Citation: | CHEN Xiao-Ming, LI Jia-Kai, WANG Zhi-Yong, CAI Ming-Yi, HAN Fang, LIU Xian-De. GENOME-WIDE ASSOCIATION STUDY OF THERMAL TOLERANCE IN LARGE YELLOW CROAKER LARIMICHTHYS CROCEA BASED ON SLAF-SEQ TECHNOLOGY[J]. ACTA HYDROBIOLOGICA SINICA, 2017, 41(4): 735-740. DOI: 10.7541/2017.91 |
[1] |
薛彬, 何依娜, 郭远明, 等. 大黄鱼生态养殖系统研究. 现代农业科技, 2014, (16): 244—249 http://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201416153.htm
Xue B, He Y N, Guo Y M, et al. Research of ecological culture system of Larimichthys crocea [J]. Modern Agricultural Sciences and Technology, 2014, (16): 244—249
薛彬, 何依娜, 郭远明, 等. 大黄鱼生态养殖系统研究. 现代农业科技, 2014, (16): 244—249 http://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201416153.htm |
[2] |
李佳凯, 王志勇, 刘贤德, 等. 高温对大黄鱼(Larimichthys crocea)幼鱼血清生化指标的影响. 海洋通报, 2015, 34(4): 457—462 doi: 10.11840/j.issn.1001-6392.2015.04.014
Li J K, Wang Z Y, Liu X D, et al. Effects of high tempera-ture on serum biochemical indices of large yellow croa-ker Larimichthys crocea [J]. Marine Science Bulletin, 2015, 34(4): 457—462
李佳凯, 王志勇, 刘贤德, 等. 高温对大黄鱼(Larimichthys crocea)幼鱼血清生化指标的影响. 海洋通报, 2015, 34(4): 457—462 doi: 10.11840/j.issn.1001-6392.2015.04.014 |
[3] |
Hulata G. Genetic manipulations in aquaculture: a review of stock improvement by classical and modern technologies [J]. Genetica, 2001, 111(1—3): 155—173
|
[4] |
马爱军, 黄智慧, 王新安, 等. 大菱鲆(Scophthalmus maxi-)耐高温品系选育及耐温性能评估. 海洋与湖沼, 2012, 43(4): 797—804 doi: 10.11693/hyhz201204017017
Ma A J, Huang Z H, Wang X A, et al. The selective breeding of thermal tolerance family and appraisal of performance in turbot Scophthalmus maximus [J]. Oceanologia Et Limnologia Sinica, 2012, 43(4): 797—804
马爱军, 黄智慧, 王新安, 等. 大菱鲆(Scophthalmus maxi-)耐高温品系选育及耐温性能评估. 海洋与湖沼, 2012, 43(4): 797—804 doi: 10.11693/hyhz201204017017 |
[5] |
Xu K, Duan W, Xiao J, et al. Development and application of biological technologies in fish genetic breeding [J]. Science China Life Sciences, 2015, 58(2): 187—201 doi: 10.1007/s11427-015-4798-3
|
[6] |
Yue G H. Recent advances of genome mapping and marker-assisted selection in aquaculture [J]. Fish and Fisheries, 2014, 15(3): 376—396 doi: 10.1111/faf.2014.15.issue-3
|
[7] |
Vignal A, Milan D, SanCristobal M, et al. A review on SNP and other types of molecular markers and their use in animal genetics [J]. Genetics Selection Evolution, 2002, 34(3): 275—306 doi: 10.1186/1297-9686-34-3-275
|
[8] |
Liu Z J, Cordes J F. DNA marker technologies and their applications in aquaculture genetics [J]. Aquaculture, 2004, 238(1): 1—37
|
[9] |
全迎春, 马冬梅, 白俊杰, 等. 大口黑鲈转录组SNPs筛选及其与生长的关联分析. 水生生物学报, 2016, 40(6): 1128-1134 doi: 10.7541/2016.146
Quan Y C, Ma D M, Bai J J, et al. SNPs identification in RNA-seq data of largemouth bass (Micropterus salmoides) fed on formulated feed and association analysis with growth trait [J]. Acta Hydrobiologica Sinica, 2016, 40(6): 1128-1134
全迎春, 马冬梅, 白俊杰, 等. 大口黑鲈转录组SNPs筛选及其与生长的关联分析. 水生生物学报, 2016, 40(6): 1128-1134 doi: 10.7541/2016.146 |
[10] |
Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review [J]. Plant methods, 2013, 9(1): 29 doi: 10.1186/1746-4811-9-29
|
[11] |
Yang J, Jiang H, Yeh C T, et al. Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel [J]. The Plant Journal, 2015, 84(3): 587—596 doi: 10.1111/tpj.2015.84.issue-3
|
[12] |
赵琼一, 李信, 周德贵, 等. 后基因组时代下作物的SNP分型方法. 分子植物育种, 2010, 8(1): 125—133 http://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201001027.htm
Zhao Q Y, Li X, Zhou D G, et al. SNP genotyping methods for crops in post-genomic era [J]. Molecular Plant Breeding, 2010, 8(1): 125—133
赵琼一, 李信, 周德贵, 等. 后基因组时代下作物的SNP分型方法. 分子植物育种, 2010, 8(1): 125—133 http://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201001027.htm |
[13] |
Sun X, Liu D, Zhang X, et al. SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high throughput sequencing [J]. PLoS One, 2013, 8(3): e58700. doi: 10.1371/journal.pone.0058700
|
[14] |
Diegane N D, Chen Y Y, Lin Y H, et al. The immune response of tilapia Oreochromis mossambicus and its susceptibility to Streptococcus iniae under stress in low and high temperatures [J]. Fish & Shellfish Immunology, 2007, 22(6): 686—694
|
[15] |
Li R, Yu C, Li Y, et al. SOAP2: an improved ultrafast tool for short read alignment [J]. Bioinformatics, 2009, 25(15): 1966—1967 doi: 10.1093/bioinformatics/btp336
|
[16] |
Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses [J]. The American Journal of Human Genetics, 2007, 81(3): 559—575 doi: 10.1086/519795
|
[17] |
Bradbury P J, Zhang Z, Kroon D E, et al. TASSEL: software for association mapping of complex traits in diverse samples [J]. Bioinformatics, 2007, 23(19): 2633—2635 doi: 10.1093/bioinformatics/btm308
|
[18] |
Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals [J]. Genome Research, 2009, 19(9): 1655—1664 doi: 10.1101/gr.094052.109
|
[19] |
Davey J W, Hohenlohe P A, Etter P D, et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing [J]. Nature Reviews Genetics, 2011, 12(7): 499—510 doi: 10.1038/nrg3012
|
[20] |
Xia C, Chen L, Rong T, et al. Identification of a new maize inflorescence meristem mutant and association analysis using SLAF-seq method [J]. Euphytica, 2015, 202(1): 35—44 doi: 10.1007/s10681-014-1202-5
|
[21] |
Zhang P, Zhu Y, Wang L, et al. Mining candidate genes associated with powdery mildew resistance in cucumber via super-BSA by specific length amplified fragment (SLAF) sequencing [J]. BMC Genomics, 2015, 16: 1058. doi: 10.1186/s12864-015-2041-z
|
[22] |
Li H, Peng Z, Yang X, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels [J]. Nature Genetics, 2013, 45(1): 43—50
|
[23] |
Huang X, Wei X, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces [J]. Nature Genetics, 2010, 42(11): 961—967 doi: 10.1038/ng.695
|