鱼类卵子质量研究及其关键科学问题

焦圣博, 何牡丹, 孙永华

焦圣博, 何牡丹, 孙永华. 鱼类卵子质量研究及其关键科学问题[J]. 水生生物学报, 2023, 47(6): 1007-1024. DOI: 10.7541/2023.2022.0454
引用本文: 焦圣博, 何牡丹, 孙永华. 鱼类卵子质量研究及其关键科学问题[J]. 水生生物学报, 2023, 47(6): 1007-1024. DOI: 10.7541/2023.2022.0454
JIAO Sheng-Bo, HE Mu-Dan, SUN Yong-Hua. RESEARCH PROGRESS AND SEVERAL KEY SCIENTIFIC QUESTIONS IN STUDIES OF FISH EGG QUALITY[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(6): 1007-1024. DOI: 10.7541/2023.2022.0454
Citation: JIAO Sheng-Bo, HE Mu-Dan, SUN Yong-Hua. RESEARCH PROGRESS AND SEVERAL KEY SCIENTIFIC QUESTIONS IN STUDIES OF FISH EGG QUALITY[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(6): 1007-1024. DOI: 10.7541/2023.2022.0454

鱼类卵子质量研究及其关键科学问题

基金项目: 国家自然科学基金(32025037, 31972780和32273134); 淡水生态与生物技术国家重点实验室(2019FBZ05)资助
详细信息
    作者简介:

    焦圣博(1997—), 女, 博士研究生; 研究方向为鱼类发育与生物技术。E-mail: jiaoshengbo@ihb.ac.cn

    通信作者:

    孙永华, 研究员; E-mail: yhsun@ihb.ac.cn

RESEARCH PROGRESS AND SEVERAL KEY SCIENTIFIC QUESTIONS IN STUDIES OF FISH EGG QUALITY

Funds: Supported by the National Natural Science Foundation of China (32025037, 31972780 and 32273134)]; the State Key Laboratory of Freshwater Ecology and Biotechnology (2019FBZ05
    Corresponding author:
  • 摘要: 卵子质量(卵质)是一种复杂的生物学特性, 是决定雌性动物生殖能力的主要因素。鱼类卵质通常指卵子的受精能力及支持胚胎正常发育的能力, 它直接关系到受精卵的形成、胚胎的早期发育及仔、稚、幼鱼的成活与生长, 是决定鱼类繁育成功和养殖效率的首要环节。对卵质进行客观而准确的评估, 提升卵子质量, 以获得大量高质量的成熟卵, 是水产种业和养殖业发展的重要前提。理论上, 鱼类的卵质由卵子中所储存的所有母源物质的集合及其时空分布格局所共同决定。文章综述了鱼类卵子的发生和成熟及鱼类卵质评估标准的研究现状, 重点评述了以斑马鱼为模型所开展的母源因子对卵子质量的调控研究。最后, 提出了鱼类卵质研究中亟待研究和解决的重要科学问题, 即需要重点研究卵原细胞-卵母细胞转换、卵母细胞-卵子转换、卵-胚转换、胚胎-仔鱼转换、仔-稚鱼转换等决定卵质和受到卵质影响的关键生物学事件。
    Abstract: Egg quality is a complex biological characteristic, which determines the reproductive capacity of females. Fish egg quality refers to the fertilizing ability of eggs and the ability to support the normal development of embryos and larvae. It is directly related to the formation of fertilized eggs, the early development of embryos, and the survival and development of larvae and juvenile fish. It is the key-link that determines the success of fish breeding and breeding efficiency. It is an important prerequisite for the development of aquaculture industry to evaluate egg quality objectively and accurately, to improve egg quality and to obtain a large number of mature eggs with high quality. In theory, fish egg quality is determined by all deposited maternal materials and their spatial and temporal distribution patterns in the egg. In this paper, the research status of fish oogenesis, maturation and the evaluation criteria of egg quality are summarized. In addition, the regulation of egg quality by maternal factors based on zebrafish model is highlighted. Finally, the key scientific questions involved in fish oocyte quality that need to be studied and solved are proposed, i.e., the main biological events that determine and are affected by egg quality, including oogonia-to-oocyte transition, oocyte-to-egg transition, egg-to-embryo transition, embryo-to-larval transition, and larval-to-juvenile transition.
  • 图  1   卵子质量调控及其影响的发育事件

    Figure  1.   Regulation of egg quality and its influence on developmental events

    图  2   影响卵子质量的遗传和环境因素

    Figure  2.   Genetic and environmental factors that influence egg quality

  • [1]

    Naylor R L, Kishore A, Sumaila U R, et al. Blue food demand across geographic and temporal scales [J]. Nature Communications, 2021(12): 5413. doi: 10.1038/s41467-021-25516-4

    [2]

    Lubzens E, Young G, Bobe J, et al. Oogenesis in teleosts: how eggs are formed [J]. General and Comparative Endocrinology, 2010, 165(3): 367-389. doi: 10.1016/j.ygcen.2009.05.022

    [3]

    Ye D, Zhu L, Zhang Q, et al. Abundance of early embryonic primordial germ cells promotes zebrafish female differentiation as revealed by lifetime labeling of germline [J]. Marine Biotechnology, 2019, 21(2): 217-228. doi: 10.1007/s10126-019-09874-1

    [4]

    Ye D, Sun Y. Manipulating and visualizing the germline with transgenic lines [J]. Methods in Molecular Biology, 2021(2218): 265-276.

    [5]

    Lessman C A. Oocyte maturation: converting the zebrafish oocyte to the fertilizable egg [J]. General and Comparative Endocrinology, 2009, 161(1): 53-57. doi: 10.1016/j.ygcen.2008.11.004

    [6]

    Selman K, Wallace R A, Sarka A, et al. Stages of oocyte development in the zebrafish, brachydanio rerio [J]. Journal of Morphology, 1993, 218(2): 203-224. doi: 10.1002/jmor.1052180209

    [7]

    Sen A, Caiazza F. Oocyte maturation: a story of arrest and release [J]. Frontiers in Bioscience (Scholar Edition), 2013, 5(2): 451-477.

    [8]

    Robker R L, Russell D L, Yoshioka S, et al. Ovulation: a multi-gene, multi-step process [J]. Steroids, 2000, 65(10/11): 559-570.

    [9]

    Bobe J, Labbé C. Egg and sperm quality in fish [J]. General and Comparative Endocrinology, 2010, 165(3): 535-548. doi: 10.1016/j.ygcen.2009.02.011

    [10]

    Wang Q, Lam J C W, Han J, et al. Developmental exposure to the organophosphorus flame retardant tris(1, 3-dichloro-2-propyl) phosphate: Estrogenic activity, endocrine disruption and reproductive effects on zebrafish [J]. Aquatic Toxicology, 2015(160): 163-171. doi: 10.1016/j.aquatox.2015.01.014

    [11]

    Wu H, Rao Q, Zheng J, et al. Biochemical and histological alterations in adult zebrafish (Danio rerio) ovary following exposure to the tetronic acid insecticide spirotetramat [J]. Ecotoxicology and Environmental Safety, 2018(164): 149-154. doi: 10.1016/j.ecoenv.2018.08.020

    [12]

    Liu C, Deng J, Yu L, et al. Endocrine disruption and reproductive impairment in zebrafish by exposure to 8: 2 fluorotelomer alcohol [J]. Aquatic Toxicology, 2010, 96(1): 70-76. doi: 10.1016/j.aquatox.2009.09.012

    [13]

    Fan X, Hou T, Sun T, et al. Starvation stress affects the maternal development and larval fitness in zebrafish (Danio rerio) [J]. Science of the Total Environment, 2019(695): 133897. doi: 10.1016/j.scitotenv.2019.133897

    [14]

    Forés R, Iglesias J, Olmedo M, et al. Induction of spawning in turbot (Scophthalmus maximus L.) by a sudden change in the photoperiod [J]. Aquacultural Engineering, 1990, 9(5): 357-366. doi: 10.1016/0144-8609(90)90026-V

    [15]

    Sun J, Yan L, Shen W, et al. Maternal Ybx1safeguards zebrafish oocyte maturation and maternal-to-zygotic transition by repressing global translation [J]. Development, 2018, 145(19): dev166587.

    [16]

    Kohn Y Y, Symonds J E. Evaluation of egg quality parameters as predictors of hatching success and early larval survival in hapuku (Polyprion oxygeneios) [J]. Aquaculture, 2012(342/343): 42-47. doi: 10.1016/j.aquaculture.2012.02.014

    [17]

    Aristizabal E, Suárez J, Vega A, et al. Egg and larval quality assessment in the Argentinean red porgy (Pagrus pagrus) [J]. Aquaculture, 2009, 287(3/4): 329-334.

    [18]

    Mansour N, Lahnsteiner F, Patzner R A. Distribution of lipid droplets is an indicator for egg quality in brown trout, Salmo trutta fario [J]. Aquaculture, 2007, 273(4): 744-747. doi: 10.1016/j.aquaculture.2007.09.027

    [19]

    Lahnsteiner F, Patarnello P. The shape of the lipid vesicle is a potential marker for egg quality determination in the gilthead seabream, Sparus aurata, and in the sharpsnout seabream, Diplodus puntazzo [J]. Aquaculture, 2005, 246(1/2/3/4): 423-435.

    [20]

    Żarski D, Palińska K, Targońska K, et al. Oocyte quality indicators in Eurasian perch, Perca fluviatilis L., during reproduction under controlled conditions [J]. Aquaculture, 2011, 313(1/2/3/4): 84-91.

    [21]

    Lindeman R E, Pelegri F. Vertebrate maternal-effect genes: insights into fertilization, early cleavage divisions, and germ cell determinant localization from studies in the zebrafish [J]. Molecular Reproduction and Development, 2010, 77(4): 299-313. doi: 10.1002/mrd.21128

    [22]

    Fuentes R, Fernández J. Ooplasmic segregation in the zebrafish zygote and early embryo: pattern of ooplasmic movements and transport pathways [J]. Developmental Dynamics, 2010, 239(8): 2172-2189. doi: 10.1002/dvdy.22349

    [23]

    Yartseva V, Giraldez A J. The maternal-to-zygotic transition during vertebrate development: a model for reprogramming [J]. Current Topics in Developmental Biology, 2015(113): 191-232.

    [24]

    Mawed S A, Zhang J, Ren F, et al. atg7 and beclin1 are essential for energy metabolism and survival during the larval-to-juvenile transition stage of zebrafish [J]. Aquaculture and Fisheries, 2022, 7(4): 359-372. doi: 10.1016/j.aaf.2021.01.002

    [25]

    Rodríguez-Marí A, Cañestro C, Bremiller R A, et al. Sex reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis [J]. PLoS Genetics, 2010, 6(7): e1001034. doi: 10.1371/journal.pgen.1001034

    [26]

    Qin M, Zhang Z, Song W, et al. Roles of figla/figla in juvenile ovary development and follicle formation during zebrafish gonadogenesis [J]. Endocrinology, 2018, 159(11): 3699-3722. doi: 10.1210/en.2018-00648

    [27]

    Dranow D B, Hu K, Bird A M, et al. Bmp15 is an oocyte-produced signal required for maintenance of the adult female sexual phenotype in zebrafish [J]. PLoS Genetics, 2016, 12(9): e1006323. doi: 10.1371/journal.pgen.1006323

    [28]

    Mei W, Lee K W, Marlow F L, et al. hnRNP I is required to generate the Ca2+ signal that causes egg activation in zebrafish [J]. Development, 2009, 136(17): 3007-3017. doi: 10.1242/dev.037879

    [29]

    Hau H T A, Ogundele O, Hibbert A H, et al. Maternal Larp6 controls oocyte development, chorion formation and elevation [J]. Development, 2020, 147(4): dev187385.

    [30]

    Cheung C T, Nguyen T V, Le Cam A, et al. What makes a bad egg? Egg transcriptome reveals dysregulation of translational machinery and novel fertility genes important for fertilization [J]. BMC Genomics, 2019, 20(1): 584. doi: 10.1186/s12864-019-5930-8

    [31]

    Xia P, Gütl D, Zheden V, et al. Lateral inhibition in cell specification mediated by mechanical signals modulating TAZ activity [J]. Cell, 2019, 176(6): 1379-1392.e14. doi: 10.1016/j.cell.2019.01.019

    [32]

    Yi X, Yu J, Ma C, et al. The effector of Hippo signaling, Taz, is required for formation of the micropyle and fertilization in zebrafish [J]. PLoS Genetics, 2019, 15(1): e1007408. doi: 10.1371/journal.pgen.1007408

    [33]

    Langdon Y G, Mullins M C. Maternal and zygotic control of zebrafish dorsoventral axial patterning [J]. Annual Review of Genetics, 2011(45): 357-377. doi: 10.1146/annurev-genet-110410-132517

    [34]

    Fuentes R, Tajer B, Kobayashi M, et al. The maternal coordinate system: molecular-genetics of embryonic axis formation and patterning in the zebrafish [J]. Current Topics in Developmental Biology, 2020(140): 341-389.

    [35]

    Ryu S L, Fujii R, Yamanaka Y, et al. Regulation of dharma/bozozok by the Wnt pathway [J]. Developmental Biology, 2001, 231(2): 397-409. doi: 10.1006/dbio.2000.0150

    [36]

    Fekany K, Yamanaka Y, Leung T, et al. The zebrafish bozozok locus encodes Dharma, a homeodomain protein essential for induction of gastrula organizer and dorsoanterior embryonic structures [J]. Development, 1999, 126(7): 1427-1438. doi: 10.1242/dev.126.7.1427

    [37]

    Schneider S, Steinbeisser H, Warga R M, et al. β-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos [J]. Mechanisms of Development, 1996, 57(2): 191-198. doi: 10.1016/0925-4773(96)00546-1

    [38]

    Lu F I, Thisse C, Thisse B. Identification and mechanism of regulation of the zebrafish dorsal determinant [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(38): 15876-15880. doi: 10.1073/pnas.1106801108

    [39]

    Yan L, Chen J, Zhu X, et al. Maternal Huluwa dictates the embryonic body axis through β-catenin in vertebrates [J]. Science, 2018, 362(6417): eaat1045. doi: 10.1126/science.aat1045

    [40]

    He M, Zhang R, Jiao S, et al. Nanog safeguards early embryogenesis against global activation of maternal β-catenin activity by interfering with TCF factors [J]. PLoS Biology, 2020, 18(7): e3000561. doi: 10.1371/journal.pbio.3000561

    [41]

    Zinski J, Bu Y, Wang X, et al. Systems biology derived source-sink mechanism of BMP gradient formation [J]. eLife, 2017(6): e22199. doi: 10.7554/eLife.22199

    [42]

    Kramer C, Mayr T, Nowak M, et al. Maternally supplied Smad5 is required for ventral specification in zebrafish embryos prior to zygotic bmp signaling [J]. Developmental Biology, 2002, 250(2): 263-279. doi: 10.1006/dbio.2002.0805

    [43]

    Wei C Y, Wang H P, Zhu Z Y, et al. Correction: Transcriptional factors Smad1 and Smad9 act redundantly to mediate zebrafish ventral specification downstream of Smad5 [J]. The Journal of Biological Chemistry, 2020, 295(52): 18650. doi: 10.1074/jbc.AAC120.016989

    [44]

    Tucker J A, Mintzer K A, Mullins M C. The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis [J]. Developmental Cell, 2008, 14(1): 108-119. doi: 10.1016/j.devcel.2007.11.004

    [45]

    Sidi S, Goutel C, Peyriéras N, et al. Maternal induction of ventral fate by zebrafish radar [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(6): 3315-3320. doi: 10.1073/pnas.0530115100

    [46]

    Reim G, Brand M. Maternal control of vertebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4 [J]. Development, 2006, 133(14): 2757-2770. doi: 10.1242/dev.02391

    [47]

    Xu P, Zhu G, Wang Y, et al. Maternal Eomesodermin regulates zygotic nodal gene expression for mesendoderm induction in zebrafish embryos [J]. Journal of Molecular Cell Biology, 2014, 6(4): 272-285. doi: 10.1093/jmcb/mju028

    [48]

    Schier A F. Nodal signaling in vertebrate development [J]. Annual Review of Cell and Developmental Biology, 2003(19): 589-621. doi: 10.1146/annurev.cellbio.19.041603.094522

    [49]

    Lee M T, Bonneau A R, Giraldez A J. Zygotic genome activation during the maternal-to-zygotic transition [J]. Annual Review of Cell and Developmental Biology, 2014(30): 581-613. doi: 10.1146/annurev-cellbio-100913-013027

    [50]

    Liu C, Ma Y, Shang Y, et al. Post-translational regulation of the maternal-to-zygotic transition [J]. Cellular and Molecular Life Sciences, 2018, 75(10): 1707-1722. doi: 10.1007/s00018-018-2750-y

    [51]

    Vastenhouw N L, Cao W X, Lipshitz H D. The maternal-to-zygotic transition revisited [J]. Development, 2019, 146(11): dev161471. doi: 10.1242/dev.161471

    [52]

    Vasudevan S, Seli E, Steitz J A. Metazoan oocyte and early embryo development program: a progression through translation regulatory cascades [J]. Genes & Development, 2006, 20(2): 138-146.

    [53]

    Bazzini A A, Del Viso F, Moreno-Mateos M A, et al. Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition [J]. The EMBO Journal, 2016, 35(19): 2087-2103. doi: 10.15252/embj.201694699

    [54]

    Mishima Y, Tomari Y. Codon usage and 3’ UTR length determine maternal mRNA stability in zebrafish [J]. Molecular Cell, 2016, 61(6): 874-885. doi: 10.1016/j.molcel.2016.02.027

    [55]

    Shi B, Heng J, Zhou J Y, et al. Phase separation of Ddx3xb helicase regulates maternal-to-zygotic transition in zebrafish [J]. Cell Research, 2022, 32(8): 715-728. doi: 10.1038/s41422-022-00655-5

    [56]

    Despic V, Neugebauer K M. RNA tales - how embryos read and discard messages from mom [J]. Journal of Cell Science, 2018, 131(5): jcs201996.

    [57]

    Chang H, Yeo J, Kim J G, et al. Terminal uridylyltransferases execute programmed clearance of maternal transcriptome in vertebrate embryos [J]. Molecular Cell, 2018, 70(1): 72-82.e7. doi: 10.1016/j.molcel.2018.03.004

    [58]

    Yang Y, Wang L, Han X, et al. RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay [J]. Molecular Cell, 2019, 75(6): 1188-1202.e11. doi: 10.1016/j.molcel.2019.06.033

    [59]

    Ren F, Lin Q, Gong G, et al. Igf2bp3 maintains maternal RNA stability and ensures early embryo development in zebrafish [J]. Communications Biology, 2020(3): 94. doi: 10.1038/s42003-020-0827-2

    [60]

    Ivanova I, Much C, Di Giacomo M, et al. The RNA m6A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence [J]. Molecular Cell, 2017, 67(6): 1059-1067.e4. doi: 10.1016/j.molcel.2017.08.003

    [61]

    Kontur C, Jeong M, Cifuentes D, et al. Ythdf m6A readers function redundantly during zebrafish development [J]. Cell Reports, 2020, 33(13): 108598. doi: 10.1016/j.celrep.2020.108598

    [62]

    Giraldez A J, Mishima Y, Rihel J, et al. Zebrafish miR-430 promotes deadenylation and clearance of maternal mRNAs [J]. Science, 2006, 312(5770): 75-79. doi: 10.1126/science.1122689

    [63]

    Bazzini A A, Lee M T, Giraldez A J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish [J]. Science, 2012, 336(6078): 233-237. doi: 10.1126/science.1215704

    [64]

    Lee M T, Bonneau A R, Takacs C M, et al. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition [J]. Nature, 2013, 503(7476): 360-364. doi: 10.1038/nature12632

    [65]

    Miao L, Tang Y, Bonneau A R, et al. The landscape of pioneer factor activity reveals the mechanisms of chromatin reprogramming and genome activation [J]. Molecular Cell, 2022, 82(5): 986-1002.e9. doi: 10.1016/j.molcel.2022.01.024

    [66]

    Veil M, Yampolsky L Y, Grüning B, et al. Pou5f3, SoxB1, and Nanog remodel chromatin on high nucleosome affinity regions at zygotic genome activation [J]. Genome Research, 2019, 29(3): 383-395. doi: 10.1101/gr.240572.118

    [67]

    Pálfy M, Schulze G, Valen E, et al. Chromatin accessibility established by Pou5f3, Sox19b and Nanog primes genes for activity during zebrafish genome activation [J]. PLoS Genetics, 2020, 16(1): e1008546. doi: 10.1371/journal.pgen.1008546

    [68]

    Vardy L, Orr-Weaver T L. Regulating translation of maternal messages: multiple repression mechanisms [J]. Trends in Cell Biology, 2007, 17(11): 547-554. doi: 10.1016/j.tcb.2007.09.002

    [69]

    Richter J D, Lasko P. Translational control in oocyte development [J]. Cold Spring Harbor Perspectives in Biology, 2011, 3(9): a002758.

    [70]

    Weill L, Belloc E, Bava F A, et al. Translational control by changes in poly(A) tail length: recycling mRNAs [J]. Nature Structural & Molecular Biology, 2012, 19(6): 577-585.

    [71]

    McGrew L L, Dworkin-Rastl E, Dworkin M B, et al. Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element [J]. Genes & Development, 1989, 3(6): 803-815.

    [72]

    Sheets M D, Fox C A, Hunt T, et al. The 3′-untranslated regions of c-mos and cyclin mRNAs stimulate translation by regulating cytoplasmic polyadenylation [J]. Genes & Development, 1994, 8(8): 926-938.

    [73]

    Kim-Ha J, Kerr K, MacDonald P M. Translational regulation of oskar mRNA by Bruno, an ovarian RNA-binding protein, is essential [J]. Cell, 1995, 81(3): 403-412. doi: 10.1016/0092-8674(95)90393-3

    [74]

    Snee M, Benz D, Jen J, et al. Two distinct domains of Bruno bind specifically to the oskar mRNA [J]. RNA Biology, 2008, 5(1): 1-9. doi: 10.4161/rna.5.1.5831

    [75]

    Castagnetti S, Hentze M W, Ephrussi A, et al. Control of oskar mRNA translation by Bruno in a novel cell-free system from Drosophila ovaries [J]. Development, 2000, 127(5): 1063-1068. doi: 10.1242/dev.127.5.1063

    [76]

    Nakamura A, Amikura R, Hanyu K, et al. Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis [J]. Development, 2001, 128(17): 3233-3242. doi: 10.1242/dev.128.17.3233

    [77]

    Miao L, Yuan Y, Cheng F, et al. Translation repression by maternal RNA binding protein Zar1 is essential for early oogenesis in zebrafish [J]. Development, 2017, 144(1): 128-138.

    [78]

    He M, Jiao S, Zhang R, et al. Translational control by maternal Nanog promotes oogenesis and early embryonic development [J]. Development, 2022, 149(24): dev201213. doi: 10.1242/dev.201213

    [79]

    Carnevali O, Cionna C, Tosti L, et al. Role of cathepsins in ovarian follicle growth and maturation [J]. General and Comparative Endocrinology, 2006, 146(3): 195-203. doi: 10.1016/j.ygcen.2005.12.007

    [80]

    Sun C, Zhang S. Immune-relevant and antioxidant activities of vitellogenin and yolk proteins in fish [J]. Nutrients, 2015, 7(10): 8818-8829. doi: 10.3390/nu7105432

    [81]

    Reading B J, Hiramatsu N, Sawaguchi S, et al. Conserved and variant molecular and functional features of multiple egg yolk precursor proteins (vitellogenins) in white perch (Morone americana) and other teleosts [J]. Marine Biotechnology, 2009, 11(2): 169-187. doi: 10.1007/s10126-008-9133-6

    [82]

    Wang H, Tan J T T, Emelyanov A, et al. Hepatic and extrahepatic expression of vitellogenin genes in the zebrafish, Danio rerio [J]. Gene, 2005(356): 91-100. doi: 10.1016/j.gene.2005.03.041

    [83]

    Yilmaz O, Patinote A, Nguyen T, et al. Multiple vitellogenins in zebrafish (Danio rerio): quantitative inventory of genes, transcripts and proteins, and relation to egg quality [J]. Fish Physiology and Biochemistry, 2018, 44(6): 1509-1525. doi: 10.1007/s10695-018-0524-y

    [84]

    Wagner D S, Dosch R, Mintzer K A, et al. Maternal control of development at the midblastula transition and beyond: mutants from the zebrafish II [J]. Developmental Cell, 2004, 6(6): 781-790. doi: 10.1016/j.devcel.2004.04.001

    [85]

    Yanes-Roca C, Rhody N, Nystrom M, et al. Effects of fatty acid composition and spawning season patterns on egg quality and larval survival in common snook (Centropomus undecimalis) [J]. Aquaculture, 2009, 287(3/4): 335-340.

    [86]

    Ishak S D, Tan S H, Khong H K, et al. Upregulated mRNA expression of desaturase and elongase, two enzymes involved in highly unsaturated fatty acids biosynthesis pathways during follicle maturation in zebrafish [J]. Reproductive Biology and Endocrinology, 2008(6): 56. doi: 10.1186/1477-7827-6-56

    [87]

    Huynh M D, Kitts D D, Hu C, et al. Comparison of fatty acid profiles of spawning and non-spawning Pacific herring, Clupea harengus pallasi [J]. Comparative Biochemistry and Physiology Part B,Biochemistry & Molecular Biology, 2007, 146(4): 504-511.

    [88]

    Garrido S, Rosa R, Ben-Hamadou R, et al. Effect of maternal fat reserves on the fatty acid composition of sardine (Sardina pilchardus) oocytes [J]. Comparative Biochemistry and Physiology Part B,Biochemistry & Molecular Biology, 2007, 148(4): 398-409.

    [89]

    Monroig Ó, Rotllant J, Sánchez E, et al. Expression of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis genes during zebrafish Danio rerio early embryogenesis [J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2009, 1791(11): 1093-1101. doi: 10.1016/j.bbalip.2009.07.002

    [90]

    Patiño R, Yoshizaki G, Bolamba D, et al. Role of arachidonic acid and protein kinase C during maturation-inducing hormone-dependent meiotic resumption and ovulation in ovarian follicles of Atlantic croaker [J]. Biology of Reproduction, 2003, 68(2): 516-523. doi: 10.1095/biolreprod.102.009662

    [91]

    Ann Sorbera L, Francisco Asturiano J, Carrillo M, et al. Effects of polyunsaturated fatty acids and prostaglandins on oocyte maturation in a marine teleost, the European sea bass (Dicentrarchus labrax) [J]. Biology of Reproduction, 2001, 64(1): 382-389. doi: 10.1095/biolreprod64.1.382

    [92]

    Richards J S. Sounding the alarm-does induction of prostaglandin endoperoxide synthase-2 control the mammalian ovulatory clock [J]? Endocrinology, 1997, 138(10): 4047-4048. doi: 10.1210/endo.138.10.5515

    [93]

    Lister A L, Van Der Kraak G. An investigation into the role of prostaglandins in zebrafish oocyte maturation and ovulation [J]. General and Comparative Endocrinology, 2008, 159(1): 46-57. doi: 10.1016/j.ygcen.2008.07.017

    [94]

    Takahashi T, Fujimori C, Hagiwara A, et al. Recent advances in the understanding of teleost medaka ovulation: the roles of proteases and prostaglandins [J]. Zoological Science, 2013, 30(4): 239-247. doi: 10.2108/zsj.30.239

    [95]

    Kim S O, Duffy D M. Mapping PTGERs to the ovulatory follicle: regional responses to the ovulatory PGE2signal [J]. Biology of Reproduction, 2016, 95(2): 33. doi: 10.1095/biolreprod.116.140574

    [96]

    Tang H, Liu Y, Li J, et al. Gene knockout of nuclear progesterone receptor provides insights into the regulation of ovulation by LH signaling in zebrafish [J]. Scientific Reports, 2016(6): 28545. doi: 10.1038/srep28545

    [97]

    Kang J X, Wang J, Wu L, et al. Fat-1 mice convert n-6 to n-3 fatty acids [J]. Nature, 2004, 427(6974): 504. doi: 10.1038/427504a

    [98]

    Lai L, Kang J X, Li R, et al. Generation of cloned transgenic pigs rich in omega-3 fatty acids [J]. Nature Biotechnology, 2006, 24(4): 435-436. doi: 10.1038/nbt1198

    [99]

    Wu X, Ouyang H, Duan B, et al. Production of cloned transgenic cow expressing omega-3 fatty acids [J]. Transgenic Research, 2012, 21(3): 537-543. doi: 10.1007/s11248-011-9554-2

    [100]

    Hohos N M, Cho K J, Swindle D C, et al. Fat-1 transgene is associated with improved reproductive outcomes [J]. Endocrinology, 2018, 159(12): 3981-3992. doi: 10.1210/en.2018-00723

    [101]

    Pang S C, Wang H P, Li K Y, et al. Double transgenesis of humanized fat1 and fat2 genes promotes Omega-3 polyunsaturated fatty acids synthesis in a zebrafish model [J]. Marine Biotechnology, 2014, 16(5): 580-593. doi: 10.1007/s10126-014-9577-9

    [102]

    Zhang X, Pang S, Liu C, et al. A novel dietary source of EPA and DHA: metabolic engineering of an important freshwater species-common carp by fat1-transgenesis [J]. Marine Biotechnology, 2019, 21(2): 171-185. doi: 10.1007/s10126-018-9868-7

    [103]

    Clelland E, Peng C. Endocrine/paracrine control of zebrafish ovarian development [J]. Molecular and Cellular Endocrinology, 2009, 312(1/2): 42-52.

    [104]

    Ge W. Gonadotropins and their paracrine signaling network in the zebrafish ovary [J]. Fish Physiology and Biochemistry, 2005, 31(2/3): 209-214.

    [105]

    Hanna R N, Zhu Y. Controls of meiotic signaling by membrane or nuclear progestin receptor in zebrafish follicle-enclosed oocytes [J]. Molecular and Cellular Endocrinology, 2011, 337(1/2): 80-88.

    [106]

    Patiño R, Yoshizaki G, Thomas P, et al. Gonadotropic control of ovarian follicle maturation: the two-stage concept and its mechanisms [J]. Comparative Biochemistry and Physiology Part B,Biochemistry & Molecular Biology, 2001, 129(2/3): 427-439.

    [107]

    Zhang Z, Lau S W, Zhang L, et al. Disruption of zebrafish follicle-stimulating hormone receptor (fshr) but not luteinizing hormone receptor (lhcgr) gene by TALEN leads to failed follicle activation in females followed by sexual reversal to males [J]. Endocrinology, 2015, 156(10): 3747-3762. doi: 10.1210/en.2015-1039

    [108]

    Zhang Z, Zhu B, Ge W. Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN-mediated gene disruption [J]. Molecular Endocrinology, 2015, 29(1): 76-98. doi: 10.1210/me.2014-1256

    [109]

    Takahashi A, Kanda S, Abe T, et al. Evolution of the hypothalamic-pituitary-gonadal axis regulation in vertebrates revealed by knockout medaka [J]. Endocrinology, 2016, 157(10): 3994-4002. doi: 10.1210/en.2016-1356

    [110]

    Zhao C, Zhai Y, Geng R, et al. Genetic analysis of activin/inhibin β subunits in zebrafish development and reproduction [J]. PLoS Genetics, 2022, 18(12): e1010523. doi: 10.1371/journal.pgen.1010523

    [111]

    Chen W, Zhai Y, Zhu B, et al. Loss of growth differentiation factor 9 causes an arrest of early folliculogenesis in zebrafish-a novel insight into its action mechanism [J]. PLoS Genetics, 2022, 18(12): e1010318. doi: 10.1371/journal.pgen.1010318

    [112]

    Zhao E, Basak A, Wong A O L, et al. The secretogranin II-derived peptide secretoneurin stimulates luteinizing hormone secretion from gonadotrophs [J]. Endocrinology, 2009, 150(5): 2273-2282. doi: 10.1210/en.2008-1060

    [113]

    Zhao E, Grey C L, Zhang D, et al. Secretoneurin is a potential paracrine factor from lactotrophs stimulating gonadotropin release in the goldfish pituitary [J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2010, 299(5): R1290-R1297. doi: 10.1152/ajpregu.00407.2010

    [114]

    Mitchell K, Zhang W S, Lu C, et al. Targeted mutation of secretogranin-2 disrupts sexual behavior and reproduction in zebrafish [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(23): 12772-12783. doi: 10.1073/pnas.2002004117

    [115]

    Zhang Q, Ye D, Wang H, et al. Zebrafish cyp11c1 knockout reveals the roles of 11-ketotestosterone and cortisol in sexual development and reproduction [J]. Endocrinology, 2020, 161(6): bqaa048. doi: 10.1210/endocr/bqaa048

    [116]

    Wang Y, Ye D, Zhang F, et al. Cyp11a2 is essential for oocyte development and spermatogonial stem cell differentiation in zebrafish [J]. Endocrinology, 2022, 163(2): bqab258. doi: 10.1210/endocr/bqab258

    [117]

    Hsu H J, Liang M R, Chen C T, et al. Pregnenolone stabilizes microtubules and promotes zebrafish embryonic cell movement [J]. Nature, 2006, 439(7075): 480-483. doi: 10.1038/nature04436

    [118]

    Weng J H, Liang M R, Chen C H, et al. Pregnenolone activates CLIP-170 to promote microtubule growth and cell migration [J]. Nature Chemical Biology, 2013, 9(10): 636-642. doi: 10.1038/nchembio.1321

    [119]

    Hsu H J, Hsiao P, Kuo M W, et al. Expression of zebrafish cyp11a1 as a maternal transcript and in yolk syncytial layer [J]. Gene Expression Patterns, 2002, 2(3/4): 219-222.

    [120]

    Costello D P. Ooplasmic segregation in relation to differentiation [J]. Annals of the New York Academy of Sciences, 1948, 49(Art 5): 663-683.

    [121]

    Fernández J, Valladares M, Fuentes R, et al. Reorganization of cytoplasm in the zebrafish oocyte and egg during early steps of ooplasmic segregation [J]. Developmental Dynamics, 2006, 235(3): 656-671. doi: 10.1002/dvdy.20682

    [122]

    Abrams E W, Mullins M C. Early zebrafish development: it’s in the maternal genes [J]. Current Opinion in Genetics & Development, 2009, 19(4): 396-403.

    [123]

    Escobar-Aguirre M, Elkouby Y M, Mullins M C. Localization in oogenesis of maternal regulators of embryonic development [J]. Advances in Experimental Medicine and Biology, 2017(953): 173-207.

    [124]

    Ge X, Grotjahn D, Welch E, et al. Hecate/Grip2a acts to reorganize the cytoskeleton in the symmetry-breaking event of embryonic axis induction [J]. PLoS Genetics, 2014, 10(6): e1004422. doi: 10.1371/journal.pgen.1004422

    [125]

    Howley C, Ho R K. mRNA localization patterns in zebrafish oocytes [J]. Mechanisms of Development, 2000, 92(2): 305-309. doi: 10.1016/S0925-4773(00)00247-1

    [126]

    Extavour C G, Akam M. Mechanisms of germ cell specification across the metazoans: epigenesis and preformation [J]. Development, 2003, 130(24): 5869-5884. doi: 10.1242/dev.00804

    [127]

    Hartung O, Forbes M M, Marlow F L. Zebrafish Vasa is required for germ-cell differentiation and maintenance [J]. Molecular Reproduction and Development, 2014, 81(10): 946-961. doi: 10.1002/mrd.22414

    [128]

    Draper B W, McCallum C M, Moens C B. nanos1 is required to maintain oocyte production in adult zebrafish [J]. Developmental Biology, 2007, 305(2): 589-598. doi: 10.1016/j.ydbio.2007.03.007

    [129]

    Beer R L, Draper B W. nanos3 maintains germline stem cells and expression of the conserved germline stem cell gene nanos2 in the zebrafish ovary [J]. Developmental Biology, 2013, 374(2): 308-318. doi: 10.1016/j.ydbio.2012.12.003

    [130]

    Heim A E, Hartung O, Rothhämel S, et al. Oocyte polarity requires a Bucky ball-dependent feedback amplification loop [J]. Development, 2014, 141(4): 842-854. doi: 10.1242/dev.090449

    [131]

    Marlow F L, Mullins M C. Bucky ball functions in Balbiani body assembly and animal-vegetal polarity in the oocyte and follicle cell layer in zebrafish [J]. Developmental Biology, 2008, 321(1): 40-50. doi: 10.1016/j.ydbio.2008.05.557

    [132]

    Roovers E F, Kaaij L J T, Redl S, et al. Tdrd6a regulates the aggregation of buc into functional subcellular compartments that drive germ cell specification [J]. Developmental Cell, 2018, 46(3): 285-301.e9. doi: 10.1016/j.devcel.2018.07.009

    [133]

    Kaufman O H, Lee K, Martin M, et al. rbpms2 functions in Balbiani body architecture and ovary fate [J]. PLoS Genetics, 2018, 14(7): e1007489. doi: 10.1371/journal.pgen.1007489

    [134]

    Brangwynne C P, Eckmann C R, Courson D S, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation [J]. Science, 2009, 324(5935): 1729-1732. doi: 10.1126/science.1172046

    [135]

    Berry J, Weber S C, Vaidya N, et al. RNA transcription modulates phase transition-driven nuclear body assembly [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(38): E5237-E5245.

    [136]

    Molliex A, Temirov J, Lee J, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization [J]. Cell, 2015, 163(1): 123-133. doi: 10.1016/j.cell.2015.09.015

    [137]

    Sabari B R, Dall'Agnese A, Boija A, et al. Coactivator condensation at super-enhancers links phase separation and gene control [J]. Science, 2018, 361(6400): eaar3958. doi: 10.1126/science.aar3958

    [138]

    Jamieson-Lucy A H, Kobayashi M, James Aykit Y, et al. A proteomics approach identifies novel resident zebrafish Balbiani body proteins Cirbpa and Cirbpb [J]. Developmental Biology, 2022(484): 1-11. doi: 10.1016/j.ydbio.2022.01.006

    [139]

    Boke E, Ruer M, Wühr M, et al. Amyloid-like self-assembly of a cellular compartment [J]. Cell, 2016, 166(3): 637-650. doi: 10.1016/j.cell.2016.06.051

    [140]

    Gupta T, Marlow F L, Ferriola D, et al. Microtubule actin crosslinking factor 1 regulates the balbiani body and animal-vegetal polarity of the zebrafish oocyte [J]. PLoS Genetics, 2010, 6(8): e1001073. doi: 10.1371/journal.pgen.1001073

    [141]

    Escobar-Aguirre M, Zhang H, Jamieson-Lucy A, et al. Microtubule-actin crosslinking factor 1 (Macf1) domain function in Balbiani body dissociation and nuclear positioning [J]. PLoS Genetics, 2017, 13(9): e1006983. doi: 10.1371/journal.pgen.1006983

    [142]

    Nair S, Marlow F, Abrams E, et al. The chromosomal passenger protein birc5b organizes microfilaments and germ plasm in the zebrafish embryo [J]. PLoS Genetics, 2013, 9(4): e1003448. doi: 10.1371/journal.pgen.1003448

    [143]

    Tilg H, Moschen A R, Roden M. NAFLD and diabetes mellitus [J]. Nature Reviews Gastroenterology & Hepatology, 2017, 14(1): 32-42.

    [144]

    Shoubridge E A, Wai T. Mitochondrial DNA and the mammalian oocyte [J]. Current Topics in Developmental Biology, 2007, 77: 87-111.

    [145]

    Zhang X, Wu X Q, Lu S, et al. Deficit of mitochondria-derived ATP during oxidative stress impairs mouse MII oocyte spindles [J]. Cell Research, 2006, 16(10): 841-850. doi: 10.1038/sj.cr.7310095

    [146]

    Picca A, Mankowski R T, Burman J L, et al. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing [J]. Nature Reviews Cardiology, 2018, 15(9): 543-554. doi: 10.1038/s41569-018-0059-z

    [147]

    Jiao H, Jiang D, Hu X, et al. Mitocytosis, a migrasome-mediated mitochondrial quality-control process [J]. Cell, 2021, 184(11): 2896-2910.e13. doi: 10.1016/j.cell.2021.04.027

    [148]

    Shen Q, Liu Y, Li H, et al. Effect of mitophagy in oocytes and granulosa cells on oocyte quality [J]. Biology of Reproduction, 2021, 104(2): 294-304. doi: 10.1093/biolre/ioaa194

    [149]

    Hou X, Zhu S, Zhang H, et al. Mitofusin1 in oocyte is essential for female fertility [J]. Redox Biology, 2019(21): 101110. doi: 10.1016/j.redox.2019.101110

    [150]

    Song Z H, Yu H Y, Wang P, et al. Germ cell-specific Atg7 knockout results in primary ovarian insufficiency in female mice [J]. Cell Death & Disease, 2015, 6(1): e1589.

    [151]

    van der Reest J, Nardini Cecchino G, Haigis M C, et al. Mitochondria: Their relevance during oocyte ageing [J]. Ageing Research Reviews, 2021(70): 101378. doi: 10.1016/j.arr.2021.101378

    [152]

    Zhang R, Tu Y X, Ye D, et al. A germline-specific regulator of mitochondrial fusion is required for maintenance and differentiation of germline stem and progenitor cells [J]. Advanced Science, 2022, 9(36): e2203631. doi: 10.1002/advs.202203631

    [153]

    Johnston T A, Wiegand M D, Leggett W C, et al. Hatching success of walleye embryos in relation to maternal and ova characteristics [J]. Ecology of Freshwater Fish, 2007, 16(3): 295-306. doi: 10.1111/j.1600-0633.2006.00219.x

    [154]

    Coldebella I J, Neto J R, Mallmann C A, et al. The effects of different protein levels in the diet on reproductive indexes of Rhamdia quelen females [J]. Aquaculture, 2011, 312(1/2/3/4): 137-144.

    [155]

    Chee W L, Turchini G M, Teoh C Y, et al. Dietary arachidonic acid and the impact on growth performance, health and tissues fatty acids in Malabar red snapper (Lutjanus malabaricus) fingerlings [J]. Aquaculture, 2020(519): 734757. doi: 10.1016/j.aquaculture.2019.734757

    [156]

    Araújo B C, Honji R M, Rombenso A N, et al. Influences of different arachidonic acid levels and temperature on the growth performance, fatty acid profile, liver morphology and expression of lipid genes in cobia (Rachycentron canadum) juveniles [J]. Aquaculture, 2019(511): 734245. doi: 10.1016/j.aquaculture.2019.734245

    [157] 马爱军, 陈超, 雷霁霖, 等. 饲料蛋白质含量和n-3HUFA水平对大菱鲆亲鱼产卵的影响 [J]. 海洋水产研究, 2005, 26(1): 7-12.

    Ma A J, Chen C, Lei J L, et al. The effect of protein and n-3HUFA on the reproduction of turbot (Scophthalmus maximus) [J]. Marine Fisheries Research, 2005, 26(1): 7-12.

    [158]

    Orlando T M, Fontes T V, Paulino R R, et al. Effects of the dietary linoleic acid to linolenic acid ratio for Nile tilapia (Oreochromis niloticus) breeding females [J]. Aquaculture, 2020(516): 734625. doi: 10.1016/j.aquaculture.2019.734625

    [159]

    Allan Bombardelli R, dos Reis Goes E S, de Negreiros Sousa S M, et al. Growth and reproduction of female Nile tilapia fed diets containing different levels of protein and energy [J]. Aquaculture, 2017(479): 817-823. doi: 10.1016/j.aquaculture.2017.07.031

    [160]

    Lebold K M, Jump D B, Miller G W, et al. Vitamin E deficiency decreases long-chain PUFA in zebrafish (Danio rerio) [J]. The Journal of Nutrition, 2011, 141(12): 2113-2118. doi: 10.3945/jn.111.144279

    [161]

    Lebold K M, Kirkwood J S, Taylor A W, et al. Novel liquid chromatography-mass spectrometry method shows that vitamin E deficiency depletes arachidonic and docosahexaenoic acids in zebrafish (Danio rerio) embryos [J]. Redox Biology, 2014(2): 105-113. doi: 10.1016/j.redox.2013.12.007

    [162]

    Blomhoff R, Blomhoff H K. Overview of retinoid metabolism and function [J]. Journal of Neurobiology, 2006, 66(7): 606-630. doi: 10.1002/neu.20242

    [163]

    Li M, Feng R, Ma H, et al. Retinoic acid triggers meiosis initiation via stra8-dependent pathway in Southern catfish, Silurus meridionalis [J]. General and Comparative Endocrinology, 2016(232): 191-198. doi: 10.1016/j.ygcen.2016.01.003

    [164]

    Feng R, Fang L, Cheng Y, et al. Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus) [J]. Scientific Reports, 2015(5): 10131. doi: 10.1038/srep10131

    [165]

    Yamaguchi T, Kitano T. High temperature induces cyp26b1 mRNA expression and delays meiotic initiation of germ cells by increasing cortisol levels during gonadal sex differentiation in Japanese flounder [J]. Biochemical and Biophysical Research Communications, 2012, 419(2): 287-292. doi: 10.1016/j.bbrc.2012.02.012

    [166]

    Lee K J, Dabrowski K. Long-term effects and interactions of dietary vitamins C and E on growth and reproduction of yellow perch, Perca flavescens [J]. Aquaculture, 2004, 230(1/2/3/4): 377-389.

    [167]

    Sarmento N L A F, Martins E F F, Costa D C, et al. Reproductive efficiency and egg and larvae quality of Nile tilapia fed different levels of vitamin C [J]. Aquaculture, 2018(482): 96-102. doi: 10.1016/j.aquaculture.2017.08.035

    [168] 王远洋, 赵城南. 大菱鲆亲鱼培育关键技术 [J]. 齐鲁渔业, 2010, 27(12): 22.

    Wang Y Y, Zhao C N. Key techniques for cultivating turbot parent fish [J]. Shandong Fisheries, 2010, 27(12): 22.

    [169]

    Holcombe G W, Pasha M S, Jensen K M, et al. Effects of photoperiod manipulation on brook trout reproductive development, fecundity, and circulating sex steroid concentrations [J]. North American Journal of Aquaculture, 2000, 62(1): 1-11. doi: 10.1577/1548-8454(2000)062<0001:EOPMOB>2.0.CO;2

    [170]

    Carrillo M, Bromage N, Zanuy S, et al. The effect of modifications in photoperiod on spawning time, ovarian development and egg quality in the sea bass (Dicentrarchus labrax L.) [J]. Aquaculture, 1989, 81(3/4): 351-365.

    [171]

    Lasse Taranger G, Carrillo M, Schulz R W, et al. Control of puberty in farmed fish [J]. General and Comparative Endocrinology, 2010, 165(3): 483-515. doi: 10.1016/j.ygcen.2009.05.004

    [172]

    Chattoraj A, Bhattacharyya S, Basu D, et al. Melatonin accelerates maturation inducing hormone (MIH): induced oocyte maturation in carps [J]. General and Comparative Endocrinology, 2005, 140(3): 145-155. doi: 10.1016/j.ygcen.2004.10.013

    [173]

    Sébert M E, Legros C, Weltzien F A, et al. Melatonin activates brain dopaminergic systems in the eel with an inhibitory impact on reproductive function [J]. Journal of Neuroendocrinology, 2008, 20(7): 917-929. doi: 10.1111/j.1365-2826.2008.01744.x

    [174]

    Maitra S K, Chattoraj A, Mukherjee S, et al. Melatonin: a potent candidate in the regulation of fish oocyte growth and maturation [J]. General and Comparative Endocrinology, 2013(181): 215-222. doi: 10.1016/j.ygcen.2012.09.015

    [175]

    Rocha R M P, Lima L F, Alves A M C V, et al. Interaction between melatonin and follicle-stimulating hormone promotes in vitro development of caprine preantral follicles [J]. Domestic Animal Endocrinology, 2013, 44(1): 1-9. doi: 10.1016/j.domaniend.2012.07.001

    [176]

    Ceinos R M, Chivite M, López-Patiño M A, et al. Differential circadian and light-driven rhythmicity of clock gene expression and behaviour in the turbot, Scophthalmus maximus [J]. PLoS One, 2019, 14(7): e0219153. doi: 10.1371/journal.pone.0219153

    [177]

    Ahmad Khan Z, Yumnamcha T, Rajiv C, et al. Melatonin biosynthesizing enzyme genes and clock genes in ovary and whole brain of zebrafish (Danio rerio): differential expression and a possible interplay [J]. General and Comparative Endocrinology, 2016(233): 16-31. doi: 10.1016/j.ygcen.2016.05.014

    [178]

    Pörtner H O, Farrell A P. Ecology. Physiology and climate change [J]. Science, 2008, 322(5902): 690-692. doi: 10.1126/science.1163156

    [179]

    Ficke A D, Myrick C A, Hansen L J. Potential impacts of global climate change on freshwater fisheries [J]. Reviews in Fish Biology and Fisheries, 2007, 17(4): 581-613. doi: 10.1007/s11160-007-9059-5

    [180]

    Elisio M, Chalde T, Miranda L A. Effects of short periods of warm water fluctuations on reproductive endocrine axis of the pejerrey (Odontesthes bonariensis) spawning [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2012, 163(1): 47-55.

    [181]

    Hani Y M I, Turies C, Palluel O, et al. Effects of a chronic exposure to different water temperatures and/or to an environmental cadmium concentration on the reproduction of the threespine stickleback (Gasterosteus aculeatus) [J]. Ecotoxicology and Environmental Safety, 2019(174): 48-57. doi: 10.1016/j.ecoenv.2019.02.032

    [182] 李庆华, 孙建, 李仰真, 等. 营养强化和控光控温对大菱鲆亲鱼性腺发育及卵子质量的影响 [J]. 南方农业学报, 2013, 44(6): 1030-1035.

    Li Q H, Sun J, Li Y Z, et al. Effects of nutrition enhancement, light and temperature control on gonad development and ovum quality in Scophthalmus maximus spawner [J]. Journal of Southern Agriculture, 2013, 44(6): 1030-1035.

    [183]

    Cardoso P G, Rodrigues D, Madureira T V, et al. Warming modulates the effects of the endocrine disruptor progestin levonorgestrel on the zebrafish fitness, ovary maturation kinetics and reproduction success [J]. Environmental Pollution, 2017(229): 300-311. doi: 10.1016/j.envpol.2017.05.090

    [184]

    Pankhurst N W, Porter M R. Cold and dark or warm and light: variations on the theme of environmental control of reproduction [J]. Fish Physiology and Biochemistry, 2003, 28(1): 385-389.

    [185]

    Lahiri K, Froehlich N, Heyd A, et al. Developmental stage-specific regulation of the circadian clock by temperature in zebrafish [J]. BioMed Research International, 2014(2014): 930308.

    [186]

    Lahiri K, Vallone D, Gondi S B, et al. Temperature regulates transcription in the zebrafish circadian clock [J]. PLoS Biology, 2005, 3(11): e351. doi: 10.1371/journal.pbio.0030351

    [187]

    Tilton S C, Foran C M, Benson W H. Effects of cadmium on the reproductive axis of Japanese medaka (Oryzias latipes) [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2003, 136(3): 265-276.

    [188]

    Wu S M, Tsai P J, Chou M Y, et al. Effects of maternal cadmium exposure on female reproductive functions, gamete quality, and offspring development in zebrafish (Danio rerio) [J]. Archives of Environmental Contamination and Toxicology, 2013, 65(3): 521-536. doi: 10.1007/s00244-013-9909-1

    [189]

    Zhang Q F, Li Y W, Liu Z H, et al. Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis [J]. Aquatic Toxicology, 2016(177): 417-424. doi: 10.1016/j.aquatox.2016.06.018

    [190]

    Cao J, Wang G, Wang T, et al. Copper caused reproductive endocrine disruption in zebrafish (Danio rerio) [J]. Aquatic Toxicology, 2019(211): 124-136. doi: 10.1016/j.aquatox.2019.04.003

    [191]

    Ma Y, Liu H, Wu J, et al. The adverse health effects of bisphenol A and related toxicity mechanisms [J]. Environmental Research, 2019(176): 108575. doi: 10.1016/j.envres.2019.108575

    [192]

    Cheng Y, Zhang J, Wu T, et al. Reproductive toxicity of acute Cd exposure in mouse: resulting in oocyte defects and decreased female fertility [J]. Toxicology and Applied Pharmacology, 2019(379): 114684. doi: 10.1016/j.taap.2019.114684

    [193]

    Gunderson A R, Armstrong E J, Stillman J H. Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment [J]. Annual Review of Marine Science, 2016(8): 357-378. doi: 10.1146/annurev-marine-122414-033953

    [194]

    Aegerter S, Jalabert B. Effects of post-ovulatory oocyte ageing and temperature on egg quality and on the occurrence of triploid fry in rainbow trout, Oncorhynchus mykiss [J]. Aquaculture, 2004, 231(1/2/3/4): 59-71.

    [195]

    Mohagheghi Samarin A, Policar T, Lahnsteiner F. Fish oocyte ageing and its effect on egg quality [J]. Reviews in Fisheries Science & Aquaculture, 2015, 23(3): 302-314.

    [196]

    Linhart O, Billard R. Survival of ovulated oocytes of the European catfish (Silurus glanis) after in vivo and in vitro storage or exposure to saline solutions and urine [J]. Aquatic Living Resources, 1995, 8(4): 317-322. doi: 10.1051/alr:1995033

    [197]

    Rizzo E, Godinho H P, Sato Y. Short-term storage of oocytes from the neotropical teleost fish Prochilodus marggravii [J]. Theriogenology, 2003, 60(6): 1059-1070. doi: 10.1016/S0093-691X(03)00108-0

    [198]

    Legendre M, Slembrouck J, Subagja J, et al. Ovulation rate, latency period and ova viability after GnRH-or hCG-induced breeding in the Asian catfish Pangasius hypophthalmus (Siluriformes, Pangasiidae) [J]. Aquatic Living Resources, 2000, 13(3): 145-151. doi: 10.1016/S0990-7440(00)00148-0

    [199]

    Legendre M, Otémé Z. Effect of varying latency period on the quantity and quality of ova after hCG-induced ovulation in the African catfish, Heterobranchus longifilis (Teleostei, Clariidae) [J]. Aquatic Living Resources, 1995, 8(4): 309-316. doi: 10.1051/alr:1995032

    [200]

    Rime H, Guitton N, Pineau C, et al. Post-ovulatory ageing and egg quality: a proteomic analysis of rainbow trout coelomic fluid [J]. Reproductive Biology and Endocrinology, 2004(2): 26. doi: 10.1186/1477-7827-2-26

    [201]

    Chamani I J, Keefe D L. Epigenetics and female reproductive aging [J]. Frontiers in Endocrinology, 2019(10): 473. doi: 10.3389/fendo.2019.00473

    [202]

    Gaudemar B, Beall E. Effects of overripening on spawning behaviour and reproductive success of Atlantic salmon females spawning in a controlled flow channel [J]. Journal of Fish Biology, 1998, 53(2): 434-446. doi: 10.1111/j.1095-8649.1998.tb00991.x

    [203]

    Linhart O, Shelton W L, Tučková V, et al. Effects of temperature on in vitro short-term storage of sterlet sturgeon (Acipenser ruthenus) Ova [J]. Zuchthygiene, 2016, 51(1): 165-170. doi: 10.1111/rda.12661

    [204]

    Migaud H, Bell G, Cabrita E, et al. Gamete quality and broodstock management in temperate fish [J]. Reviews in Aquaculture, 2013(5): S194-S223. doi: 10.1111/raq.12025

    [205]

    Sun Y, Zhang B, Luo L, et al. Systematic genome editing of the genes on zebrafish Chromosome 1 by CRISPR/Cas9 [J]. Genome Research, 2019, 30(1): 118-126.

图(2)
计量
  • 文章访问数:  2507
  • HTML全文浏览量:  419
  • PDF下载量:  223
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2023-01-16
  • 网络出版日期:  2023-02-09
  • 发布日期:  2023-06-14

目录

    /

    返回文章
    返回