自然微生物挂膜处理水产养殖废水的效果及微生物群落分析

蔺凌云, 尹文林, 潘晓艺, 袁雪梅, 姚嘉赟, 徐洋, 王超, 沈锦玉

蔺凌云, 尹文林, 潘晓艺, 袁雪梅, 姚嘉赟, 徐洋, 王超, 沈锦玉. 自然微生物挂膜处理水产养殖废水的效果及微生物群落分析[J]. 水生生物学报, 2017, 41(6): 1327-1335. DOI: 10.7541/2017.164
引用本文: 蔺凌云, 尹文林, 潘晓艺, 袁雪梅, 姚嘉赟, 徐洋, 王超, 沈锦玉. 自然微生物挂膜处理水产养殖废水的效果及微生物群落分析[J]. 水生生物学报, 2017, 41(6): 1327-1335. DOI: 10.7541/2017.164
LIN Ling-Yun, YIN Wen-Lin, PAN Xiao-Yi, YUAN Xue-Mei, YAO Jia-Yun, XU Yang, WANG Chao, SHEN Jin-Yu. THE STUDY OF NATURAL BIOFILM FORMATION FOR NITROGEN REMOVAL FROM AQUACULTURE WASTEWATER AND ANALYSIS ON MICROBIAL COMMUNITY IN BIOFILM[J]. ACTA HYDROBIOLOGICA SINICA, 2017, 41(6): 1327-1335. DOI: 10.7541/2017.164
Citation: LIN Ling-Yun, YIN Wen-Lin, PAN Xiao-Yi, YUAN Xue-Mei, YAO Jia-Yun, XU Yang, WANG Chao, SHEN Jin-Yu. THE STUDY OF NATURAL BIOFILM FORMATION FOR NITROGEN REMOVAL FROM AQUACULTURE WASTEWATER AND ANALYSIS ON MICROBIAL COMMUNITY IN BIOFILM[J]. ACTA HYDROBIOLOGICA SINICA, 2017, 41(6): 1327-1335. DOI: 10.7541/2017.164

自然微生物挂膜处理水产养殖废水的效果及微生物群落分析

基金项目: “十二五”农村领域国家科技计划课题(2015BAD13B04); 湖州市生态文明先行示范区科技专项重点项目(2014ZD2020)资助
详细信息
    作者简介:

    蔺凌云(1984—), 女, 山东德州人; 硕士研究生; 主要研究方向为微生物学。E-mail: linly0531@163.com

    通信作者:

    沈锦玉, 研究员。E-mail: sjinyu@126.com

  • 中图分类号: Q938

THE STUDY OF NATURAL BIOFILM FORMATION FOR NITROGEN REMOVAL FROM AQUACULTURE WASTEWATER AND ANALYSIS ON MICROBIAL COMMUNITY IN BIOFILM

Funds: Supported by National Science and Technology Project of the 12th Five-year Plan for Rural Areas (2015BAD13B04); Science and Technology Key Projects of Huzhou for Ecological Civilization Precede the Demonstration Area (2014ZD2020)
    Corresponding author:
  • 摘要: 以弹性填料和流化床填料为硝化反应的生物挂膜材料, 聚羟基丁酸/戊酸共聚酯(PHBV)为反硝化反应的碳源和生物膜载体, 通过微生物自然挂膜处理低C/N比水产养殖废水, 去除水体中的氨氮、亚硝酸盐氮及总氮。应用Miseq高通量测序技术对生物膜的微生物群落组成和结构进行分析。结果表明: 温度25—30℃, 该处理系统首次挂膜成功需要4周, 启动后运行稳定, 对2种不同来源和氮污染程度的养殖废水均有较好的脱氮效果, 氨氮、亚硝酸盐氮及总氮的去除率均在90%以上。硝化生物膜(a)的优势菌分别归属变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)。反硝化生物膜(b)微生物群落的多样性指数和丰度指数均远大于前者, 主要为变形菌门、厚壁菌门、拟杆菌门、螺旋体门(Spirochaetae)及绿菌门(Chlorobi)。其中, 归属于变形菌门β-变形菌纲(Betaproteobacteria)的丛毛单胞菌科(Comamonadaceae)和红环菌科(Rhodocyclaceae)在2种生物膜中占比均较高。由于所处环境(载体, 碳源、溶氧等)不同, 在属分类水平上, 2种生物膜的细菌群落结构表现出明显差异。生物膜a中属的种类仅为b的三分之二, 相对丰度>0.5%的优势菌属, a为8个, b为18个。其中, 隶属丛毛单胞菌科和红环菌科未知属的优势种群分别占到a、b总序列数的56.67%和45.51%。磁螺菌属(Magnetospirillum)和硝化螺菌属(Nitrospira)是a中特有的优势功能菌群, 梭菌属(Clostridium)、动胶菌属(Zoogloea)、管道杆菌属(Cloacibacterium)、脱硫弧菌属(Desulfovibrio)等具有反硝化功能的菌群为b的优势菌属。
    Abstract: This study was conducted to evaluate the applications of biological filter medias in low C/N ratio aquaculture wastewater. Elastic filler and fluidized bed packing materials were used as biofilm of nitration and PHBV (poly-3-hydroxybutyrate-co-3-hydroxyvalerate) were used as the carbon source and biofilm carrier of denitrification in this study. The water quality and the bacterial community compositions were determined by the method of Miseq high-throughput sequencing. The obtained results demonstrated that biofilm of the system formed after 4 weeks operation, at the temperature of 25—30℃. Our results also showed that the two kinds of media had great effects on removing total nitrogen (TN), ammonia nitrogen (NH3-N), nitrite (NO2-N). The removal rate of TN, NH3-N and NO2-N can reach up 90%. The sequencing results indicated that the predominant bacteria on the biofilm sample a coating onto elastic filler and fluidized bed packing materials were Proteobacteria, Bacteroidetes and Firmicutes. While the major microorganisms on the biofilm sample b attaching to the surface of PHBV granules were Proteobacteria, Firmicutes, Bacteroidetes, Spirochaetae and Chlorobi. The analysis revealed that both diversity index and abundance index of microbial community of biofilm sample b were far higher than the sample. Family of Comamonadaceae and Rhodocyclaceae belonging to Betaproteobacteria were highly enriched in both biofilms samples. However, there was a distinctive difference in phylotypes between the two biofilm samples at genus level, which was probably due to the diversities of biofilm carrier, carbon source and dissolved oxygen. The genera of biofilm sample a was only two thirds of b. A total of 8 and 18 genera with a relative abundance greater than 0.5% were identified from a and b, respectively. Among them, the unknown groups belonging to Comamonadaceae and Rhodocyclaceae accounted for 56.67% and 45.51% of the total sequence of a and b. Organisms from the genus Magnetospirillum and Nitrospira were only detected in a, while the genus Clostridium, Zoogloea, Cloacibacterium, Desulfovibro etc were identified in b, which probably contributed to denitrification performance.
  • 图  1   本试验中使用的挂膜材料(a1-弹性填料, a2-流化床填料, b-PHBV)

    Figure  1.   The biofilm carriers used in this experiment (a1-elastic filler, a2-fluidized bed packing materials, b-PHBV)

    图  2   养殖废水处理装置

    Figure  2.   The experimental set-up for aquaculture wastewater treatment

    图  3   自然微生物挂膜阶段养殖废水NH4-N、NO2-N、TN及pH变化

    Figure  3.   Changes of aquaculture wastewater NH4-N, NO2-N, TN and pH during cultivation of biofilm

    图  4   甲鱼养殖废水NH4-N、NO2-N、TN及pH变化

    Figure  4.   Changes of Chinese turtle aquaculture effluent NH4-N, NO2-N, TN and pH

    图  5   南美白对虾养殖废水NH4-N、NO2-N、TN及pH变化

    Figure  5.   Changes of Penaeus vannmei aquaculture wastewater NH4-N, NO2-N, TN and pH

    图  6   样品的稀释曲线

    Figure  6.   Dilution curve of samples

    图  7   细菌群落结构分布(分类到门)

    Figure  7.   Bacterial communities at phylum level

    图  8   生物膜样品a中主要细菌分类组成(属水平)

    Figure  8.   Bacterial communities of biofilm sample a at genus level

    图  9   生物膜样品b中主要细菌分类组成(属水平)

    Figure  9.   Bacterial communities of biofilm sample b at genus level

    表  1   生物膜样品中细菌的丰度及多样性指数

    Table  1   Richness and diversity indexes of bio-film samples (α=0.03)

    样品编号
    Sample ID
    序数
    Number
    sampled
    丰度指数
    Abundance1
    index
    多样性指数
    Shannon
    index
    测序深度
    Coverage
    index
    a 25327 155 2.40 0.999
    b 25327 216 3.24 0.999
    下载: 导出CSV
  • [1]

    Ravnjak M, Vrtovšek J, Pintar A. Denitrification of drinking water in a two-stage biofilm membrane bioreactor [J]. Desalination and Water Treatment, 2013, 51(28—30): 5402—5408 doi: 10.1080/19443994.2012.759157

    [2]

    Sun S P, Nacher N P I, Merkey B, et al. Effective biological nitrogen removal treatment processes for domestic wastewaters with low C/N ratios: a review [J]. Environmental Engineering Science, 2010, 27(2): 111—126 doi: 10.1089/ees.2009.0100

    [3] 陈重军. 甲鱼养殖废水厌氧氨氧化处理及其微生物机理研究. 博士学位论文, 浙江大学, 杭州. 2012

    Chen C J. Study on anammox treatment of turtle aquaculture wastewater and its microbial mechanism [D]. PhD dissertation. Zhejiang University, Hangzhou. 2012
    陈重军. 甲鱼养殖废水厌氧氨氧化处理及其微生物机理研究. 博士学位论文, 浙江大学, 杭州. 2012

    [4]

    Henze M. Capabilities of biological nitrogen removal processes from wastewater [J]. Water Science and Technology, 1991, (4—6): 669—679

    [5] 吴昌永, 彭永臻, 彭轶. A2O工艺处理低C/N比生活污水的试验研究. 化工学报, 2008, 59(12): 3126—3131 doi: 10.3321/j.issn:0438-1157.2008.12.026

    Wu C Y, Peng Y Z, Peng Y. Biological nutrient removal in A2O process when treating low C/N ratio domestic wastewater [J]. Journal of Chemical Industry and Engineering (China), 2008, 59(12): 3126—3131
    吴昌永, 彭永臻, 彭轶. A2O工艺处理低C/N比生活污水的试验研究. 化工学报, 2008, 59(12): 3126—3131 doi: 10.3321/j.issn:0438-1157.2008.12.026

    [6] 王淑莹, 殷芳芳, 侯红勋, 等. 以甲醇作为外碳源的生物反硝化. 北京工业大学学报, 2009, 35(11): 1521—1526

    Wang S Y, Yin F F, Hou H X, et al. Biological denitrification with methanol as external carbon source [J]. Journal of Beijing University of Technology, 2009, 35(11): 1521—1526
    王淑莹, 殷芳芳, 侯红勋, 等. 以甲醇作为外碳源的生物反硝化. 北京工业大学学报, 2009, 35(11): 1521—1526

    [7]

    Delanghe B, Nakamura F, Myoga H, et al. Drinking water denitrification in a membrane bioreactor [J]. Water Science and Technology, 1994, 30(6): 157—160

    [8] 李洪静, 陈银广, 顾国维. 丙酸/乙酸对低能耗生物除磷脱氮系统的影响. 中国环境科学, 2008, 28(8): 673—678

    Li H J, Chen Y G, Gu G W. Effect of propionic to acetic acid ratio on biological nitrogen and phosphorus removal with low energy consumption [J]. China Environmental Science, 2008, 28(8): 673—678
    李洪静, 陈银广, 顾国维. 丙酸/乙酸对低能耗生物除磷脱氮系统的影响. 中国环境科学, 2008, 28(8): 673—678

    [9]

    Bill K A, Bott C B, Murthy S N. Evaluation of alternative electron donors for denitrifying moving bed biofilm reactors (MBBRs) [J]. Water Science & Technology, 2009, 60(10): 2647—2657

    [10]

    Aslan S, Türkman A. Combined biological removal of nitrate and pesticides using wheat straw as substrates [J]. Process Biochemistry, 2005, 40(2): 935—943 doi: 10.1016/j.procbio.2004.02.020

    [11]

    Trois C, Pisano G, Oxarango L. Alternative solutions for the biodenitrification of landfill leachates using pine bark and compost [J]. Journal of Hazardous Materials, 2010, 178(1—3): 1100—1105

    [12]

    Ovez B. Batch biological denitrification using Arundo donax, Glycyrrhiza glabra, and Gracilaria verrucosa as carbon source [J]. Process Biochemistry, 2006, 41(6): 1289—1295 doi: 10.1016/j.procbio.2005.12.030

    [13]

    Fang J Z, Xu C Y, Norio O. Denitrification of groundwater using cotton as energy source [J]. Water Science & Technology, 1996, 34(1—2): 379—385

    [14]

    Robinson-Lora M A, Brennan R A. The use of crab-shell chitin for biological denitrification: batch and column tests [J]. Bioresource Technology, 2009, 100(2): 534—541 doi: 10.1016/j.biortech.2008.06.052

    [15]

    Hiraishi A, Khan S T. Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment [J]. Applied Microbiology and Biotechnology, 2003, 61(2): 103—109 doi: 10.1007/s00253-002-1198-y

    [16]

    Takahashi M, Yamada T, Tanno M, et al. Nitrate removal efficiency and bacterial community dynamics in denitrification processes using poly (L-lactic acid) as the solid substrate [J]. Microbes and Environments, 2010, 26(3): 212—219.

    [17]

    Chu L B, Wang J L. Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source [J]. Chemosphere, 2013, 91(9): 1310—1316 doi: 10.1016/j.chemosphere.2013.02.064

    [18]

    Khan S T, Horiba Y, Takahashi N, et al. Activity and community composition of denitrifying bacteria in poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-using solid-phage denitrification processes [J]. Microbes and Environments, 2007, 22(1): 20—31. doi: 10.1264/jsme2.22.20

    [19] 王威, 曲克明, 王海増, 等. 水利负荷对3种滤料生物挂膜和溶解无机氮去除效果的初步研究. 安全与环境学报, 2012, 12(1): 66—71

    Wang W, Qu K M, Wang H Z, et al. Preliminary study on the biofilm cultivation and the dissolved inorganic nitrogen-removing efficiency with three filtering stuff under different hydraulic loadings [J]. Journal of Safety and Environment, 2012, 12(1): 66—71
    王威, 曲克明, 王海増, 等. 水利负荷对3种滤料生物挂膜和溶解无机氮去除效果的初步研究. 安全与环境学报, 2012, 12(1): 66—71

    [20] 张列宇, 饶本强, 熊瑛, 等. 人工湿地黑臭水体处理系统微生物脱氮机理研究. 水生生物学报, 2010, 34(2): 256—261 http://ssswxb.ihb.ac.cn/CN/abstract/abstract2677.shtml

    Zhang L Y, Rao B Q, Xiong Y, et al. The micobial mechanism of horizonal constructed wetland used to treated Black-odor River [J]. Acta Hydrobiologica Sinica, 2010, 34(2): 256—261
    张列宇, 饶本强, 熊瑛, 等. 人工湿地黑臭水体处理系统微生物脱氮机理研究. 水生生物学报, 2010, 34(2): 256—261 http://ssswxb.ihb.ac.cn/CN/abstract/abstract2677.shtml

    [21] 金浩, 李柏林, 欧杰, 等. 污水处理活性污泥微生物群落多样性研究. 微生物学杂志, 2012, 32(4): 1—5

    Jin H, Li B L, Ou J, et al. Microbial population diversity of activated sludge for wastewater treatment [J]. Journal of Microbiology, 2012, 32(4): 1—5
    金浩, 李柏林, 欧杰, 等. 污水处理活性污泥微生物群落多样性研究. 微生物学杂志, 2012, 32(4): 1—5

    [22]

    Ma Q, Qu Y Y, Shen W L, et al. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing [J]. Bioresource Technology, 2015, 179: 436—443 doi: 10.1016/j.biortech.2014.12.041

    [23] 徐影, 仇天雷, 韩梅琳, 等. PCR-DGGE技术解析固体碳源表面生物膜的微生物群落结构. 环境科学, 2013, 34(8): 3257—3263

    Xu Y, Qiu T L, Han M L, et al. Analysis on microbial community in biofilm coating onto solid carbon source using the PCR-DGGE technique [J]. Environmental Science, 2013, 34(8): 3257—3263
    徐影, 仇天雷, 韩梅琳, 等. PCR-DGGE技术解析固体碳源表面生物膜的微生物群落结构. 环境科学, 2013, 34(8): 3257—3263

    [24]

    Mergaert J, Boley A, Cnockaert M C, et al. Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor [J]. Systematic and Applied Microbiology, 2001, 24(2): 303—310 doi: 10.1078/0723-2020-00037

    [25]

    Wang C, Xie B, Han L, Xu X F. Study of anaerobic ammonium oxidation bacterial community in the aged refuse bioreactor with 16S rRNA gene library technique [J]. Bioresource Technology, 2013, 145(4): 65—70

    [26]

    Horiba Y, Khan S T, Hiraishi A. Characterization of the microbial community and culturable denitrifying bacteria in a solid-phase denitrification process using poly (ε-caprolactone) as the carbon and energy source [J]. Microbes and Environments, 2005, 20(1): 25—33 doi: 10.1264/jsme2.20.25

    [27]

    Shen Z Q, Zhou Y X, Wang J L. Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal [J]. Bioresource Technology, 2013, 131(3): 33—39

    [28]

    Mclellan S L, Huse S M, Mueller-Spitz S R, et al. Diversity and population structure of sewage derived microorganisms in wastewater treatment plant influent [J]. Environmental Microbiology, 2010, 12(2): 378—392 doi: 10.1111/emi.2010.12.issue-2

    [29]

    Roesch L F, Fulthorpe R R, Riva A, et al. Pyrosequencing enumerates and contrasts soil microbial diversity [J]. The International Society for Microbial Ecology, 2007, 1(4): 283—290

    [30]

    Andersson A F, Lindberg M, Jakobsson H, et al. Comparative analysis of human gut microbiotaby barcoded pyrosequencing [J]. PLoS One, 2008, 3(7): 2836—2843 doi: 10.1371/journal.pone.0002836

    [31] 国家环保总局. 水和废水监测分析方法 (第四版). 北京: 中国环境出版社. 2002, 271—281

    State Environmental Protection Administration. Water and Wastewater Monitoring Analysis Method (4th edition) [M]. Beijing: China Environmental Press. 2002, 271—281
    国家环保总局. 水和废水监测分析方法 (第四版). 北京: 中国环境出版社. 2002, 271—281

    [32]

    Xiong J B, Liu Y Q, Lin X G, et al. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau [J]. Environmental Microbiology, 2012, 14(9): 2547—2466

    [33]

    Shen Z Q, Zhou Y X, Hu J, et al. Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support [J]. Journal of Hazardous Materials, 2013, 250—251: 431—438

    [34] 李秋芬, 傅雪军, 张艳, 等. 循环水养殖系统生物滤池细菌群落PCR-DGGE分析. 水产学报, 2011, 35(4): 579—586

    Li Q F, Fu X J, Zhang Y, et al. PCR-DGGE analysis of bacterial communities in bio-filtors of re-circulating mariculture system [J]. Journal of Fisheries of China, 2011, 35(4): 579—586
    李秋芬, 傅雪军, 张艳, 等. 循环水养殖系统生物滤池细菌群落PCR-DGGE分析. 水产学报, 2011, 35(4): 579—586

    [35]

    Staley J T, Bryant M P, Pfennig N, et al. Bergey’s Manual of Systematic Bacteriology [M]. Baltimore: Williams & Wilkins, 2001, 1807—1835

    [36] 马英, 钱鲁闽, 王永胜, 等. 硝化细菌分子生态学研究进展. 中国水产科学, 2007, 14(5): 872—879

    Ma Y, Qian L M, Wang Y S, et al. Progress in molecular ecology of nitrifying bacteria [J]. Journal of Fishery Science of China, 2007, 14(5): 872—879
    马英, 钱鲁闽, 王永胜, 等. 硝化细菌分子生态学研究进展. 中国水产科学, 2007, 14(5): 872—879

    [37]

    Ye L, Shao M F, Zhang T, et al. Analysis of the bacterial community in a laboratory-scale nitrification reactor and a wastewater treatment plant by 454-pyrosequencing [J]. Water Research, 2011, 45(45): 4390—4398

    [38] 张兰河, 刘丽丽, 仇天雷, 等. 以聚羟基丁酸戊酸共聚酯为碳源去除循环水养殖系统的硝酸盐及生物膜中微生物群落动态. 微生物学报, 2014, 54(9): 1053—1062

    Zhang L H, Liu L L, Qiu T L, et al. Nitrate removal from re-circulating aquaculture system using polyhydroxybutyrate-co-hydroxyvalerate as carbon source [J]. Acta Microbiologica Sinica, 2014, 54(9): 1053—1062
    张兰河, 刘丽丽, 仇天雷, 等. 以聚羟基丁酸戊酸共聚酯为碳源去除循环水养殖系统的硝酸盐及生物膜中微生物群落动态. 微生物学报, 2014, 54(9): 1053—1062

    [39]

    Shao Y Q, Chung B S, Lee S S, et al. Zoogloea caeni sp. nov., a floc-forming bacterium isolated from activated sludge [J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(3): 526—530 doi: 10.1099/ijs.0.65670-0

图(9)  /  表(1)
计量
  • 文章访问数:  1727
  • HTML全文浏览量:  395
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-09
  • 修回日期:  2017-05-10
  • 网络出版日期:  2017-10-31
  • 发布日期:  2017-10-31

目录

    /

    返回文章
    返回