomis auritus
    3Culter翘嘴鲌Culter alburnus Basilewsky
    红鳍原鲌Cultrichthys erythropterus
    蒙古鲌Culter mongolicus Basilewsky
    达氏鲌Culter dabryi
    青梢红鲌Erythroculter dabryi
    4黄颡鱼Pelteobagrus黄颡鱼Pelteobagrus fulvidraco
    瓦氏黄颡鱼Pseudobagrus vachellii
    5飘鱼Pseudolaubuca银飘Pseudolaubuca sinensis
    6Parabramis大眼华鳊Sinibrama macrops
    Parabramis pekinensis
    7鱼条Hemiculter餐条Hemiculter leucisculus
    8Xenocyprina细鳞鲴Xenocypris microlepis
    银鲴Xenocypris argentea
    黄尾鲴Xenocypris davidi
    9Cyprinus carpioCyprinus carpio
    10Carassius auratusCarassius auratus
    11Hypophthalmichthys nobilisHypophthalmichthys nobilis
    12虾Shrimp虾类Shrimp
    13Hypophthalmichthys molitrixHypophthalmichthys molitrix
    14草鱼Ctenopharyngodon idellus草鱼Ctenopharyngodon idellus
    15大型底栖动物Macrobenthos大型底栖动物 Macrobenthos
    16浮游动物Zooplankton浮游动物Zooplankton
    17浮游植物Phytoplankton浮游植物Phytoplankton
    18碎屑Detritus细菌、有机碎屑Bacteria, organic detritus
    下载: 导出CSV

    表  2   千岛湖生态系统 Ecopath 模型食物组成矩阵

    Table  2   Diet composition matrix for Lake Qiandao Ecopath model

    被捕食者Prey 捕食者Predator
    12345678910111213141516
    1Siniperca chuatsi0.020
    2太阳鱼Lepomisgibbosus0.050
    3Culterinae0.057
    4黄颡鱼Pelteobagrus fulvidraco0.188
    5飘鱼Pseudolaubuca sinensis0.0500.010
    6Parabramis pekinensis 0.0100.0060.050
    7䱗条Hemiculter leucisculus0.0210.010
    8Xenocyprina0.081
    9Cyprinus carpio0.0320.014
    10Carassius auratus0.0230.010
    11Hypophthalmichthys nobilis0.3170.4210.5410.270
    12虾Shrimp0.0710.0500.030
    13Hypophthalmichthys molitrix0.1320.3040.4330.185
    14草鱼Ctenopharyngodon idellus0.020
    15底栖动物Macrobenthos0.1430.1600.0900.1200.0200.1000.010
    16浮游动物 Zooplankton0.0300.1300.1460.1300.0150.1610.1900.4010.1500.2010.1000.0700.020
    17浮游植物 Phytoplankton0.1000.3500.3450.3200.5510.2750.3500.2290.3000.6250.4000.3000.750
    18碎屑 Detritus0.1000.1500.1510.3600.5100.4600.4340.3940.4100.3700.4500.1740.5000.6200.230
    下载: 导出CSV

    表  3   千岛湖生态系统 Ecopath 模型功能组估算参数

    Table  3   Input and output parameters of Ecopath model in Lake Qiandao

    功能组
    Functional group
    有效营养级
    Effective
    trophic level
    生物量
    Biomass in
    habitat area (t/km2)
    生产量/生物量
    Production/
    biomass (/a)
    消耗量/生物量
    Consumption/
    Biomass (/a)
    转化效率
    Ecotrophic
    efficiency
    生产量/消耗量
    Production/
    Consumption
    1Siniperca chuatsi3.410.011.249.460.770.13
    2太阳鱼Lepomis gibbosus3.120.011.2613.140.920.10
    3Culterinae3.320.071.099.140.840.12
    4黄颡鱼Pelteobagrus fulvidraco2.940.071.0110.530.620.10
    5飘鱼Pseudolaubuca sinensis2.310.061.1012.800.590.09
    6Parabramis pekinensis2.150.131.0411.350.860.09
    7䱗条Hemiculter leucisculus2.230.031.4012.330.870.11
    8Xenocyprina2.020.062.0116.270.820.12
    9Cyprinus carpio2.360.041.217.270.860.17
    10Carassius auratus2.250.041.158.370.750.14
    11Hypophthalmichthys nobilis2.4111.110.557.200.570.08
    12虾Shrimp2.260.051.8324.400.920.08
    13Hypophthalmichthys molitrix2.218.180.568.450.730.07
    14草鱼Ctenopharyngodon idellus2.100.021.739.660.900.18
    15底栖动物Macrobenthos2.080.5434.03201.700.700.02
    16浮游动物Zooplankton2.0211.5620.68413.670.630.05
    17浮游植物Phytoplankton1.0045.62219.000.37
    18碎屑Detritus1.0051.180.13
    下载: 导出CSV

    表  4   千岛湖生态系统能量流的分布

    Table  4   Distribution of energy flows at aggregated trophic levels in Lake Qiandao ecosystem [t/(km2·a)]

    营养级
    Trophic level
    被摄食量
    Consumption
    by predators
    输出量
    Exports
    流向碎屑量Flow to detritus呼吸量
    Respira-tion
    总流量
    Through-put
    0.0000000.0000010.0000030.0000100.000014
    0.0000140.0004550.001340.003900.00571
    0.005710.02230.07740.2260.331
    0.3311.38116.2424.2642.21
    42.212.562250211363683
    36830.00063080.0009991
    合计Sum37263.9658826116113716
    下载: 导出CSV

    表  5   不同营养级之间的能量转化效率

    Table  5   Transfer efficiencies between different trophic levels (%)

    来源Source营养级Trophic level
    初级生产者Primary producer 1.2 4.1 8.5 8.2
    碎屑Detritus 1.2 4.2 8.4 8.2
    总能流All flows 1.2 4.1 8.4 8.2 8.2
    来自碎屑的能流比Proportion of total flow originating from detritus 44%
    初级生产者转化效率From primary producers 3.5%
    碎屑转化效率From detritus 3.6%
    总转化效率Total 3.5%
    下载: 导出CSV

    表  6   千岛湖及其他水库生态系统的总体特征

    Table  6   General properties of Lake Qiandao and other reservoir ecosystems

    参数
    Parameter
    千岛湖(新安江水库)
    Lake Qiandao (Xin’anjiang Reservoir)
    分水江水库[1]
    2008—2009
    Fenshuijiang Reservoir
    2008—2009
    金沙河水库[2]
    2013—2014
    Jinshahe Reservoir
    2013—2014
    Ravishankar Sagar[14]
    2009—2010

    Pasak Jolasid[5]
    2002—2003

    单位Unit
    值(2016)
    Value
    (2016)
    值(1999)[13]Value (1999)值(2000)[13]Value (2000)值(2004)[13]Value (2004)
    总消耗量5047.77614729.56 10362.92 5336.24424102.005717.4737422.47t/(km2·a)
    总输出量8453.854729.3583041.6573087.15723809.548901.745t/(km2·a)
    总呼吸量1536.9464409.6233060.1151130.8935670.6181552.080t/(km2·a)
    流向碎屑总量9659.69411416.11 7806.8016487.18725356.9611076.38015883.0404336.72t/(km2·a)
    系统总流量24698.27035285.0 24271.0 16041.0 78938.1227247.68038903.016052.00t/(km2·a)
    系统总生产量10243.5309878.0 6635.0 4440.0 29240.8810753.0305982.00t/(km2·a)
    平均捕捞营养级2.3152.74 2.61 2.60 2.752.782.37
    总净初级生产量9990.7799138.98 6010.7724218.05027286.6610453.8204235.39t/(km2·a)
    总初级生产量/
    总呼吸量
    6.5092.0731.9943.7304.8216.73510.361.21
    系统净生产量8453.8348901.74415325.010t/(km2·a)
    总初级生产量/
    总生物量
    128.73889.59878.16374.050161.3097.42580.3319.50
    总生物量/总流量0.0030.0030.0030.0040.0020.0040.005
    总生物量
    (不含碎屑)
    77.60510278.16356.962169.17114.344t/(km2·a)
    系统联结指数0.2630.2270.2300.2760.2600.2770.2990.264
    系统杂食指数0.1310.0640.0620.0960.0620.0870.1620.089
    Finn 循环指数5.27029.85 31.01 26.27 0.0841.99%
    Finn 平均路径
    长度
    2.4723.8613.9783.8032.6062.294
    模型置信指数0.544
    下载: 导出CSV
  • [1] 武震, 贾佩峤, 胡忠军等. 基于Ecopath模型分析分水江水库生态系统结构和功能 [J]. 应用生态学报, 2012, 23(3): 812-818.

    Wu Z, Jia P Q, Hu Z J, et al. Structure and function of Fenshuijiang Reservoir ecosystem based on the analysis with Ecopath model [J]. Chinese Journal of Applied Ecology, 2012, 23(3): 812-818. [

    [2] 张云. 湖北金沙河水库渔业资源状况及生态系统模型研究 [D]. 武汉: 华中农业大学, 2015.

    Zhang Y. The study of fishery resources and Ecopath model in Jinshahe Reservoir ecosystem, Hubei Province[D]. Wuhan: Huazhong Agricultural University, 2015.

    [3] 王淑梅, 刘艳辉. 湖泊水库水体富营养化的危害及污染控制措施 [J]. 吉林水利, 2009(10): 12-13.

    Wang S M, Liu Y H. The harm and pollution control measures of eutrophication of lake and reservoir water [J]. Jilin Water Resources, 2009(10): 12-13. [

    [4] 张萌, 曹特, 过龙根, 等. 武汉东湖水生植被重建及水质改善试验研究 [J]. 环境科学与技术, 2010, 33(6): 154-159.

    Zhang M, Cao T, Guo L G, et al. Restoration of constructed hydrophytes community in East Lake of Wuhan and experimental study on water quality improvement [J]. Environmental Science and Technology, 2010, 33(6): 154-159. [

    [5]

    Thapanand T, Jutagatee T, Wongrat P, et al. Trophic relationships and ecosystem characteristics in a newly-impounded man-made lake in Thailand [J]. Fisheries Managment and Ecology, 2009, 16(2): 77-87. doi: 10.1111/j.1365-2400.2008.00601.x

    [6]

    Zhou Y Q, Zhang Y L, Jeppesen E, et al. Inflow rate-driven changes in the composition and dynamics of chromophoric dissolved organic matter in a large drinking water lake [J]. Water Research, 2016(100): 211-221.

    [7] 吴志旭, 兰佳. 新安江水库水环境主要问题及保护对策 [J]. 中国环境管理., 2012(1): 54-58.

    Wu Z X, Lan J. The main problems of water environment and protection measures in Xin’anjiang Reservoir [J]. Chinese Journal of Environmental Management, 2012(1): 54-58. [

    [8] 韩晓霞, 朱广伟, 吴志旭, 等. 新安江水库(千岛湖)水质时空变化特征及保护策略 [J]. 湖泊科学, 2013, 25(6): 836-845. doi: 10.18307/2013.0607

    Han X X, Zhu G W, Wu Z X, et al. Spatial-temporal variations of water quality parameters in Xin’anjiang Reservoir (Lake Qiandao) and the water protection strategy [J]. Journal of Lake Sciences, 2013, 25(6): 836-845. [ doi: 10.18307/2013.0607

    [9]

    Polovina J J. Model of a coral reef ecosystem [J]. Coral Reefs, 1984, 3(1): 13-22. doi: 10.1007/BF00306136

    [10]

    Ulanowicz R E. Growth and Development: Ecosystems Phenomenology [M]. New York: Springer-Verlag, 1986: 178-203.

    [11]

    Christensen V, Walters C J, Pauly D. Ecopath with Ecosim: A User’s Guide [M]. Univ Br Columbia: Vancouver, 2005: 154.

    [12]

    Rapp G, Poole K J V, Maeda Y, et al. An application of Ecopath with Ecosim to aquatic ecology [J]. Marine Sciences, 2007, 93(3): 410-415.

    [13] 刘其根. 千岛湖保水渔业及其对湖泊生态系统的影响 [D]. 上海: 华东师范大学, 2005.

    Liu Q G. Aquatic environmental protection oriented fishery in Lake Qiandao and its influence on lake ecosystem [D]. Shanghai: East China Normal University, 2005.

    [14]

    Panikkar P, Khan M F, Desai V R, et al. Characterizing trophic interactions of a catfish dominated tropical reservoir ecosystem to assess the effects of management practices [J]. Environmental Biology of Fishes, 2014, 98(1): 237-247.

    [15]

    Hossain M M, Matsuishi T, Arhonditsis G. Elucidation of ecosystem attributes of an oligotrophic lake in Hokkaido, Japan, using Ecopath with Ecosim (EwE) [J]. Ecological Modelling, 2010, 221(13-14): 1717-1730. doi: 10.1016/j.ecolmodel.2010.03.025

    [16]

    Chea R, Guo C, Grenouillet G, et al. Toward an ecological understanding of a flood-pulse system lake in a tropical ecosystem: Food web structure and ecosystem health [J]. Ecological Modelling, 2016(323): 1-11.

    [17] 咸义, 叶春, 李春华, 等. 竺山湾湖泊缓冲带湿地生态系统EWE模型构建与分析 [J]. 应用生态学报, 2016, 27(7): 2101-2110.

    Xian Y, Ye C, Li C H, et al. Construction and analysis of the EWE model of the wetland ecosystem in lake buffering zone of Zhushan Bay, China [J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2101-2110. [

    [18] 冯德祥, 陈亮, 李云凯, 等. 基于营养通道模型的淀山湖生态系统结构与能量流动特征 [J]. 中国水产科学, 2011, 18(4): 867-876.

    Feng D X, Chen L, Li Y K, et al. Structure and energy flow of Dianshan Lake ecosystem based on the Ecopath model [J]. Journal of Fishery Sciences of China, 2011, 18(4): 867-876. [

    [19] 刘恩生, 李云凯, 臧日伟, 等. 基于Ecopath模型的巢湖生态系统结构与功能初步分析 [J]. 水产学报, 2014, 38(3): 417-425.

    Liu E S, Li Y K, Zang R W, et al. A preliminary analysis of the ecosystem structure and functioning of Lake Chaohu based on Ecopath model [J]. Journal of Fisheries of China, 2014, 38(3): 417-425. [

    [20] 李云凯, 刘恩生, 王辉, 等. 基于Ecopath模型的太湖生态系统结构与功能分析 [J]. 应用生态学报, 2014, 25(7): 2033-2040.

    Li Y K, Liu E S, Wang H, et al. Analysis on the ecosystem structure and function of Lake Taihu based on Ecopath model [J]. Chinese Journal of Applied Ecology, 2014, 25(7): 2033-2040. [

    [21]

    Guo C B, Ye S W, Lek S, et al. The need for improved fishery management in a shallow macrophytic lake in the Yangtze River basin: Evidence from the food web structure and ecosystem analysis [J]. Ecological Modelling, 2013(267): 138-147.

    [22] 韩瑞, 陈求稳, 王丽, 等. 基于生态通道模型的长江口水域生态系统结构与能量流动分析 [J]. 生态学报, 2016, 36(15): 4907-4918.

    Han R, Chen Q Y, Wang L, et al. Analysis of the ecosystem structure and energy flow of the Yangtze River estuary and adjacent seas, based on the Ecopath model [J]. Acta Ecologica Sinica, 2016, 36(15): 4907-4918. [

    [23] 徐超, 王思凯, 赵峰, 等. 基于Ecopath模型的长江口生态系统营养结构和能量流动研究 [J]. 海洋渔业, 2018, 40(3): 309-319.

    Xu C, Wang S K, Zhao F, et al. Trophic structure and energy flow of the Yangtze Estuary ecosystem based on the analysis with Ecopath model [J]. Marine Fisheries, 2018, 40(3): 309-319. [

    [24] 马孟磊, 陈作志, 许友伟, 等. 基于Ecopath模型的胶州湾生态系统结构和能量流动分析 [J]. 生态学杂志, 2018, 37(2): 462-470.

    Ma M L, Chen Z Z, Xu Y W, et al. Analysis of structure and energy flow in Jiaozhou Bay ecosystem based on Ecopath model [J]. Chinese Journal of Ecology, 2018, 37(2): 462-470. [

    [25] 陈作志, 邱永松. 南海北部生态系统食物网结构、能量流动及系统特征 [J]. 生态学报, 2010, 30(18): 4855-4865.

    Chen Z Z, Qiu Y S. Assessment of the food-web structure, energy flows, and system attribute of northern South China Sea ecosystem [J]. Acta Ecologica Sinica, 2010, 30(18): 4855-4865. [

    [26] 周小玉. 千岛湖浮游藻类演替格局与环境因子的关系及其机理的初探 [D]. 上海: 上海海洋大学, 2012.

    Zhou X Y. The planktonic algae succession in relation to environmental factors of Lake Qiandaohu and the influence mechanism [D]. Shanghai: Shanghai Ocean University, 2012.

    [27] 刘其根, 汪建敏, 何光喜. 千岛湖鱼类资源 [M]. 上海: 上海科学技术出版社, 2011: 179-188.

    Liu Q G, Wang J M, He G X. The fish resources of Qiandao Lake [M]. Shanghai: Shanghai Scientific and Technical Publishers, 2011: 179-188.

    [28] 宋固, 胡梦红, 刘其根. 运用稳定同位素技术研究千岛湖秋季刺网渔获物的食性和营养级 [J]. 上海海洋大学学报, 2014, 23(1): 117-122.

    Song G, Hu M H, Liu Q G. Study on the feeding habits and trophic levels of the gillnet catches of Qiandao Lake in autumn by stable isotope technology [J]. Journal of Shanghai Ocean University, 2014, 23(1): 117-122. [

    [29] 胡梦红, 杨丽丽, 刘其根. 竞争捕食作用对千岛湖浮游动物群落结构的影响 [J]. 湖泊科学, 2014, 26(5): 751-758. doi: 10.18307/2014.0513

    Hu M H, Yang L L, Liu Q G. Effects of predation and competition on zooplankton community structure in Lake Qiandao [J]. Journal of Lake Sciences, 2014, 26(5): 751-758. [ doi: 10.18307/2014.0513

    [30]

    Wedchaparn O, Zhao L J, Fan Y C, et al. Comparison of the trophic niches between two planktivorous fishes in two large lakes using stable isotope analysis [J]. Biochemical Systematics and Ecology, 2016(68): 148-155.

    [31] 胡忠军, 孙月娟, 刘其根, 等. 浙江千岛湖深水区大型底栖动物时空变化格局 [J]. 湖泊科学, 2010, 22(2): 265-271.

    Hu Z J, Sun Y J, Liu Q G, et al. Temporal and spatial distribution of profundal macrozoobenthic community in Lake Qiandao, Zhejiang, China [J]. Journal of Lake Sciences, 2010, 22(2): 265-271. [

    [32]

    Christensen V. Ecosystem maturity-towards quantification [J]. Ecological Modelling, 1995, 77(1): 3-32. doi: 10.1016/0304-3800(93)E0073-C

    [33]

    Christensen V, Pauly D. ECOPATH II - a software for balancing steady-state ecosystem models and calculating network characteristics [J]. Ecological Modelling, 1992, 61(3-4): 169-185. doi: 10.1016/0304-3800(92)90016-8

    [34]

    Beverton R. On the dynamics of exploited fish populations [J]. Reviews of Fish Biology and Fisheries, 1994, 4(2): 259-260. doi: 10.1007/BF00044132

    [35]

    Palomares M L D, Paul D. Predicting food consumption of fish populations as functions of mortality [J]. Marine and Freshwater Research., 1998, 49: 447-453. doi: 10.1071/MF98015

    [36]

    Odum E P. The strategy of ecosystem development [J]. Science, 1969, 164(3877): 262-270. doi: 10.1126/science.164.3877.262

    [37]

    Morissette L, Hammill M O, Savenkoff C. The trophic role of marine mammals in the northern golf of St. Lawrence [J]. Marine Mammal Science, 2006, 22: 74-103. doi: 10.1111/j.1748-7692.2006.00007.x

    [38] 邓华堂. 三峡库区大宁河鱼类食物网的结构及能量流动研究 [D]. 重庆: 西南大学, 2015.

    Deng H T. Studies on fish food web structures and energy flow of Daning River in the Three Gorges Reservoir areas [D]. Chongqing: Southwest University, 2015.

    [39]

    Liu Q G, Chen Y, Li J L, et al. The food web structure and ecosystem properties of a filter-feeding carps dominated deep reservoir ecosystem [J]. Ecological Modelling, 2006(3): 279-289.

    [40]

    Pauly D V, Christensen J, Dalsgaard R, et al. Fishing down marine food webs [J]. Science, 1998, 279(6): 860-863.

    [41]

    Yi C L, Guo L G, Ni L Y, et al. Silver carp exhibited an enhanced ability of biomanipulation to control cyanobacteria bloom compared to bighead carp in hypereutrophic Lake Taihu mesocosms [J]. Ecological Engineering, 2016(89): 7-13.

    [42]

    Xie P. Gut contents of silver carp, Hypophthalmichthys molitrix, and the disruption of a centric diatom, Cyclotella, on passage through the esophagus and intestine [J]. Aquaculture, 1999, 180(3-4): 295-305. doi: 10.1016/S0044-8486(99)00205-7

    [43] 刘其根, 张真. 富营养化湖泊中的鲢、鳙控藻问题: 争议与共识 [J]. 湖泊科学, 2016, 28(3): 463-475. doi: 10.18307/2016.0301

    Liu Q G, Zhang Z. Controlling the nuisance algae by silver and bighead carps in eutrophic lakes: disputes and consensus [J]. Journal of Lake Sciences, 2016, 28(3): 463-475. [ doi: 10.18307/2016.0301

图(3)  /  表(6)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-29
  • 修回日期:  2020-10-10
  • 网络出版日期:  2021-03-22
  • 发布日期:  2021-03-14

目录

    /

    返回文章
    返回