Citation: | XING Ying-Chun, GAO Wan-Ru, BAI Jie, ZHAO Ya-Hui. APPLICATIONS OF ENVIRONMENTAL DNA IN LAKE BIODIVERSITY[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(1): 137-148. DOI: 10.7541/2021.2020.237 |
[1] |
窦鸿身, 王苏民, 姜加虎, 等. 中国湖泊综合分类原则、级别划分及分类程序之初探 [J]. 湖泊科学, 1996(2): 173-178. doi: 10.18307/1996.0214
Dou H S, Wang S M, Jiang J H, et al. On the principles, scale division and procedures of comprehensive classification of Chinese lakes [J]. Journal of Lake Sciences, 1996(2): 173-178. doi: 10.18307/1996.0214
|
[2] |
Ma R H, Yang G S, Duan H T, et al. China’s lakes at present: Number, area and spatial distribution [J]. Science China Earth Sciences, 2011, 54(2): 283-289. doi: 10.1007/s11430-010-4052-6
|
[3] |
Tao S L, Fang J Y, Ma S H, et al. Changes in China’s lakes: Climate and human impacts [J]. National Science Review, 2020, 7(1): 132-140. doi: 10.1093/nsr/nwz103
|
[4] |
Fang J Y, Wang Z H, Zhao S Q, et al. Biodiversity changes in the lakes of the central Yangtze [J]. Frontiers in Ecology and The Environment, 2006, 4(7): 369-377. doi: 10.1890/1540-9295(2006)004[0369:BCITLO]2.0.CO;2
|
[5] |
舒凤月, 王海军, 王洪铸, 等. 长江中下游湖泊软体动物的多样性及分布现状 [J]. 生态科学, 2008, 27(5): 437-438. doi: 10.3969/j.issn.1008-8873.2008.05.038
Shu F Y, Wang H J, Wang H Z, et al. Distribution and diversity of molluscs in the mid-lower Yangtze lakes [J]. Ecological Science, 2008, 27(5): 437-438. doi: 10.3969/j.issn.1008-8873.2008.05.038
|
[6] |
王丽卿, 施荣, 季高华, 等. 淀山湖浮游植物群落特征及其演替规律 [J]. 生物多样性, 2011, 19(1): 48-56. doi: 10.3724/SP.J.1003.2011.09044
Wang L Q, Shi R, Ji G H, et al. Phytoplankton community structure and its succession in Dianshan Lake [J]. Biodiversity Science, 2011, 19(1): 48-56. doi: 10.3724/SP.J.1003.2011.09044
|
[7] |
聂雪, 胡旭仁, 刘观华, 等. 鄱阳湖子湖泊浮游动物多样性及水质生物评价 [J]. 南昌大学学报(理科版), 2018, 42(2): 161-167.
Nie X, Hu X R, Liu G H, et al. Species diversity of zooplankton and water quality biological assessment in a sub-lake of Poyang Lake [J]. Journal of Nanchang University (
|
[8] |
Pedersen M W, Overballe-Petersen S, Ermini L, et al. Ancient and modern environmental DNA [J]. Philosophical transactions of The Royal Society B-biological Sciences, 2015(370): 20130383.
|
[9] |
Shokralla S, Spall J L, Gibson J F, et al. Next-generation sequencing technologies for environmental DNA research [J]. Molecular Ecology, 2012, 21(8): 1794-1805. doi: 10.1111/j.1365-294X.2012.05538.x
|
[10] |
Egan S P, Barnes M A, Hwang C T, et al. Rapid invasive species detection by combining environmental DNA with light transmission spectroscopy [J]. Conservation Letters, 2013, 6(6): 402-409. doi: 10.1111/conl.12017
|
[11] |
Thomsen P F, Willerslev E. Environmental DNA-An emerging tool in conservation for monitoring past and present biodiversity [J]. Biological Conservation, 2015(183): 4-18.
|
[12] |
Adrian-Kalchhauser I, Burkhardt-Holm P. An eDNA assay to monitor a globally invasive fish species from flowing freshwater [J]. PLoS One, 2016, 11(1): 22.
|
[13] |
Dougherty M M, Larson E R, Renshaw M A, et al. Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances [J]. Journal of Applied Ecology, 2016, 53(3): 722-732. doi: 10.1111/1365-2664.12621
|
[14] |
Furlan E M, Gleeson D, Wisniewski C, et al. eDNA surveys to detect species at very low densities: A case study of European carp eradication in Tasmania, Australia [J]. Journal of Applied Ecology, 2019, 56(11): 2505-2517. doi: 10.1111/1365-2664.13485
|
[15] |
Brinkhoff T, Muyzer G. Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp. [J]. Applied and Environmental Microbiology, 1997, 63(10): 3789-3796. doi: 10.1128/aem.63.10.3789-3796.1997
|
[16] |
Thomsen P F, Kielgast J, Iversen L L, et al. Monitoring endangered freshwater biodiversity using environmental DNA [J]. Molecular Ecology, 2012, 21(11): 2565-2573. doi: 10.1111/j.1365-294X.2011.05418.x
|
[17] |
Parducci L, Matetovici I, Fontana S L, et al. Molecular and pollen-based vegetation analysis in lake sediments from central Scandinavia [J]. Molecular Ecology, 2013, 22(13): 3511-3524. doi: 10.1111/mec.12298
|
[18] |
Bista I, Carvalho G R, Walsh K, et al. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity [J]. Nature Communications, 2017(8): 14087.
|
[19] |
Zhang S, Lu Q, Wang Y Y, et al. Assessment of fish communities using environmental DNA: Effect of spatial sampling design in lentic systems of different sizes [J]. Molecular Ecology Resources, 2020, 20(1): 242-255. doi: 10.1111/1755-0998.13105
|
[20] |
Matisoo-Smith E, Roberts K, Welikala N, et al. Recovery of DNA and pollen from New Zealand lake sediments [J]. Quaternary International, 2008, 184(1): 139-149. doi: 10.1016/j.quaint.2007.09.013
|
[21] |
Anderson-Carpenter L L, McLachlan J S, Jackson S T, et al. Ancient DNA from lake sediments: Bridging the gap between paleoecology and genetics [J]. BMC Evolutionary Biology, 2011(11): 30.
|
[22] |
Giguet-Covex C, Pansu J, Arnaud F, et al. Long livestock farming history and human landscape shaping revealed by lake sediment DNA [J]. Nature Communications, 2014(5): 3211.
|
[23] |
Goutte A, Molbert N, Guerin S, et al. Monitoring freshwater fish communities in large rivers using environmental DNA metabarcoding and a long-term electrofishing survey [J]. Journal of Fish Biology, 2020, 97(2): 444-452. doi: 10.1111/jfb.14383
|
[24] |
Qu C J, Stewart K A, Clemente-Carvalho R, et al. Comparing fish prey diversity for a critically endangered aquatic mammal in a reserve and the wild using eDNA metabarcoding [J]. Scientific Reports, 2020, 10(1): 16715. doi: 10.1038/s41598-020-73648-2
|
[25] |
舒璐, 林佳艳, 徐源, 等. 基于环境DNA宏条形码的洱海鱼类多样性研究 [J]. 水生生物学报, 2020, 44(5): 1080-1086. doi: 10.7541/2020.125
Shu L, Lin J Y, Xu Y, et al. Investigating the fish diversity in Erhai Lake based on environmental DNA metabarcoding [J]. Acta Hydrobiologica Sinica, 2020, 44(5): 1080-1086. doi: 10.7541/2020.125
|
[26] |
Mahon A R, Jerde C L, Galaska M, et al. Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments [J]. PLoS One, 2013, 8(3): e58316. doi: 10.1371/journal.pone.0058316
|
[27] |
Eichmiller J J, Miller L M, Sorensen P W. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish [J]. Molecular Ecology Resources, 2015, 16(1): 56-68.
|
[28] |
Agersnap S, Larsen W B, Knudsen S W, et al. Monitoring of noble, signal and narrow-clawed crayfish using environmental DNA from freshwater samples [J]. PLoS One, 2017, 12(6): e0179261. doi: 10.1371/journal.pone.0179261
|
[29] |
Fujii K, Doi H, Matsuoka S, et al. Environmental DNA metabarcoding for fish community analysis in backwater lakes: A comparison of capture methods [J]. PLoS One, 2019, 14(1): e0210357. doi: 10.1371/journal.pone.0210357
|
[30] |
Muha T P, Robinson C V, Garcia de Leaniz C, et al. An optimised eDNA protocol for detecting fish in lentic and lotic freshwaters using a small water volume [J]. PLoS One, 2019, 14(7): e0219218. doi: 10.1371/journal.pone.0219218
|
[31] |
Jerde C L, Mahon A R, Chadderton W L, et al. “Sight-unseen” detection of rare aquatic species using environmental DNA [J]. Conservation Letter, 2011, 4(2): 150-157. doi: 10.1111/j.1755-263X.2010.00158.x
|
[32] |
Olson Z H, Briggler J T, Williams R N. An eDNA approach to detect eastern hellbenders (Cryptobranchus a. alleganiensis) using samples of water [J]. Wildlife Research, 2012, 39(7): 629-636. doi: 10.1071/WR12114
|
[33] |
Pilliod D S, Goldberg C S, Arkler R S, et al. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70(8): 1123-1130. doi: 10.1139/cjfas-2013-0047
|
[34] |
Goldberg C S, Sepulveda A, Ray A, et al. Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum) [J]. Freshwater Science, 2013, 32(3): 792-800. doi: 10.1899/13-046.1
|
[35] |
Ficetola G F, Miaud C, Pompanon F, et al. Species detection using environmental DNA from water samples [J]. Biology Letters, 2008, 4(4): 423-425. doi: 10.1098/rsbl.2008.0118
|
[36] |
Klymus K E, Richter C A, Chapman D C, et al. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix [J]. Biology Conservation, 2015(183): 77-84.
|
[37] |
Deiner K, Walser J C, Machler E, et al. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA [J]. Biological Conservation, 2015(183): 53-63.
|
[38] |
Ma H J, Stewart K, Lougheed S, et al. Characterization, optimization, and validation of environmental DNA (eDNA) markers to detect an endangered aquatic mammal [J]. Conservation Genetics Resources, 2016, 8(4): 561-568. doi: 10.1007/s12686-016-0597-9
|
[39] |
Hunter M E, Ferrante J A, Meigs-Friend G, et al. Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques [J]. Scientific Reports, 2019, 9(1): 52-59. doi: 10.1038/s41598-018-37275-2
|
[40] |
Civade R, Dejean T, Valentini A, et al. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system [J]. PLoS One, 2016, 11(6): e0157366. doi: 10.1371/journal.pone.0157366
|
[41] |
Li J L, Handley L L, Read D S, et al. The effect of filtration method on the efficiency of environmental DNA capture and quantification via metabarcoding [J]. Molecular Ecology Resources, 2018, 18(5): 1102-1114. doi: 10.1111/1755-0998.12899
|
[42] |
Renshaw M A, Olds B P, Jerde C L, et al. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroformisoamyl alcohol DNA extraction [J]. Molecular Ecology Resources, 2015, 15(1): 168-176. doi: 10.1111/1755-0998.12281
|
[43] |
Hinlo R, Gleeson D, Lintermans M, et al. Methods to maximise recovery of environmental DNA from water samples [J]. PLoS One, 2017, 12(6): e0179251. doi: 10.1371/journal.pone.0179251
|
[44] |
Majaneva M, Diserud O H, Eagle S H C, et al. Environmental DNA filtration techniques affect recovered biodiversity [J]. Scientific Reports, 2018(8): 4682.
|
[45] |
Wilson I G. Inhibition and facilitation of nucleic acid amplification [J]. Applied and Environmental Microbiology, 1997, 63(10): 3741-3751. doi: 10.1128/aem.63.10.3741-3751.1997
|
[46] |
Ochsenreiter T, Pfeifer F, Schleper C. Diversity of Archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies [J]. Extremophiles, 2002, 6(4): 267-274. doi: 10.1007/s00792-001-0253-4
|
[47] |
Tsuji S, Takahara T, Doi H, et al. The detection of aquatic macroorganisms using environmental DNA analysis-A review of methods for collection, extraction, and detection [J]. Environmental DNA, 2019, 1(2): 99-108. doi: 10.1002/edn3.21
|
[48] |
Haile J, Holdaway R, Oliver K, et al. Ancient DNA chronology within sediment deposits: Are paleobiological reconstructions possible and is DNA leaching a factor [J]? Molecular Biology and Evolution, 2007, 24(4): 982-989. doi: 10.1093/molbev/msm016
|
[49] |
Balasingham K D, Walter R P, Heath D D. Residual eDNA detection sensitivity assessed by quantitative real-time PCR in a river ecosystem [J]. Molecular Ecology Resources, 2017, 17(3): 523-532. doi: 10.1111/1755-0998.12598
|
[50] |
Brown E A, Chain F J J, Zhan A B, et al. Early detection of aquatic invaders using metabarcoding reveals a high number of non-indigenous species in Canadian ports [J]. Diversity and Distributions, 2016, 22(10): 1045-1059. doi: 10.1111/ddi.12465
|
[51] |
Capo E, Spong G, Norman S, et al. Droplet digital PCR assays for the quantification of brown trout (Salmo trutta) and Arctic char (Salvelinus alpinus) from environmental DNA collected in the water of mountain lakes [J]. PLoS One, 2019, 14(12): e0226638. doi: 10.1371/journal.pone.0226638
|
[52] |
Guan X, Monroe E M, Bockrath K D, et al. Environmental DNA (eDNA) assays for invasive populations of black carp in North America [J]. Transactions of the American Fisheries Society, 2019, 148(6): 1043-1055. doi: 10.1002/tafs.10195
|
[53] |
Tucker A J, Chadderton W L, Jerde C L, et al. A sensitive environmental DNA (eDNA) assay leads to new insights on Ruffe (Gymnocephalus cernua) spread in North America [J]. Biological Invasions, 2016, 18(11): 3205-3222. doi: 10.1007/s10530-016-1209-z
|
[54] |
Valdez-Moreno M, Ivanova N V, Elias-Gutierrez M, et al. Using eDNA to biomonitor the fish community in a tropical oligotrophic lake [J]. PLoS One, 2019, 14(4): e0215505. doi: 10.1371/journal.pone.0215505
|
[55] |
Hollibaugh J T, Budinoff C, Hollibaugh R A, et al. Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a soda lake [J]. Applied and Environmental Microbiology, 2006, 72(3): 2043-2049. doi: 10.1128/AEM.72.3.2043-2049.2006
|
[56] |
Alsos I G, Lammers Y, Yoccoz N G, et al. Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation [J]. PLoS One, 2018, 13(4): e0195403. doi: 10.1371/journal.pone.0195403
|
[57] |
Dejean T, Valentini A, Miquel C, et al. Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrog Lithobates catesbeianus [J]. Journal of Applied Ecology, 2012, 49(4): 953-959. doi: 10.1111/j.1365-2664.2012.02171.x
|
[58] |
Takahara T, Minamoto T, Doi H, et al. Using environmental DNA to estimate the distribution of an invasive fish species in ponds [J]. PLoS One, 2013, 8(2): e56584. doi: 10.1371/journal.pone.0056584
|
[59] |
Doi H, Takahara T, Minamoto T, et al. Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species [J]. Environmental Science & Technology, 2015, 49(9): 5601-5608.
|
[60] |
Erickson R A, Rees C B, Coulter A A, et al. Detecting the movement and spawning activity of bigheaded carps with environmental DNA [J]. Molecular Ecology Resources, 2016, 16(4): 957-965. doi: 10.1111/1755-0998.12533
|
[61] |
Minamoto T, Uchii K, Takahara T, et al. Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio [J]. Molecular Ecology Resources, 2017, 17(2): 324-333. doi: 10.1111/1755-0998.12586
|
[62] |
Jerde C L, Chadderton W L, Mahon A R, et al. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70(4): 522-526. doi: 10.1139/cjfas-2012-0478
|
[63] |
Edwards M E, Alsos I G, Yoccoz N, et al. Metabarcoding of modern soil DNA gives a highly local vegetation signal in Svalbard tundra [J]. Holocene, 2018, 28(12): 2006-2016. doi: 10.1177/0959683618798095
|
[64] |
Karr E A, Sattley W M, Rice M R, et al. Diversity and distribution of sulfate-reducing bacteria in permanently frozen lake fryxell, McMurdo Dry Valleys, Antarctica [J]. Applied and Environmental Microbiology, 2005, 71(10): 6353-6359. doi: 10.1128/AEM.71.10.6353-6359.2005
|
[65] |
Epp L S, Stoof-Leichsenring K R, Trauth M H, et al. Molecular profiling of diatom assemblages in tropical lake sediments using taxon-specific PCR and Denaturing High-Performance Liquid Chromatography (PCR-DHPLC) [J]. Molecular Ecology Resources, 2011, 11(5): 842-853. doi: 10.1111/j.1755-0998.2011.03022.x
|
[66] |
Takahara T, Minamoto T, Yamanaka H, et al. Estimation of fish biomass using environmental DNA [J]. PLoS One, 2012, 7(4): e35868. doi: 10.1371/journal.pone.0035868
|
[67] |
Wilson C, Wright E, Bronnenhuber J, et al. Tracking ghosts: Combined electrofishing and environmental DNA surveillance efforts for Asian carps in ontario waters of lake Erie [J]. Management of Biological Invasions, 2014, 5(3): 225-231. doi: 10.3391/mbi.2014.5.3.05
|
[68] |
Bedwell M E, Goldberg C S. Spatial and temporal patterns of environmental DNA detection to inform sampling protocols in lentic and lotic systems [J]. Ecology and Evolution, 2020, 10(3): 1602-1612. doi: 10.1002/ece3.6014
|
[69] |
Hebert P D N, Gregory T R. The promise of DNA barcoding for taxonomy [J]. Systematic Biology, 2005, 54(5): 852-859. doi: 10.1080/10635150500354886
|
[70] |
Lim N K M, Tay Y C, Srivathsan A, et al. Next-generation freshwater bioassessment: eDNA metabarcoding with a conserved metazoan primer reveals species-rich and reservoir-specific communities [J]. Royal Society Open Science, 2016, 3(11): 160635. doi: 10.1098/rsos.160635
|
[71] |
佟广香, 唐国盘, 徐伟, 等. 哲罗鲑性别特异性标记筛选 [J]. 水生生物学报, 2021, 45(4): 728-733. doi: 10.1038/nbt.1488
Tong G X, Tang G P, Xu W, et al. Characterization of sex-specific marker in Hucho taimen (Pallas) [J]. Acta Hydrobiologica Sinica, 2021, 45(4): 728-733. doi: 10.1038/nbt.1488
|
[72] |
卞光明, 王娜泠, 胡则辉, 等. 基于线粒体COⅠ和16S rRNA基因序列比较分析东海带鱼群体遗传多样性 [J]. 水生生物学报, 2019, 43(2): 282-290. doi: 10.1007/s10750-018-3593-0
Bian G M, Wang N L, Hu Z H, et al. A comparative analysis on the genetic diversity of Trichiurus lepturus [J]. Acta Hydrobiologica Sinica, 2019, 43(2): 282-290. doi: 10.1007/s10750-018-3593-0
|
[73] |
孙晶莹, 杨江华, 张效伟. 环境DNA(eDNA)宏条形码技术对枝角类浮游动物物种鉴定及其生物量监测研究 [J]. 生态毒理学报, 2018, 13(5): 76-86. doi: 10.7524/AJE.1673-5897.20180108001
Sun J Y, Yang J H, Zhang X W. Identification and biomass monitoring of zooplankton cladocera species with eDNA metabarcoding technology [J]. Asian Journal of Ecotoxicology, 2018, 13(5): 76-86. doi: 10.7524/AJE.1673-5897.20180108001
|
[74] |
张丽娟, 徐杉, 赵峥, 等. 环境DNA宏条形码监测湖泊真核浮游植物的精准性 [J]. 环境科学, 2020, 42(2): 796-807. doi: 10.13227/j.hjkx.202007236
Zhang L J, Xu S, Zhao Z, et al. Precision of eDNA metabarcoding technology for biodiversity monitoring of eukaryotic phytoplankton in lakes [J]. Environmental Science, 2020, 42(2): 796-807. doi: 10.13227/j.hjkx.202007236
|
[75] |
Zhang S, Zhao J D, Yao M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish [J]. Methods in Ecology and Evolution, 2020, hppts://doi.org/10.1111/2041-210X.13485.
|
[76] |
Hanfling B, Handley L L, Read D S, et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods [J]. Molecular Ecology, 2016, 25(13): 3101-3119. doi: 10.1111/mec.13660
|
[77] |
Deiner K, Bik H M, Machler E, et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities [J]. Molecular Ecology, 2017, 26(21): 5872-5895. doi: 10.1111/mec.14350
|
[78] |
Kalyuzhnaya M G, Lapidus A, Ivanova N, et al. High-resolution metagenomics targets specific functional types in complex microbial communities [J]. Nature Biotechnology, 2008, 26(9): 1029-1034. doi: 10.1038/nbt.1488x
|
[79] |
Schloss P D, Westcott S L, Ryabin T, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities [J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541. doi: 10.1128/AEM.01541-09
|
[80] |
Banerji A, Bagley M, Elk M, et al. Spatial and temporal dynamics of a freshwater eukaryotic plankton community revealed via 18S rRNA gene metabarcoding [J]. Hydrobiologia, 2018, 818(1): 71-86. doi: 10.1007/s10750-018-3593-0x
|
[81] |
Edgar R C. Search and clustering orders of magnitude faster than BLAST [J]. Bioinformatics, 2010, 26(19): 2460-2461. doi: 10.1093/bioinformatics/btq461
|
[82] |
Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data [J]. Nature Methods, 2010, 7(5): 335-336. doi: 10.1038/nmeth.f.303
|
[83] |
Diaz-Ferguson E E, Moyer G R. History, applications, methodological issues and perspectives for the use of environmental DNA (eDNA) in marine and freshwater environments [J]. Revista De Biologia Tropical, 2014, 62(4): 1273-1284. doi: 10.15517/rbt.v62i4.13231
|
[84] |
Strickler K M, Fremier A K, Goldberg C S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms [J]. Biological Conservation, 2015(183): 85-92.
|
[85] |
Lacoursiere-Roussel A, Rosabal M, Bernatchez L. Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions [J]. Molecular Ecology Resources, 2016, 16(6): 1401-1414. doi: 10.1111/1755-0998.12522
|
[86] |
Lacoursiere-Roussel A, Cote G, Leclerc V, et al. Quantifying relative fish abundance with eDNA: a promising tool for fisheries management [J]. Journal of Applied Ecology, 2016, 53(4): 1148-1157. doi: 10.1111/1365-2664.12598
|
[87] |
Tsuji S, Yamanaka H, Minamoto T. Effects of water pH and proteinase K treatment on the yield of environmental DNA from water samples [J]. Limnology, 2017, 18(1): 1-7. doi: 10.1007/s10201-016-0483-x
|
[88] |
Jo T, Murakami H, Yamamoto S, et al. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution [J]. Ecology and Evolution, 2019, 9(3): 1135-1146. doi: 10.1002/ece3.4802
|
[89] |
Bylemans J, Furlan E M, Gleeson D M, et al. Does size matter? An experimental evaluation of the relative abundance and decay rates of aquatic environmental DNA [J]. Environmental Science & Technology, 2018, 52(11): 6408-6416.
|
[90] |
Jo T, Murakami H, Masuda R, et al. Selective collection of long fragments of environmental DNA using larger pore size filter [J]. Science of The Total Environment, 2020(735): 139462.
|
[91] |
Doi H, Akamatsu Y, Watanabe Y, et al. Water sampling for environmental DNA surveys by using an unmanned aerial vehicle [J]. Limnology and Oceanography-Methods, 2017, 15(11): 939-944. doi: 10.1002/lom3.10214
|
[92] |
Williams M R, Stedtfeld R D, Engle C, et al. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. [J]. PLoS One, 2017, 12(10): e0186462. doi: 10.1371/journal.pone.0186462
|
[93] |
King C E, Debruyne R, Kuch M, et al. A quantitative approach to detect and overcome PCR inhibition in ancient DNA extracts [J]. Biotechniques, 2009, 47(5): 941-949. doi: 10.2144/000113244
|
[94] |
Sidstedt M, Romsos E L, Hedell R, et al. Accurate digital polymerase chain reaction quantification of challenging samples applying inhibitor-tolerant DNA polymerases [J]. Analytical Chemistry, 2017, 89(3): 1642-1649. doi: 10.1021/acs.analchem.6b03746
|
[95] |
Acinas S G, Sarma-Rupavtarm R, Klepac-Ceraj V, et al. PCR-induced sequence artifacts and bias: Insights from comparison of two 16S rRNA clone libraries constructed from the same sample [J]. Applied and Environmental Microbiology, 2005, 71(12): 8966-8969. doi: 10.1128/AEM.71.12.8966-8969.2005
|
1. |
韩书煜, 梁静真, 覃志彪, 黄艳华, 韦慕兰, 蒙兰丽, 黄维, 胡大胜, 黄钧. 山瑞鳖细菌性败血症病原菌的分离鉴定及其毒力基因检测. 水产学报. 2017(09): 1443-1454 .
![]() | |
2. |
牛志伟, 吕小丽, 黄钧, 韩书煜, 黎姗梅, 梁静真, 韦慕兰, 邓小红. 基于Meta分析的国内鱼、鳖源嗜水气单胞菌毒力基因研究. 西南农业学报. 2017(03): 711-716 .
![]() | |
3. |
林永润, 李章程, 刀丽梅, 程方俊, 曹立亭, 蒋梦娜, 孙莹莹, 张婷婷. 牛源麦氏弧菌ASP基因的克隆与原核表达. 中国兽医科学. 2017(07): 884-889 .
![]() | |
4. |
Jinhui HOU, Jishuang CHEN, Bosong LUO, Aijun DING, Yanhua HU. Cloning, Expression and Activity Analysis of a Bacterial Serine Protease. Agricultural Biotechnology. 2015(01): 48-51 .
![]() |
|
5. |
杜娜, 顾泽茂, 袁军法, 林蠡, 翟艳花, 刘学芹, 罗宇良. 嗜水气单胞菌气溶素的原核表达及其多克隆抗血清的制备. 华中农业大学学报. 2014(03): 65-71 .
![]() | |
6. |
胡秀彩, 李雪, 兰云, 张培, 沈晓静, 吕爱军, 朱爱华. 嗜水气单胞菌丝氨酸蛋白酶基因克隆与序列分析. 生物技术. 2014(03): 5-8 .
![]() | |
7. |
方一风, 潘晓艺, 蔺凌云, 沈锦玉, 尹文林, 姚嘉赟, 郝贵杰, 徐洋. 嗜水气单胞菌对喹诺酮类药物耐药的分子机制. 微生物学报. 2014(02): 174-182 .
![]() | |
8. |
邰光富, 鄢庆枇, 徐晓津, 李芊, 覃映雪. 鳗鲡外周血白细胞体外吞噬嗜水气单胞菌数量模型的建立. 渔业科学进展. 2013(06): 68-74 .
![]() | |
9. |
黄钧, 黄艳华, 胡大胜, 罗华平, 施金谷, 彭民毅, 禤均成, 覃丽芬, 滕忠作, 曾桂忠. 黄沙鳖白底板病病原菌的分离鉴定及6种毒力基因检测. 水生生物学报. 2013(05): 844-854 .
![]() | |
10. |
黄艳华, 黄钧, 胡大胜, 施金谷, 彭民毅, 彭亚. 黄沙鳖红底板病病原菌的分离鉴定及其毒力基因检测. 西南农业学报. 2013(05): 2116-2121+2179 .
![]() | |
11. |
刘玮, 倪穗, 邱军强, 乐韵, 王建平. 嗜水气单胞菌BYKAH2008AC株外膜蛋白和溶血素双基因的融合表达及免疫原性分析. 生物学杂志. 2012(04): 17-21 .
![]() |