LIU Tao, WEI Wen-Yan, LIU Jia-Xing, YANG Ma, XIE Heng, HE Sheng-Yu, YANG Qian, WANG Kai-Yu. CHAIN SPECIFICITY TRANSCRIPTOME ANALYSIS IN DIFFERENT TEMPERATURES CONDITIONED OF YERSINIA RUCKERI[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(5): 969-976. DOI: 10.7541/2019.115
Citation: LIU Tao, WEI Wen-Yan, LIU Jia-Xing, YANG Ma, XIE Heng, HE Sheng-Yu, YANG Qian, WANG Kai-Yu. CHAIN SPECIFICITY TRANSCRIPTOME ANALYSIS IN DIFFERENT TEMPERATURES CONDITIONED OF YERSINIA RUCKERI[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(5): 969-976. DOI: 10.7541/2019.115

CHAIN SPECIFICITY TRANSCRIPTOME ANALYSIS IN DIFFERENT TEMPERATURES CONDITIONED OF YERSINIA RUCKERI

Funds: Supported by Jointly by Sichuan Technology Support Planning at Sichuan Agricultural University (IRT0848); the Scientific Research Innovation Project of Chengdu Academy of Agricultural and Forestry Sciences (2017-Y2500W-16)
  • Received Date: July 11, 2018
  • Rev Recd Date: January 20, 2019
  • Available Online: June 03, 2019
  • Published Date: August 31, 2019
  • To investigate the effect of temperature on transcripts and relative mRNA levels, high-throughput RNA sequencing were used for Yersinia ruckeri grown at 28℃ and 37℃. After the quality control, all differentially regulated genes were enriched and annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and verified by Rockhopper software. The results showed that 173 differentially expressed genes were identified (P-value<0.05), including 58 up-regulated genes mainly enriched in several KEGG pathways: phosphotransferase system, starch and sucrose metabolism, galactose metabolism and other glycan degradation; and 115 down-regulated genes mainly enriched in several KEGG pathways: two-component system, thiamine metabolism and flagellar assembly. In summary, the SC09 had lower motility and weaker glucose metabolism at temperature of 37℃. The compensatory overexpression of some specific carbohydrate metabolism might play important roles for the survival of this bacterial under high temperature. This study provides an important basis for further research on the molecular mechanisms of SC09 in different temperatures.
  • [1]
    Kumar G, Menanteau-Ledouble S, Saleh M, et al. Yersi-nia ruckeri, the causative agent of enteric redmouth di-sease in fish [J]. Veterinary Research, 2015, 46(1): 103 doi: 10.1186/s13567-015-0238-4
    [2]
    杨移斌, 夏永涛, 郑卫东, 等. 鲟源鲁氏耶尔森氏菌的分离鉴定及药敏特性研究. 水生生物学报, 2013, 37(2): 393—398 doi: 10.7541/2013.33

    Yang Y B, Xian L Y, Zhang W D, et al. Isolation and identification of Yersinia ruckeri from Acipenser baerii and its antibiotic sensitivity [J]. Acta Hydrobiologica Sini-ca, 2013, 37(2): 393—398 doi: 10.7541/2013.33
    [3]
    阳磊, 汪开毓, 周燕, 等. 鲁氏耶尔森氏菌口服微球疫苗特性分析及免疫效果研究. 水生生物学报, 2015, 39(6): 1142—1149 doi: 10.7541/2015.150

    Yang L, Wang K Y, Zhou Y, et al. The characteristics and immune efficacy of an oral microspheres vaccine of Yersinia ruckeri [J]. Acta Hydrobiologica Sinica, 2015, 39(6): 1142—1149 doi: 10.7541/2015.150
    [4]
    Wang K Y, Liu T, Wang J, et al. Complete genome sequence of the fish pathogen Yersinia ruckeri strain SC09, isolated from diseased Ictalurus punctatus in China [J]. Genome Announc, 2015, 3(1): 1—2
    [5]
    Tao L, Wang K Y, Wang J, et al. Genome sequence of the fish pathogen Yersinia ruckeri SC09 provides insights into niche adaptation and pathogenic mechanism [J]. International Journal of Molecular Sciences, 2016, 17(4): 557 doi: 10.3390/ijms17040557
    [6]
    Tjaden B. De novo assembly of bacterial transcriptomes from RNA-seq data [J]. Genome Biology, 2015, 16(1): 1 doi: 10.1186/s13059-014-0572-2
    [7]
    Levin J Z, Yassour M, Xian A, et al. Comprehensive comparative analysis of strand-specific RNA sequencing methods [J]. Nature Methods, 2010, 7(9): 709—715 doi: 10.1038/nmeth.1491
    [8]
    Mitrophanov A Y, Groisman E A. Signal integration in bacterial two-component regulatory systems [J]. Genes & Development, 2008, 22(19): 2601
    [9]
    Zhu H, Sun G, Zhu B. An investigation report about the lack of VB1 [J]. Journal of Thoracic Disease, 2016, 8(8): 2244—2246 doi: 10.21037/jtd
    [10]
    Anderson J K, Smith T G, Hoover T R. Sense and sensibi-lity: flagellum-mediated gene regulation [J]. Trends in Microbiology, 2010, 18(1): 30—37 doi: 10.1016/j.tim.2009.11.001
    [11]
    Maki-Yonekura S, Yonekura K, Namba K. Conformational change of flagellin for polymorphic supercoiling of the flagellar filament [J]. Nature Structural & Molecular Biology, 2010, 17(4): 417
    [12]
    Belas R. Biofilms, flagella, and mechanosensing of surfaces by bacteria [J]. Trends in Microbiology, 2014, 22(9): 517—527 doi: 10.1016/j.tim.2014.05.002
    [13]
    Porter S L, Wadhams G H, Armitage J P. Signal processing in complex chemotaxis pathways [J]. Nature Reviews Microbiology, 2011, 9(3): 153—165 doi: 10.1038/nrmicro2505
    [14]
    Beatson S A, Minamino T, Pallen M J. Variation in bacterial flagellins: from sequence to structure [J]. Trends in Microbiology, 2006, 14(4): 151 doi: 10.1016/j.tim.2006.02.008
    [15]
    Partridge J D, Harshey R M. Swarming: flexible roaming plans [J]. Journal of Bacteriology, 2013, 195(5): 909—918 doi: 10.1128/JB.02063-12
    [16]
    Stevenson E, Minton N P, Kuehne S A. The role of flagella in Clostridium difficile pathogenicity [J]. Trends in Microbiology, 2015, 23(5): 275 doi: 10.1016/j.tim.2015.01.004
    [17]
    Deutscher J, Francke C, Postma P W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria [J]. Microbiology and Molecular Biology Reviews, 2006, 70(4): 939—1031 doi: 10.1128/MMBR.00024-06

Catalog

    Article views (8503) PDF downloads (49) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return