CHEN Xiao-Ming, LI Jia-Kai, WANG Zhi-Yong, CAI Ming-Yi, HAN Fang, LIU Xian-De. GENOME-WIDE ASSOCIATION STUDY OF THERMAL TOLERANCE IN LARGE YELLOW CROAKER LARIMICHTHYS CROCEA BASED ON SLAF-SEQ TECHNOLOGY[J]. ACTA HYDROBIOLOGICA SINICA, 2017, 41(4): 735-740. DOI: 10.7541/2017.91
Citation: CHEN Xiao-Ming, LI Jia-Kai, WANG Zhi-Yong, CAI Ming-Yi, HAN Fang, LIU Xian-De. GENOME-WIDE ASSOCIATION STUDY OF THERMAL TOLERANCE IN LARGE YELLOW CROAKER LARIMICHTHYS CROCEA BASED ON SLAF-SEQ TECHNOLOGY[J]. ACTA HYDROBIOLOGICA SINICA, 2017, 41(4): 735-740. DOI: 10.7541/2017.91

GENOME-WIDE ASSOCIATION STUDY OF THERMAL TOLERANCE IN LARGE YELLOW CROAKER LARIMICHTHYS CROCEA BASED ON SLAF-SEQ TECHNOLOGY

Funds: Supported by the National Natural Science Foundation of China (31172397, 31402339); the New Century Excellent Talents of Fujian Province University (JA14167)
  • Received Date: June 21, 2016
  • Rev Recd Date: November 04, 2016
  • Published Date: June 30, 2017
  • Twenty thermal-tolerant and twenty thermal-sensitive individuals of Larimichthys crocea were sequenced using specific-locus amplified fragment (SLAF-seq) technology based on Illumina HiSeqTM2500 platform. 419211 SNPs were identified with an average read depth of 10.26× for each sample. Thirty-eight SNPs (P<2.39E–08) signifi- cantly related with thermal tolerance trait were identified according to association analysis. The SNP locations in large yellow croaker genome were identified using BLAST program, and functional genes around SNP were annotated. Twenty-six genes with known functions were discovered around 38 SNPs, which mainly regulate cell transcription, metabolism and immunity. These results provide basic information to analyze thermal-tolerant molecular mechanism and develop thermal-tolerant lines of Larimichthys crocea in the future.
  • [1]
    薛彬, 何依娜, 郭远明, 等. 大黄鱼生态养殖系统研究. 现代农业科技, 2014, (16): 244—249 http://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201416153.htm

    Xue B, He Y N, Guo Y M, et al. Research of ecological culture system of Larimichthys crocea [J]. Modern Agricultural Sciences and Technology, 2014, (16): 244—249
    薛彬, 何依娜, 郭远明, 等. 大黄鱼生态养殖系统研究. 现代农业科技, 2014, (16): 244—249 http://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201416153.htm
    [2]
    李佳凯, 王志勇, 刘贤德, 等. 高温对大黄鱼(Larimichthys crocea)幼鱼血清生化指标的影响. 海洋通报, 2015, 34(4): 457—462 doi: 10.11840/j.issn.1001-6392.2015.04.014

    Li J K, Wang Z Y, Liu X D, et al. Effects of high tempera-ture on serum biochemical indices of large yellow croa-ker Larimichthys crocea [J]. Marine Science Bulletin, 2015, 34(4): 457—462
    李佳凯, 王志勇, 刘贤德, 等. 高温对大黄鱼(Larimichthys crocea)幼鱼血清生化指标的影响. 海洋通报, 2015, 34(4): 457—462 doi: 10.11840/j.issn.1001-6392.2015.04.014
    [3]
    Hulata G. Genetic manipulations in aquaculture: a review of stock improvement by classical and modern technologies [J]. Genetica, 2001, 111(1—3): 155—173
    [4]
    马爱军, 黄智慧, 王新安, 等. 大菱鲆(Scophthalmus maxi-)耐高温品系选育及耐温性能评估. 海洋与湖沼, 2012, 43(4): 797—804 doi: 10.11693/hyhz201204017017

    Ma A J, Huang Z H, Wang X A, et al. The selective breeding of thermal tolerance family and appraisal of performance in turbot Scophthalmus maximus [J]. Oceanologia Et Limnologia Sinica, 2012, 43(4): 797—804
    马爱军, 黄智慧, 王新安, 等. 大菱鲆(Scophthalmus maxi-)耐高温品系选育及耐温性能评估. 海洋与湖沼, 2012, 43(4): 797—804 doi: 10.11693/hyhz201204017017
    [5]
    Xu K, Duan W, Xiao J, et al. Development and application of biological technologies in fish genetic breeding [J]. Science China Life Sciences, 2015, 58(2): 187—201 doi: 10.1007/s11427-015-4798-3
    [6]
    Yue G H. Recent advances of genome mapping and marker-assisted selection in aquaculture [J]. Fish and Fisheries, 2014, 15(3): 376—396 doi: 10.1111/faf.2014.15.issue-3
    [7]
    Vignal A, Milan D, SanCristobal M, et al. A review on SNP and other types of molecular markers and their use in animal genetics [J]. Genetics Selection Evolution, 2002, 34(3): 275—306 doi: 10.1186/1297-9686-34-3-275
    [8]
    Liu Z J, Cordes J F. DNA marker technologies and their applications in aquaculture genetics [J]. Aquaculture, 2004, 238(1): 1—37
    [9]
    全迎春, 马冬梅, 白俊杰, 等. 大口黑鲈转录组SNPs筛选及其与生长的关联分析. 水生生物学报, 2016, 40(6): 1128-1134 doi: 10.7541/2016.146

    Quan Y C, Ma D M, Bai J J, et al. SNPs identification in RNA-seq data of largemouth bass (Micropterus salmoides) fed on formulated feed and association analysis with growth trait [J]. Acta Hydrobiologica Sinica, 2016, 40(6): 1128-1134
    全迎春, 马冬梅, 白俊杰, 等. 大口黑鲈转录组SNPs筛选及其与生长的关联分析. 水生生物学报, 2016, 40(6): 1128-1134 doi: 10.7541/2016.146
    [10]
    Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review [J]. Plant methods, 2013, 9(1): 29 doi: 10.1186/1746-4811-9-29
    [11]
    Yang J, Jiang H, Yeh C T, et al. Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel [J]. The Plant Journal, 2015, 84(3): 587—596 doi: 10.1111/tpj.2015.84.issue-3
    [12]
    赵琼一, 李信, 周德贵, 等. 后基因组时代下作物的SNP分型方法. 分子植物育种, 2010, 8(1): 125—133 http://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201001027.htm

    Zhao Q Y, Li X, Zhou D G, et al. SNP genotyping methods for crops in post-genomic era [J]. Molecular Plant Breeding, 2010, 8(1): 125—133
    赵琼一, 李信, 周德贵, 等. 后基因组时代下作物的SNP分型方法. 分子植物育种, 2010, 8(1): 125—133 http://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201001027.htm
    [13]
    Sun X, Liu D, Zhang X, et al. SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high throughput sequencing [J]. PLoS One, 2013, 8(3): e58700. doi: 10.1371/journal.pone.0058700
    [14]
    Diegane N D, Chen Y Y, Lin Y H, et al. The immune response of tilapia Oreochromis mossambicus and its susceptibility to Streptococcus iniae under stress in low and high temperatures [J]. Fish & Shellfish Immunology, 2007, 22(6): 686—694
    [15]
    Li R, Yu C, Li Y, et al. SOAP2: an improved ultrafast tool for short read alignment [J]. Bioinformatics, 2009, 25(15): 1966—1967 doi: 10.1093/bioinformatics/btp336
    [16]
    Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses [J]. The American Journal of Human Genetics, 2007, 81(3): 559—575 doi: 10.1086/519795
    [17]
    Bradbury P J, Zhang Z, Kroon D E, et al. TASSEL: software for association mapping of complex traits in diverse samples [J]. Bioinformatics, 2007, 23(19): 2633—2635 doi: 10.1093/bioinformatics/btm308
    [18]
    Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals [J]. Genome Research, 2009, 19(9): 1655—1664 doi: 10.1101/gr.094052.109
    [19]
    Davey J W, Hohenlohe P A, Etter P D, et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing [J]. Nature Reviews Genetics, 2011, 12(7): 499—510 doi: 10.1038/nrg3012
    [20]
    Xia C, Chen L, Rong T, et al. Identification of a new maize inflorescence meristem mutant and association analysis using SLAF-seq method [J]. Euphytica, 2015, 202(1): 35—44 doi: 10.1007/s10681-014-1202-5
    [21]
    Zhang P, Zhu Y, Wang L, et al. Mining candidate genes associated with powdery mildew resistance in cucumber via super-BSA by specific length amplified fragment (SLAF) sequencing [J]. BMC Genomics, 2015, 16: 1058. doi: 10.1186/s12864-015-2041-z
    [22]
    Li H, Peng Z, Yang X, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels [J]. Nature Genetics, 2013, 45(1): 43—50
    [23]
    Huang X, Wei X, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces [J]. Nature Genetics, 2010, 42(11): 961—967 doi: 10.1038/ng.695

Catalog

    Article views (2036) PDF downloads (62) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return