SHI Ping, LU Zeng-Hui, YOU Hua-Jian, HE Yuan-Chuan, ZHANG De-Li, XING Kang-Kang, CHEN Shi-Jiang. EFFECTS OF FASTING AND REFEEDING ON HIRUDO NIPPONIA INTESTINAL MICROFLORA DIVERSITY[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(3): 537-544. DOI: 10.7541/2019.065
Citation: SHI Ping, LU Zeng-Hui, YOU Hua-Jian, HE Yuan-Chuan, ZHANG De-Li, XING Kang-Kang, CHEN Shi-Jiang. EFFECTS OF FASTING AND REFEEDING ON HIRUDO NIPPONIA INTESTINAL MICROFLORA DIVERSITY[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(3): 537-544. DOI: 10.7541/2019.065

EFFECTS OF FASTING AND REFEEDING ON HIRUDO NIPPONIA INTESTINAL MICROFLORA DIVERSITY

Funds: Supported by the Traditional Chinese Medicine Science and Technology Project of Chongqing Health and Family Planning Commission in China (zy201602097); Science and Technology Innovation Funds by the Chongqing Science and Technology Commission of China (cstc2016shmszx1247); Natural Science Foundation of Chongqing (cstc2018jcyjAX0674); the Fundamental Research Funds of Chongqing(cstc2018jxjl-jbky130012)
  • Received Date: May 26, 2018
  • Rev Recd Date: November 11, 2018
  • Available Online: March 27, 2019
  • Published Date: April 30, 2019
  • In this study, we utilized high-throughput sequencing technology to explore thechanges of intestinal microbiota of Hirudo nipponia among fasting group, refeeding groups and control group. The results showed that (1) on the hierarchical level of the phylum, the microflora mainly include Proteobacteria, Bacteroidetes and Firmicutes; (2) on the hierarchical level of genera, the dominate microflora include Aeromonas, Mucinivorans, Bacteroides and Erysipelothrix. The results also indicated that fasting and refeeding diversity and abundance of the dominate microflora, including Aeromonas and Mucinivorans. This study lays the foundation for more detailed composition and function of digestive tract microflora in H. nipponia.
  • [1]
    Gill S R, Pop M, Deboy R T, et al. Metagenomic analysis of the human distal gut microbiome [J]. Science, 2006, 312(5778): 1355—1359
    [2]
    Turnbaugh P J, Ley R E, Hamady M, et al. The human microbiome project: exploring the microbial part of ourselves in a changing world [J]. Nature, 2007, 449(7164): 804—810
    [3]
    Upadhyay V, Poroyko V, Kim T J, et al. Lymphotoxin regulates commensal responses to enable diet-induced obesity [J]. Nature Immunology, 2012, 13(10): 947—953
    [4]
    吴昌新, 孙新, Wendy G. 利用日粮配方技术调控家禽肠道菌群. 国外畜牧学-猪与禽, 2006, 26(1): 30—32

    Wu C X, Sun X, Wendy G. Dietary strategies to influence bacterial microflora in pigs [J]. Pigs and Poultry, 2006, 26(1): 30—32
    [5]
    杨睿, 黎春秀, 付利芝, 等. 不同日龄家兔肠道微生物群落结构. 中国兽医学报, 2017, 37(9): 1693—1698

    Yang R, Li C X, Fu L Z, et al. Intestinal microbial community structure changes and analysis in the growth of weaning young rabbits [J]. Chinese Journal of Veterinary Science, 2017, 37(9): 1693—1698
    [6]
    吴高峰. 应用PCR-DGGE技术对不同日龄仔猪肠道菌群分布规律的研究. 硕士学位论文, 河南农业大学, 郑州. 2009

    Wu G F. Investigation of gastrointestinal microbial flora in piglets with different ages by PCR-DGGE [D]. Thesis for Master of Science. Henan Agricultural University, Zhengzhou. 2009
    [7]
    李苗, 孙迪, 付冰冰, 等. 肠道菌群与自身免疫性疾病研究进展. 中国微生态学杂志, 2015, 27(10): 1233—1237

    Li M, Sun D, Fu B B, et al. Research on gut microbiota and autoimmune disease: progress review [J]. Chinese Journal of Microecology, 2015, 27(10): 1233—1237
    [8]
    徐绸, 何平, 刘长庭. 空间环境对肠道菌群的影响. 航天医学与医学工程, 2016, 29(4): 297—300

    Xu C, He P, Liu C T. Effects of space environment on intestinal flora [J]. Space Medicine & Medical Engineering, 2016, 29(4): 297—300
    [9]
    Murphy E F, Cotter P D, Hogan A, et al. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity [J]. Gut, 2013, 62: 220—226
    [10]
    Sun Y D, Zhang M, Chen C C, et al. Stress induced corticotropin releasing hormone-mediated NLRP6 inflammasome inhibition and transmissible enteritis in mice [J]. Gastroenterology, 2013, 144(7): 1478—1487
    [11]
    杨潼. 中国动物志. 环节动物门: 蛭纲. 北京: 科学出版社. 1996, 110—115

    Yang T. Fauna Sinica, Annelida: Hirudinea [M]. Beijing: Science Press. 1996, 110—115
    [12]
    国家药典委员会. 中华人民共和国药典: 一部. 北京: 中国医药科技出版社. 2015

    Chinese Pharmacopoeia Commission. Pharmacopoeia of People’s Republic of China: One Edition [S]. Beijing: China Medical Science Press. 2015
    [13]
    郭光业, 郑彩华, 赵剑锋, 等. 复方水蛭胶囊防治动脉粥样硬化单因素效应分析. 时珍国医国药, 2007, 18(3): 531—532

    Guo G Y, Zheng C H, Zhao J F, et al. Single factor analysis on effect of compound shuizhi capsule in preventing and treating atherosclerosis [J]. Lishizhen Medicine and Materia Medica Research, 2007, 18(3): 531—532
    [14]
    杨洪雁, 张香东, 刘可园, 等. 水蛭对血瘀证家兔血脂代谢及相关基因表达的影响. 中国现代应用药学, 2013, 30(9): 959—963

    Yang H Y, Zhang X D, Liu K Y, et al. Effects of hirudo on blood metabolism and its related gene expression in blood stasis syndrome rabbits [J]. Chinese Journal of Modern Applied Pharmacy, 2013, 30(9): 959—963
    [15]
    梁进权, 王宁生, 宓穗卿. 水蛭抗凝抗血栓活性及其与品种、提取方法的关系. 中西医结合心脑血管病杂志, 2009, 7(9): 1096—1098

    Liang J Q, Wang N S, Mi S Q. The relation between anticoagulant and antithrombotic activity of leech and its variety and extraction method [J]. Chinese Journal of Integrative Medicine on Cardio-/Cerebro Vascular Disease, 2009, 7(9): 1096—1098
    [16]
    田雪飞, 孙婧, 方圆, 等. 水蛭提取物对肝癌HepG2细胞DNA去甲基化作用研究. 湖南中医药大学学报, 2011, 31(9): 8—11

    Tian X F, Sun J, Fang Y, et al. Study of leech extract on DNA demethylation inHepG2 [J]. Journal of TCM University of Hunan, 2011, 31(9): 8—11
    [17]
    谢艳华, 王四旺, 郭倩. 中药水蛭抗炎作用的实验研究. 第四军医大学学报, 1996, 17(6): 431—433

    Xie Y H, Wang S W, Guo Q. Experimental study on anti-inflammatory function of hirudo [J]. Journal of the Fourth Military Medical University, 1996, 17(6): 431—433
    [18]
    鲁增辉, 石萍, 陈仕江. 水蛭(日本医蛭)皮肤及消化系统组织学研究. 中药材, 2016, 39(8): 1738—1741

    Lu Z H, Shi P, Chen S J. Study on integumentary and digestive system of Hirudo nipponica [J]. Journal of Chinese Medicinal Materials, 2016, 39(8): 1738—1741
    [19]
    Ge C J, Yuan F, Feng L X, et al. Clinical effect of Maixuekang Capsule on long-term prognosis in patients with acute coronary syndrome after percutaneous coronary intervention [J]. Chinese Journal of Integrative Medicine, 2014, 20(2): 88—93
    [20]
    Caporaso J G, Lauber C L, Walters W A, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms [J]. ISME Journal, 2012, 6(8): 1621—1624
    [21]
    Magoč T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies [J]. Bioinformatics, 2011, 27(21): 2957—2963
    [22]
    Caporaso J G, Kuczynski J, Stombaugh J, et al. QⅡME allows analysis of high-throughput community sequencing data [J]. Nature Methods, 2010, 7(5): 335—336
    [23]
    Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads [J]. Nature Methods, 2013, 10(10): 996—998
    [24]
    Wang Q, Garrity G M, Tiedje J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy [J]. Applied and Environmental Microbiology, 2007, 73(16): 5261—5267
    [25]
    Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools [J]. Nucleic Acids Research, 2013, 41(Database issue): D590—D596
    [26]
    张美玲, 杜震宇. 水生动物肠道微生物研究进展. 华东师范大学学报, 2016, 1(1): 1—8

    Zhang M L, Du C Y. Review and perspective: Function of intestinal microbiota in acquatic animals [J]. Journal of East China Normal University, 2016, 1(1): 1—8
    [27]
    李星浩, 颜庆云, 胡红娟, 等. 异育银鲫消化道微生物群落对恢复投喂的响应. 水生生物学报, 2014, 38(5): 854—859

    Li X H, Yan Q Y, Hu H J, et al. Effects of refeeding on the diversity of intestinal microflora in allogynogenetic crucial carp (Carassius auratus gibelio) [J]. Acta Hydrobiologica Sinica, 2014, 38(5): 854—859
    [28]
    谭啸. 微囊藻在水华优势种形成过程中若干生物学特性的研究. 硕士学位论文, 南京师范大学, 南京. 2006

    Tan X. Reseacrhes on several biological character ofmicrocystis during water bloom dominant species forming [D]. Thesis for Master of Science. Nanjing Normal University, Nanjing. 2006
    [29]
    钟蕾, 向建国, 曾丹, 等. 饵料对鳡肠道微生物多样性的影响. 水生生物学报, 2016, 40(4): 830—835

    Zhong L, Xiang J G, Zeng D, et al. Effects of different diets on intestinal microbiota of Elopichthys bambusa [J]. Acta Hydrobiologica Sinica, 2016, 40(4): 830—835
    [30]
    Whitaker I S, Maltz M, Siddall M E, et al. Characterization of the digestive tract microbiota of Hirudo orientalis (medicinal leech) and antibiotic resistance profile [J]. Plasticand Reconstructive Surgery, 2014, 133(3): 408e—418e
    [31]
    Worthen P L, Gode C J, Graf J. Culture-independent characterization of the digestive-tract microbiota of the medicinal leech reveals a tripartite symbiosis [J]. Applied and Environmental Microbiology, 2006, 72(7): 4775—4781
    [32]
    Kormas K A, Meziti A, Mente E, et al. Dietary differences are reflected on the gut prokaryotic community structure of wild and commercially reared sea bream (Sparus aurata) [J]. Microbiology Open, 2014, 3(5): 718—728
    [33]
    Wu S, Gao T, Zheng Y, et al. Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco) [J]. Aquaculture, 2010, 303(1-4): 1—7
    [34]
    Dhanasiri A K S, Brunvold L, Brinchmann M F, et al. Changes in the intestinal microbiota of wild Atlantic cod Gadus morhua L. upon captive rearing [J]. Microbial Ecology, 2011, 61(1): 20—30
    [35]
    Claesson M J, Jeffery I B, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly [J]. Nature, 2012, 488(7410): 178—184
    [36]
    Graf J. Symbiosis of Aeromonas veronii biovar sobria and Hirudo medicinalis, the medicinal leech: a novel model for digestive tract associations [J]. Infection and Immunity, 1999, 67(1): 1—7
    [37]
    Nelson M C, Graf J. Bacterial symbioses of the medicinal leech Hirudo verbana [J]. Gut Microbes, 2012, 3(4): 322—331
    [38]
    Laufer A S, Siddall M E, Graf J. Characterization of the digestive-tract microbiota of Hirudo orientalis, a European medicinal leech [J]. Applied and Environmental Microbiology, 2008, 74(19): 6151—6154
    [39]
    Mark E S, Paul L W, Matthew J, et al. Novel role for Aeromonas jandaei as a digestive tract symbiont of the north American medicinal leech [J]. Applied and Environmental Microbiology, 2017, 73(2): 655—658
    [40]
    Bomar L, Maltz M, Colston S, et al. Directed culturing of microorganisms using metatranscriptomics [J]. Mbio, 2011, 2(2): e00012—11
    [41]
    Maltz M A, Bomar L, Lapierre P, et al. Metagenomic analysis of the medicinal leech gut microbiota [J]. Frontiers and Microbiology, 2014, 5(151): 1—12
    [42]
    Nelson M C, Bomar L, Graf J. Complete genome sequence of the novel leech symbiont Mucinivorans hirudinis M3T [J]. Genome Announcements, 2015, 3(1): e01530—14
    [43]
    Nelson M C, Bomar L, Maltz M, et al. Mucinivorans hirudinis gen. nov. , sp. nov. , an anaerobic, mucin-degrading bacterium isolated from the digestive tract of the medicinal leech Hirudo verbena [J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(Pt 3): 990—995
    [44]
    Marden J N, Mcclure E A, Lidia B, et al. Host matters: medicinal leech digestive-tract symbionts and their pathogenic potential [J]. Frontiers in Microbiology, 2016, 7(e0115813): 1—11
    [45]
    Bomar L, Graf J. Investigation into the physiologies of Aeromonas veronii in vitro and inside the digestive tract of the medicinal leech using RNA-seq [J]. Biological Bulletin, 2012, 223(1): 155—166
    [46]
    Kikuchi Y, Graf J. Spatial and temporal population dynamics of a naturally occurring two-species microbial community inside the digestive tract of the medicinal leech [J]. Applied and Environmental Microbiology, 2007, 73(6): 1984—1991

Catalog

    Article views (2277) PDF downloads (61) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return