Citation: | Zeng Xiao-peng, Xia Jian-Rong. EFFECTS OF LIGHT INTENSITIES ON PHOTOSYNTHESIS, CARBONIC ANHYDRASE AND RUBISCO ACTIVITY IN TWO DIATOMS[J]. ACTA HYDROBIOLOGICA SINICA, 2015, 39(2): 368-374. DOI: 10.7541/2015.48 |
[1] |
Granum E, Raven J A, Leegood R C. How do marine diatoms fix 10 billion tonnes of inorganic carbon per year [J]? Canadian Journal Botany, 2005, 83: 898908
|
[2] |
Badger M R, Andrews T J, Whitney S M, et al. The diversity and co-evolution of Rubisco, plastids, pyrenoids and chloroplast-based CCMs in the algae [J]. Canadian Journal of Botany, 1998, 76: 10521071
|
[3] |
Whitney S P, Baldet P, Hudson G S, et al. Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts [J]. Plant Journal, 2001, 26: 535547
|
[4] |
Riebesell U, Wolfgladrow D A, Smetacek V. Carbon dioxide limitation of marine-phytoplankton growth rates [J]. Nature, 1993, 361: 249251
|
[5] |
Reinfelder J R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton [J]. Annual Review Marine Science, 2011, 3: 291315
|
[6] |
Giordano M, Beardall J, Raven J A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution [J]. Annual Review of Plant Biology, 2005, 56: 99131
|
[7] |
Harada H, Nakatsuma D, Ishida M, et al. Regulation of the expression of intracellular -carbonic anhydrase in response to CO2 and light in the marine diatom phaeodactylum tricornutum [J]. Plant Physiology, 2005, 139: 10411050
|
[8] |
Reinfelder J R, kraepiel A M L, Morel F M M. Unicellular C4 photosynthesis in a marine diatom [J]. Nature, 2000, 407: 996999
|
[9] |
Maya H D, Nitsan G, Daniela E, et al. The role C4 metabolism in the marine diatom Phaeodactylum tricornutum [J]. New Phytologist, 2013, 197: 177185
|
[10] |
Guillard R R L. Culture Methods and Growth Measurements [M]. STEIN J R. Handbook of Phycological Methods. London: Cambridge University Press. 1973, 289312
|
[11] |
Jeffrey S W, Humphrey G F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton [J]. Biochemie und Physiologie Pflanzen, 1975, 167: 191194
|
[12] |
Yu J L, Xia J R, Zou Y D. Response of carbonic anhydrase activity and photosynthesis to high salinity stress in Nitzschia closterium f. minutissima [J]. Journal of Fisheries of China, 2011, 35(4): 515523 [余锦兰, 夏建荣, 邹永东. 小新月菱形藻碳酸酐酶活性和光合作用对高盐度胁迫的响应. 水产学报, 2011, 35(4): 515523]
|
[13] |
Willbur K M, Anderson N G. Electronic and colorimetric determination of carbonic anhydrase [J]. Journal of Biological Chemistry, 1948, 176: 147154
|
[14] |
Li X M, Xia J R. Effects of nitrogen or phosphorus limitation on photosynthetic inorganic carbon utilization and carbonic anhydrase activity in phaeodactylum tricornutum [J]. Acta Hydrobiologica Sinica, 2013, 37(3): 405412 [李小梅, 夏建荣. 氮磷营养限制影响三角褐指藻光合无机碳利用和碳酸酐酶活性. 水生生物学报, 2013, 37(3): 405412]
|
[15] |
Li H S, Sun Q, Zhao S J, et al. Principles and Techniques of Plant Physiology Biochemical Experiment [M]. Higher Education Press. 2000, 138141 [李合生, 孙群, 赵世杰, 等. 植物生理生化实验原理和技术. 高等教育出版社. 2000, 138141]
|
[16] |
Henley W J. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes [J]. Journal of Phycology, 1993, 29: 729739
|
[17] |
Du X F, Zou N, Sun D H, et al. Effect of light intensity on growth rate and accumulation of organics of Nannochloropsis oculata Droop [J]. Bioprocess, 2011, 1: 1821 [杜晓凤, 邹宁, 孙东红, 等. 光照强度对微绿球藻生长及有机质积累的影响. 生物过程, 2011, 1: 1821]
|
[18] |
Yu P, Zhang Q Q, Wang X L, et al. Effects of temperature and irradiance on growth of two strains of marine diatoms [J]. Marine Environmental Science, 2006, 25(1): 3840 [于萍, 张前前, 王修林, 等. 温度和光照对两株赤潮硅藻生长的影响. 海洋环境科学, 2006, 25(1): 3840]
|
[19] |
Zou D H, Gao K S. Photosynthetic acclimation to different light levels in the brown marine macroalga, Hizikia fusiformis (Sargassaceae, Phaeophyta) [J]. Journal of Applied Phycology, 2010, 22: 395404
|
[20] |
Kate M, Joanne L M, Rachel M L, et al. Chloroplast acclimation in leaves of Guzmania monostachia in response to high light [J]. Plant Physiology, 1999, 121: 8995
|
[21] |
Song L R, Lei L M, He Z R, et al. Growth and toxin analysis in two toxic cyanobacteria Microcystis aeruginosa and Microcystis viridis isolated from Dianchi Lake [J]. Acta Hydrobiologica Sinica, 1999, 23(5): 402408 [宋立荣, 雷腊梅, 何振荣, 等. 滇池水华蓝藻铜绣微囊藻和绿色微囊藻的生长生理特性和毒素分析.水生生物学报, 1999, 23(5): 402408]
|
[22] |
Han B P, Han Z G, Fu X. Algal Photosynthesis: Mechanisms and Models [M]. Beijing: Science Press. 2003, 72 [韩博平, 韩志国, 付翔. 藻类光合作用机理与模型. 北京: 科学出版社. 2003, 72]
|
[23] |
Dionisio M L, Fukuzawa H, Miyachi S. Light-induced carbonic anhydrase expression in Chlamydomonas reinhardtii [J]. Plant Physiology, 1990, 94: 11031110
|
[24] |
Falkowski P G, Katz M E, Knoll A H, et al. The evolution of modern eukaryotic phytoplankton [J]. Science, 2004, 305: 354360
|
[25] |
Wang S S, Liu Y D, Zou Y D, et al. Modulation and adaptation of carbonic anhydrase activity in Microcystis spp under different environmental factors [J]. Acta Ecologica Sinica, 2006, 26(8): 24432448 [王山杉, 刘永定, 邹永东, 等. 微囊藻碳酸酐酶活性在不同环境因素下的调节与适应. 生态学报, 2006, 26(8): 24432448]
|
[26] |
Willian J C, Willian L O. A novel role for light in the activation of ribulose bisphosphate carboxylase/oxygenase [J]. Plant Physiology, 1990, 92: 110115
|
[27] |
Streusand V J, Portis A R Jr. Rubisco activase mediates ATP-dependent activation of ribulose bisphosphate carboxylase [J]. Plant Physiology, 1987, 85: 152154
|
[28] |
Machler F, Nosberger J. Regulation of ribulose bisphosphate carboxylase activity in intact wheat leaves by light, CO2, and temperature [J]. Journal of Experimental Botany, 1980, 31: 14851491
|
[29] |
Rowan F S, Jeffrey R S. Rugulation of ribulose-1, 5-bisphosphate carboxylase/oxygenase activity in response to reduced light intensity in C4 plants [J]. Plant Physiology, 1993, 102: 2128
|