EFFECT OF ISOLEUCINE ON mTOR SIGNALING PATHWAY AND NITROGEN METABOLISM OF CHINESE PERCH (SINIPERCA CHUATSI)
-
摘要: 通过脑室注射异亮氨酸, 探究短期内异亮氨酸对鳜(Siniperca chuatsi)雷帕霉素靶蛋白(Mammalian target of rapamycin, mTOR)信号通路及氮代谢影响。结果显示: 脑室注射异亮氨酸后, (1)促进鳜氨氮排泄; (2)谷氨酸脱氢酶基因(Glutamate dehydrogenase, GDH)、谷草转氨酶基因(Glutamic oxaloacetic transaminase, GOT)和腺苷酸脱氨酶基因(Adenosine monophosphate deaminase, AMPD)氮代谢基因相对表达量显著性上调(P<0.05); (3)鳜血糖含量在0.5h显著性降低(P<0.05); (4)激活了鳜肝脏mTOR信号通路, 促使下游分子核糖体蛋白S6磷酸化(P<0.05)。结果表明: 异亮氨酸能够激活鳜肝脏mTOR信号通路, 介导氨基酸代谢, 提高鳜氮代谢基因的转录水平, 促使氨氮排泄增多。Abstract: In the present study, the effects of isoleucine on the mammalian target of rapamycin signaling (mTOR) pathway and nitrogen metabolism were investigated through Intraventricular (ICV) administration in Chinese perch (Siniperca chuatsi). In one hand, the ammonia excretion significantly increased, and mRNA levels of nitrogen metabolism genes involving glutamate dehydrogenase (GDH), glutamic oxaloacetic transaminase (GOT), and adenosine monophosphate deaminase (AMPD) remarkably increased after ICV injection of isoleucine as well (P<0.05). On the other hand, the results showed that blood glucose levels markedly decreased at 0.5h post-injection. The expression of liver ribosomal protein S6 was also notably enhanced, demonstrating that mTOR signaling pathway was activated. The results also indicated that isoleucine could activate the mTOR signaling pathway, mediate amino acid metabolism, and enhance ammonia-N excretion via nitrogen metabolism genes in Chinese perch.
-
Keywords:
- Siniperca chuatsi /
- Isoleucine /
- Nitrogen metabolism /
- mTOR
-
-
图 1 脑室注射异亮氨酸对鳜氨氮排泄的影响
值用平均数±标准误(n=6)来表示, 标有星号(*)表示注射异亮氨酸组与注射磷酸盐缓冲盐水的对照组相比有显著性差异(P<0.05); 下同
Figure 1. Effect of ICV injection of isoleucine on ammonia-N excretion of Chinese perch
Data are presented by mean±standard error of mean (SEM) (n=6). Significant level is marked with an asterisk (P<0.05), compared with the values obtained from phosphate buffered saline (PBS) injection into the muscle tissues of Chinese perch; the same applies below
图 4 脑室注射异亮氨酸对鳜AMPD、GDH和GOT基因表达的影响
不同字母表示注射磷酸盐缓冲盐水组和异亮氨酸组各组之间分别在各个时刻有显著性差异(P<0.05)
Figure 4. The expression levels of AMPD, GDH and GOT of Chinese perch after ICV injection of isoleucine
Significant level is marked with different letters (P<0.05), compared with the values obtained from injections of isoleucine and PBS into the muscle tissues of Chinese perch, respectively
表 1 荧光定量PCR所用引物序列
Table 1 Primers used for real-time polymerase chain reaction (Real-Time PCR)
基因
Gene引物序列
Primer sequence (5′—3′)AMPD CATTTTCCTTCCCGTGTT
TCTGTCTGCGGAGTTGGTGDH GACGACGACCCCAACTTCT
GACCCGCTTCCTCTTCTGCGOT GGCTTTGCGAGTGGAGATA
GTGGGTTGGAGTAAATGGGRPL13A TATCCCCCCACCCTATGACA
ACGCCCAAGGAGAGCGAACT -
[1] KIM K I. Re-evaluation of protein and amino acid requirements of rainbow trout ( Oncorhynchus mykiss) [J]. Aquaculture, 1997, 151(1-4): 3—7
[2] Chakraborty S, Chakraborty S. Effect of dietary protein level on excretion of ammonia in Indian major carp, Labeo rohita, fingerlings [J]. Aquaculture Nutrition, 1998, 4(1): 47—52
[3] Secor S M, Faulkner A C. Effects of meal size, meal type, body temperature, and body size on the specific dynamic action of the marine toad, Bufo marinus [J]. Physiologi cal and Biochemical Zoology, 2002, 75(6): 557—571
[4] Jobling M. Some effects of temperature, feeding and body weight on nitrogenous excretion in young plaice Pleuro nectes platessa L [J]. Journal of Fish Biology, 1981, 18(1): 87—96
[5] Wang T, Busk M, Overgaard J. The respiratory consequences of feeding in amphibians and reptiles [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2001, 128(3): 533—547
[6] Cui Y, Wootton R. Bioenergetics of growth of a cyprinid, Phoxinus phoxinus: the effect of ration, temperature and body size on food consumption, faecal production and nitrogenous excretion [J]. Journal of Fish Biology, 1988, 33(3): 431—443
[7] Paulson L J. Models of ammonia excretion for brook trout ( Salvelinus fontinalis) and rainbow trout ( Salmo gairdneri) [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37(9): 1421—1425
[8] Lauff R F, Wood C M. Respiratory gas exchange, nitrogenous waste excretion, and fuel usage during starvation in juvenile rainbow trout, Oncorhynchus mykiss [J]. Journal of Comparative Physiology B, 1996, 165(7): 542—551
[9] Carter C G, Houlihan D F, Owen S F. Protein synthesis, nitrogen excretion and long-term growth of juvenile Pleuronectes flesus [J]. Journal of Fish Biology, 1998, 53(2): 272—284
[10] Trevino J G, George S A, Hughes S J, et al. An in vivo and in vitro assessment of TOR signaling cascade in rainbow trout ( Oncorhynchus mykiss) [J]. American Journal of Physiology, 2008, 295(2): 329—335
[11] Lansard M, Panserat S, Plagnesjuan E, et al. Integration of insulin and amino acid signals that regulate hepatic metabolism-related gene expression in rainbow trout: role of TOR [J]. Amino Acids, 2010, 39(3): 801—810
[12] Santiago C B, Lovell R T. Amino acid requirements for growth of Nile tilapia [J]. The Journal of Nutrition, 1988, 118(12): 1540—1546
[13] Zhao J, Liu Y, Jiang J, et al. Effects of dietary isoleucine on growth, the digestion and absorption capacity and gene expression in hepatopancreas and intestine of juvenile Jian carp ( Cyprinus carpio var. Jian) [J]. Aquaculture, 2012, 368: 117—128
[14] Rodehutscord M, Becker A, Pack M, et al. Response of rainbow trout ( Oncorhynchus mykiss) to supplements of individual essential amino acids in a semipurified diet, including an estimate of the maintenance requirement for essential amino acids [J]. The Journal of Nutrition, 1997, 127(6): 1166—1175
[15] Shang X D, Luo L, Wen H, et al. Study on isoleucine requirement for juvenile grass carp, Ctenopharyngodon idellus [J]. Journal of Fisheries of China, 2009, 33(5): 813—822 [尚晓迪, 罗莉, 文华, 等. 草鱼幼鱼对异亮氨酸的需要量. 水产学报, 2009, 33(5): 813—822] Shang X D, Luo L, Wen H, et al. Study on isoleucine requirement for juvenile grass carp, Ctenopharyngodon idellus [J]. Journal of Fisheries of China, 2009, 33(5): 813—822 [尚晓迪, 罗莉, 文华, 等. 草鱼幼鱼对异亮氨酸的需要量. 水产学报, 2009, 33(5): 813—822]
[16] Heitman J, Movva N R, Hall M N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast [J]. Science, 1991, 253(5022): 905—909
[17] Avruch J, Hara K, Lin Y, et al. Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase [J]. Oncogene, 2006, 25(48): 6361—6372
[18] Kim E. Mechanisms of amino acid sensing in mTOR signaling pathway [J]. Nutrition Research and Practice, 2009, 3(1): 64—71
[19] Moshel Y, Rhoads R E, Barash I. Role of amino acids in translational mechanisms governing milk protein synthe sis in murine and ruminant mammary epithelial cells [J]. Journal of Cellular Biochemistry, 2006, 98(3): 685—700
[20] Fulks R M, Li J B, Goldberg A L. Effects of insulin, glu cose, and amino acids on protein turnover in rat diaphragm [J]. Journal of Biological Chemistry, 1975, 250(1): 290—298
[21] Moon H Y, Gatlin D M. Total sulfur amino acid requirement of juvenile red drum, Sciaenops ocellatus [J]. Aquaculture, 1991, 95(1-2): 97—106
[22] Ahmed I, Khan M A. Dietary branched-chain amino acid valine, isoleucine and leucine requirements of fingerling Indian major carp, Cirrhinus mrigala (Hamilton) [J]. Bri tish Journal of Nutrition, 2006, 96(3): 450—460
[23] Khan M A, Abidi S F. Dietary isoleucine requirement of fingerling Indian major carp, Labeo rohita (Hamilton) [J]. Aquaculture Nutrition, 2007, 13(6): 424—430
[24] Liang X F. Study on mandarin fish and its culture home and abroad [J]. Fisheries science & Technology Information, 1996, (1): 13—17 [梁旭方. 国内外鳜类研究及养殖概况. 水产科技情报, 1996, (1): 13—17] Liang X F. Study on mandarin fish and its culture home and abroad [J]. Fisheries science & Technology Information, 1996, (1): 13—17 [梁旭方. 国内外鳜类研究及养殖概况. 水产科技情报, 1996, (1): 13—17]
[25] Chiang I K. On the biology of mandarin fish, Siniperca chuatsi of Liang-Tze Lake [J]. Acta Hydrobiologica Si nica, 1959, (3): 375—385 [蒋一珪. 梁子湖鳜鱼的生物学. 水生生物学集刊, 1959, (3): 375—385] Chiang I K. On the biology of mandarin fish, Siniperca chuatsi of Liang-Tze Lake [J]. Acta Hydrobiologica Si nica, 1959, (3): 375—385 [蒋一珪. 梁子湖鳜鱼的生物学. 水生生物学集刊, 1959, (3): 375—385]
[26] Izumi T, Kawamura K H, Bungo T. Central administration of leucine, but not isoleucine and valine, stimulates feeding behavior in neonatal chicks [J]. Neuroscience Letters, 2004, 354(2): 166—168
[27] Sánchez M S, Barontini M, Armando I, et al. Correlation of increased grooming behavior and motor activity with alterations in nigrostriatal and mesolimbic catechola mines after α-Melanotropin and neuropeptide glutamine-isoleucine injection in the rat ventral tegmental area [J]. Cellular and Molecular Neurobiology, 2001, 21(5): 523—533
[28] De Pedro N, Pinillos M L, Valenciano A I, et al. Inhibi tory effect of serotonin on feeding behavior in goldfish: involvement of CRF [J]. Peptides, 1998, 19(3): 505—511
[29] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔ CT method [J]. Methods, 2001, 25(4): 402—408
[30] Eggers D M. Some recent methods for estimating food-consumption by fish-reply [J]. Journal of the Fisheries Research Board of Canada, 1979, 36(8): 1018—1019
[31] 白小丽. 草鱼、鳜鱼氨氮排泄研究及微生态制剂对鳜鱼养殖池塘的影响. 硕士学位论文, 华中农业大学, 武汉. 2013 Bai X L. The Studies on ammonia excretions by grass carp (Ctenopharyngodon idellus) and mandarin fish (Siniperca chuatsi) and the effect of probiotics on the water quality of mandarin fish pond [D]. Thesis for Master of Science. Huazhong Agricultural University, Wuhan. 2013
白小丽. 草鱼、鳜鱼氨氮排泄研究及微生态制剂对鳜鱼养殖池塘的影响. 硕士学位论文, 华中农业大学, 武汉. 2013[32] 涂永锋. Ile对鲫鱼生长的影响和鲫鱼氨基酸转运规律的研究. 硕士学位论文, 西南农业大学, 重庆. 2004 Tu Y F. Study on the effect of Ile on the growth and the rule of amino acid transport in Carassius auratus [D]. Thesis for Master of Science. Southwest University, Chongqing. 2004
涂永锋. Ile对鲫鱼生长的影响和鲫鱼氨基酸转运规律的研究. 硕士学位论文, 西南农业大学, 重庆. 2004[33] Polak P, Hall M N. mTOR and the control of whole body metabolism [J]. Current Opinion in Cell Biology, 2009, 21(2): 209—218
[34] Wullschleger S, Loewith R, Hall M N. TOR signaling in growth and metabolism [J]. Cell, 2006, 124(3): 471—484
[35] Apelo S A, Singer L M, Lin X Y, et al. Isoleucine, leucine, methionine, and threonine effects on mammalian target of rapamycin signaling in mammary tissue [J]. Journal of Dairy Science, 2014, 97(2): 1047—1056
[36] Appuhamy J R N, Knoebel N A, Nayananjalie W D, et al. Isoleucine and leucine independently regulate mTOR signaling and protein synthesis in MAC-T cells and bovine mammary tissue slices [J]. The Journal of Nutrition, 2012, 142(3): 484—491
[37] Willett C S, Burton R S. Characterization of the gluta mate dehydrogenase gene and its regulation in a euryhaline copepod [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2003, 135(4): 639—646
[38] Kaletha K, Thebault M, Raffin J P. Comparative studies on heart and skeletal muscle AMP-deaminase from rainbow trout ( Salmo gairdneri) [J]. Comparative Biochemi stry and Physiology Part B: Comparative Biochemistry, 1991, 99(4): 751—754
[39] Morisaki T, Sabina R L, Holmes E W. Adenylate deami nase. A multigene family in humans and rats [J]. Journal of Biological Chemistry, 1990, 265(20): 11482—11486
[40] Ramaswamy M, Thangavel P, Selvam N P. Glutamic oxa loacetic transaminase(GOT) and glutamic pyruvic transaminase (GPT) enzyme activities in different tissues of Sarotherodon mossambicus (Peters) exposed to a carbamate pesticide, carbaryl [J]. Pesticide Science, 1999, 55(12): 1217—1221
[41] 王镜岩, 朱胜庚, 徐长法. 生物化学: 第3版. 北京: 高等教育出版社. 2002, 303—314 Wang J Y, Zhu S G, Xu C F. Biological Chemistry [M]. Beijing: Higher Education Press. 2002, 303—314
王镜岩, 朱胜庚, 徐长法. 生物化学: 第3版. 北京: 高等教育出版社. 2002, 303—314[42] Oldendorf W H. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection [J]. American Journal of Physiology-Legacy Content, 1971, 221(6): 1629—1639
[43] Smith Q R, Momma S, Aoyagi M, et al. Kinetics of neutral amino acid transport across the blood-brain barrier [J]. Journal of Neurochemistry, 1987, 49(5): 1651—1658
[44] Zhou X. Glutamine metabolism and function in skeletal muscle [D]. University of British Columbia, Canada. 1961
[45] Sener A, Malaisse W J. L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase [J]. Nature, 1980, 288(5787): 187
[46] Xu G, Kwon G, Cruz W S, et al. Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic β-cells [J]. Diabetes, 2001, 50(2): 353—360
[47] Wu G Y. Amino acids: metabolism, functions, and nutrition [J]. Amino Acids, 2009, 37(1): 1—17
[48] Peng T, Golub T R, Sabatini D M. The immunosuppres sant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation [J]. Molecular and Cellular Biology, 2002, 22(15): 5575—5584
[49] DoiM, Yamaoka I, Nakayama M, et al. Hypoglycemic effect of isoleucine involves increased muscle glucose uptake and whole-body glucose oxidation and decreased hepatic gluconeogenesis [J]. American Journal of Physiology Endocrinology and Metabolism, 2007, 292(6): E1683—E1693
[50] DoiM, Yamaoka I, Fukunaga T, et al. Isoleucine, a potent plasma glucose-lowering amino acid, stimulates glu cose uptake in C2C12 myotubes [J]. Biochemical and Biophysical Research Communications, 2003, 312(4): 1111—1117
[51] De Virgilio C, Loewith R. The TOR signalling network from yeast to man [J]. International Journal of Bioche mistry & Cell Biology, 2006, 38(9): 1476—1481