THE STUDY ON THE TEMPERATURE TOLERANCE OF DIFFERENT SIZES OF SCHIZOTHORAX WALTONI
-
摘要: 实验旨在探讨三种规格拉萨裂腹鱼(Schizothorax waltoni)的温度耐受能力。通过每4h升高或者降低1℃, 其中升温或者降温1h, 平衡3h, 直到试验鱼全部死亡或水温降至0。结果表明: 大规格[(100.93±13.12) g、(19.71±1.04) cm]、中规格[(15.11±5.03) g、(10.05±1.19) cm]和小规格[(1.37±0.32) g、(4.51±0.35) cm]极限最高温度分别是30℃、30℃和33℃; 极限最低温度均为0, 均能在冰水混合的水中生存; 温度耐受幅分别是30℃、30℃和33℃; 在不同温度条件下拉萨裂腹鱼呼吸频率不同, 且不同规格拉萨裂腹鱼间呼吸频率存在着显著差异(P<0.05)。因此, 在高海拔和温度变化幅度较大的区域均适合拉萨裂腹鱼规模化养殖培育, 但在冬季人工养殖过程中, 由于小规格拉萨裂腹鱼耐受能力差, 应移入温室大棚中养殖, 从而保证较高成活率和正常生长。Abstract: To investigate the temperature tolerance of Schizothorax waltoni with 3 different size, the temperature was increased or decreased by 1℃ every four hours and then balance for 3 hours, until all fish died or the water temperature dropped to 0. The results showed that the highest temperature of large size [(100.93±13.12) g and (19.71±1.04) cm], medium size [(15.11±5.03) g and (10.05±1.19) cm], small size [(1.37±0.32) g and (4.51±0.35) cm] of Schizothorax waltoni were 30℃, 30℃ and 33℃ respectively and the lowest temperature was 0 for all 3 groups with all fish can survive. The temperature tolerance amplitude were 30℃, 30℃ and 33℃ respectively; the breathing rate of Schizothorax waltoni were different in the different temperatures, and the breathing rate of different sizes of Schizothorax waltoni were significantly different (P<0.05). Therefore, it is suitable for the large-scale breeding of Schizothorax waltoni in areas with high altitude and temperature variation and the small size of Schizothorax waltoni should be farmed in the greenhouses to guarantee the high survival rate and normal growth.
-
Keywords:
- Schizothorax waltoni /
- Limit temperature /
- Tolerance /
- Breathing rate
-
-
表 1 温度升高三种规格拉萨裂腹鱼死亡情况
Table 1 Mortality of three sizes of Schizothorax waltoni with the increased temperature
时间Time 温度Temperature (℃) 各组死亡尾数(尾)Number of deaths in each group (Tail) 大规格Large size 中规格Medium size 小规格 Small size 16:00 13 0 0 0 20:00 14 0 0 0 0:00 15 0 0 0 4:00 16 0 0 0 8:00 17 0 0 0 12:00 18 0 0 0 16:00 19 0 0 0 20:00 20 0 0 0.67±1.15 0:00 21 0 0 0.67±1.15 4:00 22 0 0.33±0.58 0 8:00 23 0 0.67±0.58 0 12:00 24 0.67±0.58 1.00±0.00 0 16:00 25 0.33±0.58 0.67±0.58 0 20:00 26 1.00±0.00 1.00±0.00 0 0:00 27 0.33±0.58 0.67±0.58 0 4:00 28 0.67±0.58 0.33±0.58 0.67±1.15 8:00 29 0.67±1.15 0 0.67±1.15 12:00 30 0.33±0.58 2.67±1.54 0.33±0.58 16:00 31 0.67±0.58 1.33±0.58 0.67±0.58 20:00 32 3.33±1.53 1.00±0.00 0.67±0.58 0:00 33 0.33±0.58 3.33±2.08 4:00 34 3.00±0.00 8:00 35 1.33±0.58 12:00 36 3.00±2.00 合计Total 8.00±0.00 10.00±0.00 15.00±0.00 表 2 三种规格拉萨裂腹鱼对温度升高的耐受情况
Table 2 The tolerance of three sizes of Schizothorax waltoni with the increased temperature
时间Time 温度
Temperature (℃)活动状态Activity state 大规格Large size 中规格Medium size 小规格Small size 16:00 13 活动正常 活动正常 活动正常 20:00 14 活动正常 活动正常 活动正常 0:00 15 活动正常 活动正常 活动正常 4:00 16 活动正常 活动正常 活动正常 8:00 17 活动正常 活动正常 活动正常 12:00 18 活动正常 活动正常 活动正常 16:00 19 活动正常 活动正常 活动正常 20:00 20 活动正常 活动正常 活动正常 0:00 21 活动正常 活动正常 活动正常 4:00 22 活动正常 活动正常 活动正常 8:00 23 活动正常 活动正常 活动正常 12:00 24 活动正常 部分鱼反应激烈, 游动频繁 活动正常 16:00 25 部分鱼间歇性在水面中上层游动, 离群独游 部分鱼间歇性探出水面, 游动频繁 活动正常 20:00 26 部分鱼反应强烈, 开始频繁游动 部分鱼反应激烈, 游动频繁 部分鱼反应激烈, 频繁游动 0:00 27 部分鱼在乱蹿, 反应激烈, 频繁游动 部分鱼在水底乱蹿, 反应激烈, 游动频繁 部分鱼反应激烈, 成群乱蹿 4:00 28 部分鱼长时间停留水面, 呼吸加快 集群消失, 部分鱼间歇性的在水面活动 部分鱼开始离群, 在水底乱蹿 8:00 29 部分鱼开始抽搐, 呼吸加快 部分鱼开始在水面活动, 并间歇性乱蹿 部分鱼反应激烈, 分散乱蹿 12:00 30 部分鱼失去平衡, 并侧游, 间歇性探出水面 部分鱼开始失去平衡, 并侧游 部分鱼间歇性探出水面, 呼吸加快 16:00 31 部分鱼身体僵直, 时而沉入水底, 时而浮出水面 部分鱼失去平衡, 并侧游, 呼吸加快 部分鱼在水面活动, 呼吸加快 20:00 32 鱼间歇性上蹿, 失去平衡, 呼吸加快, 而后全部死亡 部分鱼翻白肚沉入水底, 并间歇性侧游, 呼吸急促 部分鱼开始失去平衡, 呼吸加快 0:00 33 鱼间歇性上蹿, 失去平衡, 呼吸加快, 而后全部死亡 部分鱼间歇性的探出水面, 并测游, 呼吸加快 4:00 34 部分鱼失去平衡并不时探出水面, 间歇性回正, 而后沉入水底, 另有部分鱼长时间静卧水底 8:00 35 大部分鱼在水面中上层游动, 时而缓慢游动, 时而加速, 时而上下乱蹿, 并侧游, 部分鱼呈僵直状 12:00 36 鱼间歇性上蹿, 而后沉入水底, 并失去平衡, 呼吸加快, 而后全部死亡 表 3 温度降低三种规格拉萨裂腹鱼死亡情况
Table 3 Mortality of three sizes of Schizothorax waltoni with the reduced temperature
时间Time 温度Temperature (℃) 各组死亡尾数(尾)Number of deaths in each group (Tail) 大规格
Large size中规格
Medium size小规格
Small size20:00 12 0 0 0 0:00 11 0 0 0 4:00 10 0 0 0 8:00 9 0 0 0 12:00 8 0 0 0 16:00 7 0 0 0 20:00 6 0 0 0 0:00 5 0 0 0 4:00 4 0 0 0 8:00 3 0 0 0 12:00 2 0 0 0 16:00 1 0 0 0.33±0.58 20:00 0 0 0 0.33±0.58 合计Total 0 0 2.00±0.00 表 4 三种规格拉萨裂腹鱼对温度降低的耐受情况
Table 4 The tolerance of three sizes of Schizothorax waltoni with the reduced temperature
时间Time 温度Temperature
(℃)活动状态Activity state 大规格
Large size中规格
Medium size小规格
Small size20:00 12 活动正常 活动正常 活动正常 0:00 11 活动正常 活动正常 活动正常 4:00 10 活动正常 活动正常 活动正常 8:00 9 活动正常 活动正常 活动正常 12:00 8 活动正常 活动正常 活动正常 16:00 7 活动正常 活动正常 活动正常 20:00 6 部分鱼活动缓慢 活动正常 活动正常 0:00 5 游动有些僵硬 部分鱼活动缓慢 活动正常 4:00 4 游动有些僵硬 游动有些僵硬 部分鱼活动缓慢 8:00 3 部分鱼呼吸不规律, 反应迟缓 游动有些僵硬, 呼吸不规律, 反应迟缓 部分鱼开始失去平衡, 并测游, 活动缓慢 12:00 2 反应迟缓, 间歇性摆动尾部, 呼吸不规律 反应迟缓, 呼吸减缓, 静卧水底, 呼吸不规律 部分鱼失去平衡, 呼吸不规律, 活动缓慢 16:00 1 鱼躯体柔软, 静卧水底, 反应迟缓, 无激烈反应, 呼吸不规律 鱼躯体柔软, 部分鱼身体失去平衡, 无激烈反应 部分鱼斜着身体静卧水底, 呼吸不规律, 反应迟缓, 不时探出水面 20:00 0 鱼躯体柔软, 斜着身体静卧水底, 几乎不活动 鱼躯体柔软, 反应迟缓, 部分鱼身体失去平衡 呼吸不规律, 反应迟缓, 基本不活动 表 5 温度升高对三种规格拉萨裂腹鱼呼吸频率的影响
Table 5 The effect of increased temperature on the breathing rate of three sizes of Schizothorax waltoni
时间Time 温度Temperature (℃) 呼吸频率(次/min)Breathing rate (time/min) 大规格Large size 中规格Medium size 小规格 Small size 16:00 13 43.3±1.5a 92.7±7.6b 126.7±14.2c 20:00 14 57.7±4.2a 98.0±5.0b 133.7±12.0c 0:00 15 64.3±3.2a 120.3±3.8b 133.3±8.4c 4:00 16 68.0±5.3a 124.0±1.0b 138.3±12.5b 8:00 17 90.3±3.1a 130.7±7.2b 145.7±7.2c 12:00 18 96.3±4.5a 127.7±2.1b 146.3±5.9c 16:00 19 96.0±8.7a 125.3±3.8b 148.7±3.5c 20:00 20 110.0±20.0a 138.3±3.5b 156.0±3.0b 0:00 21 106.3±16.0a 140.7±1.5b 153.0±3.0b 4:00 22 123.0±2.6a 152.0±4.6b 162.0±3.0c 8:00 23 121.3±7.0a 150.0±3.0b 162.0±3.0c 12:00 24 120.0±3.0a 154.7±5.1b 163.7±8.1b 16:00 25 119.7±0.6a 154.0±3.5b 166.0±3.5c 20:00 26 121.3±2.9a 148.7±6.4b 171.0±7.9c 0:00 27 127.0±1.7a 150.7±6.8b 173.0±7.5c 4:00 28 127.7±5.1a 145.7±3.8b 161.0±4.6c 8:00 29 145.3±2.3a 149.0±7.5a 147.3±3.1a 12:00 30 152.3±2.0a 163.0±1.7a 152.7±8.5a 16:00 31 163.7±9.0a 166.3±1.5ab 155.0±1.7b 20:00 32 161.0±5.6A 160.0±4.6A 0:00 33 157.0±1.7A 4:00 34 164.7±5.5A 8:00 35 164.7±10.8A 注: 数据为平均值±标准差。同列及同行数字上标大写字母相同时为差异不显著(P>0.05); 同行数字上标小写字母不同为差异显著 (P<0.05); 同行数字上标小写字母相同为差异不显著 (P>0.05); 下同Note: Data are presented by Mean±SD. Capital letters with superscripts in the same column and line are not significantly different (P>0.05); different superscripts in the same line are significantly different (P<0.05); same superscripts in the same line are not significantly different (P>0.05). The same applies below 表 6 温度降低对三种规格拉萨裂腹鱼呼吸频率的影响
Table 6 The effect of reduced temperature on the breathing rate of three sizes of Schizothorax waltoni
时间Time 温度Temperature
(℃)呼吸频率(次/min)Breathing rate (time/min) 大规格Large size 中规格Medium size 小规格 Small size 20:00 12 43.0±3.0a 92.3±8.1b 118.7±4.5c 0:00 11 44.0±3.0a 101.7±3.5b 106.7±14.0b 4:00 10 45.0±1.0a 68.0±7.5b 88.7±7.5b 8:00 9 46.3±3.1a 64.0±4.6b 82.7±3.8c 12:00 8 44.0±1.7a 68.0±6.2b 84.0±5.2c 16:00 7 42.3±0.6a 67.0±6.2b 72.0±3.0b 20:00 6 42.0±3.0a 58.7±1.5b 69.7±5.0c 0:00 5 38.0±3.5a 47.0±6.2ab 58.0±9.2b 4:00 4 32.7±6.5a 45.0±5.2a 43.0±11.4a 8:00 3 28.7±2.1a 26.0±4.6a 42.3±9.8b 12:00 2 22.3±5.1a 17.0±3.5a 32.7±3.5b 16:00 1 22.7±2.3a 18.0±3.0ab 26.7±3.1b 20:00 0 12.0±3.0a 16.0±1.7ab 11.7±0.6b -
[1] 西藏自治区水产局. 西藏鱼类及其资源 [M]. 北京: 中国农业出版社, 1995: 10-13 Fisheries Bureau of Tibet Autonomous Region. Fish and Fishery in Xizang [M]. Beijing: China Agriculture Press, 1995: 10-13
[2] 陈锋, 陈毅峰. 拉萨河鱼类调查及保护 [J]. 水生生物学报, 2010, 34(2): 278-285. Chen F, Chen Y F. Investigation and protection strategies of fish of Lhasa River [J]. Acta Hydrobiologica Sinica, 2010, 34(2): 278-285.
[3] 杨汉运, 黄道明. 雅鲁藏布江中上游鱼类区系和资源状况初步调查 [J]. 华中师范大学学报(自然科学版), 2011, 45(4): 629-633. Yang H Y, Huang D M. A preliminary investigation on fish fauna and resources of the upper and middle Yalu Tsangpo River [J]. Journal of Huazhong Normal University (
Natural Sciences ) , 2011, 45(4): 629-633. [4] Fry F E J, Brett J R, Clawson G H. Lethal limits of temperature for young goldfish [J]. Revue Canadienne de Biologie, 1942(1): 50-56.
[5] 汪锡钧, 吴定安. 几种主要淡水鱼类温度基准值的研究 [J]. 水产学报, 1994, 18(2): 93-100. Wang X J, Wu D A. Studies on the criteria of water temperature for major cultured freshwater fishes [J]. Journal of Fisheries of China, 1994, 18(2): 93-100.
[6] Elliott A. A comparison of thermal polygons for British freshwater teleosts [J]. Freshwater Forum, 1995(5): 178-184.
[7] 张永泉, 尹家胜, 徐革峰, 等. 水温和体重对白斑红点鲑临界游泳速度和游动耗氧率的影响 [J]. 水生生物学报, 2015, 39(4): 661-668. doi: 10.7541/2015.88 Zhang Y Q, Yin J S, Xu G F, et al. Effects of the water temperature and the weight on the critical swimming speed and oxygen consumption rate of Salvelinus leucomaenis [J]. Acta Hydrobiologica Sinica, 2015, 39(4): 661-668. doi: 10.7541/2015.88
[8] 周贤君. 拉萨裂腹鱼个体生物学和种群动态研究 [D]. 武汉: 华中农业大学, 2014: 21-108 Zhou X J. Study on the biology and population dynamics of Schizothorax waltoni [D]. Wuhan: Huazhong Agriculture University, 2014: 21-108
[9] Qiu H, Chen Y F. Age and growth of Schizothorax waltoni in the Yarlung Zangbo River in Tibet, China [J]. Ichthyological Research, 2009, 56(3): 260-265. doi: 10.1007/s10228-009-0096-z
[10] 郝汉舟. 拉萨裂腹鱼的年龄和生长研究 [D]. 武汉: 华中农业大学, 2005: 14-32 Hao H Z. Studies on age and growth of Schizothorax waltoni Regan [D]. Wuhan: Huazhong Agriculture University, 2005: 14-32
[11] 王万良, 李宝海, 周建设, 等. 两种不同模式人工驯养野生拉萨裂腹鱼试验效果比较 [J]. 西藏农业科技, 2016, 38(1): 16-20. doi: 10.3969/j.issn.1005-2925.2016.01.004 Wang W L, Li B H, Zhou J S, et al. Two different modes domesticated wild Schizothorax waltoni Regan and compared test results [J]. Tibet Journal of Agricultural Sciences, 2016, 38(1): 16-20. doi: 10.3969/j.issn.1005-2925.2016.01.004
[12] Guo X Z, Zhang G R, Wei K J, et al. Development and characterization of 20 polymorphic microsatellite loci for the Schizothorax waltoni [J]. Conservation Genetics Resources, 2014, 6(2): 413-415. doi: 10.1007/s12686-013-0106-3
[13] 许静. 雅鲁藏布江四种特有裂腹鱼类早期发育的研究 [D]. 武汉: 华中农业大学, 2011: 24-30 Xu J. Early development of four Schizothoraeinae fishes in the Yarlung Zangbo River, Tibet [D]. Wuhan: Huazhong Agriculture University, 2011: 24-30
[14] Baker S C, Heidinger R C. Upper lethal temperature tolerance of fingerling black crappie [J]. Journal of Fish Biology, 1996, 48(6): 1123-1129.
[15] Shelford V E. Physiological animal geography [J]. Journal of Morphology, 1911, 22(3): 551-618. doi: 10.1002/jmor.1050220303
[16] Shelford V E, Schinn H B. Animal communities in temperate America [J]. Elementary School Journal, 1937, 30(3): 548-549.
[17] Pankhurst N W, Munday P L. Effects of climate change on fish reproduction and early life history stages [J]. Marine and Freshwater Research, 2011, 62(9): 1015-1026. doi: 10.1071/MF10269
[18] 陈全震, 曾江宁, 高爱根, 等. 鱼类热忍耐温度研究进展 [J]. 水产学报, 2004, 28(5): 562-567. Chen Q Z, Zeng J N, Gao A G, et al. Advances in study of temperature of thermal tolerance of fishes [J]. Journal of Fisheries of China, 2004, 28(5): 562-567.
[19] Currie R J, Bennett W A, Beitinger T L, et al. Critical thermal minima and maxima of three freshwater game-fish species acclimated to constant temperatures [J]. Environmental Biology of Fishes, 1998, 51(2): 187-200. doi: 10.1023/A:1007447417546
[20] 王云松, 曹振东, 付世建, 等. 南方鲇幼鱼的热耐受特征 [J]. 生态学杂志, 2015, 27(12): 2136-2140. Wang Y S, Cao Z D, Fu S J, et al. Thermal tolerance of juvenile Silurus meridionalis Chen [J]. Chinese Journal of Ecology, 2015, 27(12): 2136-2140.
[21] Chatterjee N, Pal A K, Manush S M, et al. Thermal tolerance and oxygen consumption of Labeo rohita and Cyprinus carpio early fingerlings acclimated to three different temperatures [J]. Journal of Thermal Biology, 2004, 29(6): 265-270. doi: 10.1016/j.jtherbio.2004.05.001
[22] 柴学军, 徐君卓. 日本黄姑鱼Nibea japonica (Temminck et Schlegel)的耐温性研究 [J]. 渔业信息与战略, 2007, 22(2): 22-23. doi: 10.3969/j.issn.1004-8340.2007.02.006 Chai X J, Xu J Z. A study on tolerance of Nibea japonica (Temminck et Schlegel) towards temperature [J]. Modern Fisheries Information, 2007, 22(2): 22-23. doi: 10.3969/j.issn.1004-8340.2007.02.006
[23] 宋郁, 苏冒亮, 刘南希, 等. 金钱鱼幼鱼低温耐受能力和饵料营养需求的研究 [J]. 上海海洋大学学报, 2012, 21(5): 715-719. Song Y, Su M L, Liu N X, et al. Studies on low temperature resistance and nutritional needs of Scatophagus argua juveniles [J]. Journal of Shanghai Ocean University, 2012, 21(5): 715-719.
[24] 吴青, 蔡礼明, 陆建平, 等. 齐口裂腹鱼幼鱼对水温和溶解氧的耐受力研究 [J]. 四川畜牧兽医学院学报, 2001, 15(3): 20-22. Wu Q, Cai L M, Lu J P, et al. Studies on the tolerance ability of young Sclizothorax prenanti to variance of the water temperature and dissolved oxygen [J]. Journal of Sichuan Institute of Animal Husbandry and Veterinary Medicine, 2001, 15(3): 20-22.
[25] 刘春胜, 陈四清, 孙建明, 等. 狼鳗幼鱼对温度和盐度耐受性的试验研究 [J]. 渔业现代化, 2011, 38(2): 1-5. doi: 10.3969/j.issn.1007-9580.2011.02.001 Liu C S, Chen S Q, Sun J M, et al. The tolerability of younger Anarrhichthys ocellatus to temperature and salinity [J]. Fishery Modernization, 2011, 38(2): 1-5. doi: 10.3969/j.issn.1007-9580.2011.02.001
[26] Cossins A R, Bowler K. Temperature Biology of Animals [M]. The Direct Effect of Temperature Changes. Springer Netherlands Publisher, 1987: 23-61
[27] 李红敬, 张娜, 林小涛. 西藏雅鲁藏布江水质时空特征分析 [J]. 河南师范大学学报(自然版), 2010, 38(2): 126-130. Li H J, Zhang N, Lin X T. Spatio-temporal characteristics of Yalung Zangbo River in Tibet [J]. Journal of Henan Normal University (
Natural Science ) , 2010, 38(2): 126-130. [28] 冯祖强, 王祖熊. 鱼类对环境温度适应问题 [J]. 水产学报, 1984, 8(1): 79-83. Feng Z Q, Wang Z X. The acclimation of fishes to environmental temperature [J]. Journal of Fisheries of China, 1984, 8(1): 79-83.
[29] 陈松波, 范兆廷, 陈伟兴. 不同温度下鲤鱼呼吸频率与耗氧率的关系 [J]. 东北农业大学学报, 2006, 37(3): 352-356. doi: 10.3969/j.issn.1005-9369.2006.03.014 Chen S B, Fan Z T, Chen W X. The relationship of respiratory rate and oxygen consumption rate in common carp under different temperature [J]. Journal of Northeast Agricultural University, 2006, 37(3): 352-356. doi: 10.3969/j.issn.1005-9369.2006.03.014
[30] Jesse F B. Animal Anatomy and Physiology (second edition) [M]. Reston Virginia: Aprentice-Hall Company, 1982: 185-203
[31] 杨凯, 高银爱, 袁勇超, 等. 赤眼鳟耗氧率、排氨率和窒息点的初步研究 [J]. 淡水渔业, 2017, 47(5): 9-13. doi: 10.3969/j.issn.1000-6907.2017.05.002 Yang K, Gao Y A, Yuan Y C, et al. Studies on oxygen consumption rate, ammonia excretion rate and suffocation point of Squaliobarbus curriculus [J]. Freshwater Fisheries, 2017, 47(5): 9-13. doi: 10.3969/j.issn.1000-6907.2017.05.002
[32] Schurmann H, Steffensen J F. Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod [J]. Journal of Fish Biology, 1997, 50(6): 1166-1180.
[33] 曹维勤, 张崇正, 秦少峰, 等. FRF-1型鱼类呼吸频率测定仪 [J]. 北京工业大学学报, 1989, 15(2): 34-41. Cao W Q, Zhang C Z, Qin S F, et al. Model FRF-1 determination instrument [J]. Journal of Beijing Polytechnic University, 1989, 15(2): 34-41.
[34] 陈进树. 温度对神仙鱼(Pterophyllum scalare)主要消化酶活力及呼吸频率的影响 [D]. 厦门: 厦门大学, 2007: 28-30 Chen J S. Influence of temperature on the digestive enzyme activity and respiration frequency of Pterophyllum scalare [D]. Xiamen: Xiamen University, 2007: 28-30
[35] Portner H O, Knust R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance [J]. Science (
Washington D C ) , 2007, 315(5808): 95-97. doi: 10.1126/science.1135471 [36] 宋文华. 养殖密度和温度对草鱼(Ctenopharyngodon idellus)生长和生理生化指标的影响 [D]. 青岛: 中国海洋大学, 2012: 38-43 Song W H. The effects of stocking density and water temperature on growth and physiological parameters of Ctenopharyngodon idellus [D]. Qingdao: Ocean University of China, 2012: 38-43
[37] 刘艳超, 刘海平, 刘书蕴, 等. 温度对尖裸鲤胚胎发育及其仔稚鱼生长性状的影响 [J]. 动物学杂志, 2018, 53(6): 910-923. Liu Y C, Liu H P, Liu S Y, et al. Effects of temperature on embryonic development and growth traits of Oxygymnocypris stewartii larvae and juvenile [J]. Chinese Journal of Zoology, 2018, 53(6): 910-923.
[38] Kling L J, Hansen J M, Jordaan A. Growth, survival and feed efficiency for post-metamorphosed Atlantic cod (Gadus morhua) reared at different temperatures [J]. Aquaculture, 2007, 262(2): 281-288.
[39] 魏希, 邓云, 张陵蕾, 等. 雅鲁藏布江干流中游河段水温特性分析 [J]. 四川大学学报(工程科学版), 2015(S2): 17-23. Wei X, Deng Y, Zhang L L, et al. Analysis of water temperature characteristics in middle reach of the Yarlung Zangbo River [J]. Journal of Sichuan University (
Engineering Science Edition ) , 2015(S2): 17-23.