WANG Meng, YANG Xin, WANG Wei, DUAN Cong, LIU Zhi-Hao, CHEN Qi-Liang, LI Ying-Wen, SHEN Yan-Jun. FISH DIVERSITY IN CHONGQING SECTION OF THE NATIONAL NATURE RESERVE FOR RARE AND ENDEMIC FISH IN THE UPPER YANGTZE RIVER BASED ON EDNA TECHNOLOGY[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(1): 2-16. DOI: 10.7541/2021.2021.132
Citation: WANG Meng, YANG Xin, WANG Wei, DUAN Cong, LIU Zhi-Hao, CHEN Qi-Liang, LI Ying-Wen, SHEN Yan-Jun. FISH DIVERSITY IN CHONGQING SECTION OF THE NATIONAL NATURE RESERVE FOR RARE AND ENDEMIC FISH IN THE UPPER YANGTZE RIVER BASED ON EDNA TECHNOLOGY[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(1): 2-16. DOI: 10.7541/2021.2021.132

FISH DIVERSITY IN CHONGQING SECTION OF THE NATIONAL NATURE RESERVE FOR RARE AND ENDEMIC FISH IN THE UPPER YANGTZE RIVER BASED ON EDNA TECHNOLOGY

Funds: Supported by the General Program of the National Natural Science Foundation of China (31872548); the Natural Science Foundation of Shandong Province (ZR2019MC001)
  • Received Date: July 08, 2021
  • Rev Recd Date: October 11, 2021
  • Available Online: May 11, 2021
  • Published Date: January 14, 2022
  • The aims of this study are: (1) to detect fish diversity in Chongqing section of the national nature reserve of rare and endemic fishes in the upper Yangtze River by using environmental DNA metabarcoding (eDNA metabarcoding), (2) exploring new methods applicable to the monitoring and protection of fish diversity in the Yangtze River, (3) providing certain basic data for the evaluation of the effect of the “10-year ban on fishing in the Yangtze River” later. A total of 6 sampling points were set up in the Chongqing section of the reserve in March 2021. The fish diversity was detected by following procedures, water sample collection, eDNA capture and extraction, PCR amplification and sequencing, database comparison analysis and other environmental DNA metabarcoding standardized analysis. The results showed that 74 fish species were detected (excluding 3 genera that have not been identified at the species level), belonging to 6 orders, 16 families and 52 genera, including 2 national-level protected fish, 10 endemic fish in the upper reaches of the Yangtze River, 1 key protected fish in Chongqing, and 8 invasive species. The genus Cyprinus, Carassius, Ctenopharyngodon and Tachysurus were detected at each sampling site and became the dominant species in each site. The various indexes of Alpha and Beta diversity of fish at various points are relatively uniform, indicating that the ecological structure of fish in the reserve is relatively balanced and stable. In summary, this study showed that although environmental DNA metabarcoding cannot completely replace traditional fish resource monitoring methods, it is a good strategy to combine them to quickly investigate the diversity composition and distribution of fish species in the Yangtze River Basin.
  • [1]
    Bohmann K, Evans A, Gilbert M T P, et al. Environmental DNA for wildlife biology and biodiversity monitoring [J]. Trends in Ecology & Evolution, 2014, 29(6): 358-367.
    [2]
    Edgardo E D, Gregory R M. History, applications, methodological issues and perspectives for the use of environmental DNA (eDNA) in marine and freshwater environments [J]. Revista de Biologia Tropical, 2014, 62(4): 1273-1284. doi: 10.15517/rbt.v62i4.13231
    [3]
    Deiner K, Walser J, Mächler E, et al. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA [J]. Biological Conservation, 2015(183): 53-63.
    [4]
    Ruppert K M, Kline R J, Rahman M S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA [J]. Global Ecology and Conservation, 2019(17): e547.
    [5]
    Goldberg C S, Turner C R, Deiner K, et al. Critical considerations for the application of environmental DNA methods to detect aquatic species [J]. Methods in Ecology and Evolution, 2016(7): 1299-1307.
    [6]
    Hänfling B, Lawson Handley L, Read D S, et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods [J]. Molecular Ecology, 2016(25): 3101-3119.
    [7]
    Ficetola G F, Miaud C, Pompanon F, et al. Species detection using environmental DNA from water samples [J]. Biology Letters, 2008(4): 423-425.
    [8]
    余玥. 基于环境DNA技术的乐清湾鱼类多样性研究 [D]. 上海: 上海海洋大学, 2020: 2-6.

    Yu Y. Study on fish diversity of Yueqing Bay based on environmental DNA technology [D]. Shanghai: Shanghai Ocean University, 2020: 2-6.
    [9]
    Zhang H, Yoshizawa S, Iwasaki W, et al. Seasonal fish assemblage structure using environmental DNA in the Yangtze Estuary and its adjacent waters [J]. Frontiers in Marine Science, 2019(6): 515.
    [10]
    Thomsen P F, Willerslev E. Environmental DNA an emerging tool in conservation for monitoring past and present biodiversity [J]. Biological Conservation, 2015(183): 4-18.
    [11]
    刘飞, 林鹏程, 黎明政, 等. 长江流域鱼类资源现状与保护对策 [J]. 水生生物学报, 2019, 43(S1): 144-156. doi: 10.7541/2019.177

    Liu F, Lin P C, Li M Z, et al. Status quo of fish resources in the Yangtze River basin and countermeasures for protection [J]. Acta Hydrobiologica Sinica, 2019, 43(S1): 144-156. doi: 10.7541/2019.177
    [12]
    唐琼英, 黎明政. 休渔十年何时实现——长江鱼类多样性及长江渔业 [J]. 大自然, 2014(2): 2-11.

    Tang Q Y, Li M Z. Fish biodiversity and fisheries in the Yangtze River [J]. China Nature, 2014(2): 2-11.
    [13]
    彭春兰, 陈文重, 叶德旭, 等. 长江宜昌段鱼类资源现状及群落结构分析 [J]. 水利水电快报, 2019, 40(2): 79-83.

    Peng C L, Chen W Z, Ye D X, et al. Status quo of fish resources and analysis of community structure in the Yichang section of the Yangtze River [J]. Express Water Resources & Hydropower Information, 2019, 40(2): 79-83.
    [14]
    张先炳, 杨胜发, 杨威, 等. 长江上游宜宾-江津与涪陵-丰都江段鱼类早期资源分布研究 [J]. 淡水渔业, 2021, 51(5): 51-59.

    Zhang X B, Yang S F, Yang W, et al. A study on early fish resources distribution in the Yibin-Jiangjin and Fuling-Fengdu sections of the upper Yangtze River [J]. Freshwater Fisheries, 2021, 51(5): 51-59.
    [15]
    湖北省水生生物研究所鱼类研究室. 长江鱼类 [M]. 北京: 科学出版社, 1976: 20-58.

    Fish Research Laboratory, Hubei Institute of Hydrobiology. Yangtze River Fish [M]. Beijing: Science Press, 1976: 20-58.
    [16]
    孙志禹, 王殿常. 水电开发条件下自然保护区管理的实践创新——以长江上游珍稀特有鱼类国家级自然保护区为例 [J]. 长江科学院院报, 2020, 37(11): 1-7. doi: 10.11988/ckyyb.20201065

    Sun Z Y, Wang D C. Practical innovation of nature reserve management under the conditions of hydropower development: taking the national nature reserve of rare and endemic fish in the upper reaches of the Yangtze River as an example [J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(11): 1-7. doi: 10.11988/ckyyb.20201065
    [17]
    田辉伍, 何春, 刘明典, 等. 长江上游干流三层流刺网渔获物结构研究 [J]. 淡水渔业, 2016, 46(5): 37-42. doi: 10.3969/j.issn.1000-6907.2016.05.007

    Tian H W, He C, Liu M D, et al. A study on the structure of the three-layer gillnet catch in the upper mainstream of the Yangtze River [J]. Freshwater Fisheries, 2016, 46(5): 37-42. doi: 10.3969/j.issn.1000-6907.2016.05.007
    [18]
    刘明典, 高雷, 田辉伍, 等. 长江中游宜昌江段鱼类早期资源现状 [J]. 中国水产科学, 2018, 25(1): 147-158. doi: 10.3724/SP.J.1118.2018.16385

    Liu M D, Gao L, Tian H W, et al. Status of early fish resources in Yichang section of the middle reaches of the Yangtze River [J]. Journal of Fishery Sciences of China, 2018, 25(1): 147-158. doi: 10.3724/SP.J.1118.2018.16385
    [19]
    徐念, 常剑波. 长江中下游干流环境DNA样本鱼类物种检测的初步研究 [J]. 水生态学杂志, 2016, 37(5): 49-55.

    Xu N, Chang J B. Preliminary study on the detection of fish species in environmental DNA samples of the middle and lower Yangtze River [J]. Journal of Hydroecology, 2016, 37(5): 49-55.
    [20]
    舒璐, 林佳艳, 徐源, 等. 基于环境DNA宏条形码的洱海鱼类多样性研究 [J]. 水生生物学报, 2020, 44(5): 1080-1086. doi: 10.7541/2020.125

    Xu L, Lin J Y, Xu Y, et al. Study on fish diversity of Erhai lake based on environmental DNA macrobarcode [J]. Acta Hydrobiologica Sinica, 2020, 44(5): 1080-1086. doi: 10.7541/2020.125
    [21]
    罗加山. 利用环境DNA探究滇中高原湖泊的鱼类多样性 [D]. 云南: 云南大学, 2019: 19-20.

    Luo J S. Using environmental DNA to explore the fish diversity of lakes in central Yunnan plateau [D]. Yunnan: Yunnan University, 2019: 19-20.
    [22]
    Pillioddavid S, Goldbergcaren S, Arklerobert S, et al. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70(8): 1123-1130. doi: 10.1139/cjfas-2013-0047
    [23]
    陈云川. 环境DNA技术在六冲河上游鱼类资源调查中的应用研究 [D]. 重庆: 西南大学, 2020: 25-28.

    Chen Y C. Application of environmental DNA technology in the investigation of fish resources in the upper reaches of Liuchong River [D]. Chongqing: Southwest University, 2020: 25-28.
    [24]
    Valentini A, Taberlet P, Miaud C, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding [J]. Molecular Ecology, 2016(25): 929-942.
    [25]
    危起伟. 长江上游珍稀特有鱼类国家级自然保护区科学考察报告 [M]. 北京: 科学出版社, 2012: 208-214.

    Wu Q W. Scientific Investigation Report on the National Nature Reserve of Rare and Endemic Fish in the Upper Yangtze River [M]. Beijing: Science Press, 2012: 208-214.
    [26]
    何滔, 魏耀东, 卢群, 等. 长江上游珍稀特有鱼类自然保护区重庆段渔业资源现状调查 [J]. 水产研究, 2018, 5(2): 85-97. doi: 10.12677/OJFR.2018.52011

    He T, Wei Y D, Lu Q, et al. Investigation of fishery resources status in Chongqing section of the rare and endemic fish nature reserve in the upper Yangtze River [J]. Open Journal of Fisheries Research, 2018, 5(2): 85-97. doi: 10.12677/OJFR.2018.52011
    [27]
    李洋. 基于DNA条形码的长江上游江津段鱼类早期资源种类鉴定 [D]. 重庆: 西南大学, 2016: 21-24.

    Li Y. Identification of early fish resources in the Jiangjin section of the upper Yangtze River based on DNA barcoding [D]. Chongqing: Southwest University, 2016: 21-24.
    [28]
    杨志, 唐会元, 万力, 等. 三峡库区上游江津江段鱼类群落结构的年际变化 [J]. 生态学杂志, 2014, 33(6): 1565-1572.

    Yang Z, Tang H Y, Xu W, et al. Interannual variation of fish community structure in the Jiangjin section of the upper reaches of the Three Gorges Reservoir [J]. Chinese Journal of Ecology, 2014, 33(6): 1565-1572.
    [29]
    熊飞, 刘红艳, 段辛斌, 等. 长江上游江津江段鱼类群落结构及资源利用 [J]. 安徽大学学报(自然科学版), 2014, 38(3): 94-102.

    Xiong F, Liu H Y, Duan X B, et al. Fish community structure and resource utilization in the Jiangjin section of the upper reaches of the Yangtze River [J]. Journal of Anhui University (Natural Science Edition), 2014, 38(3): 94-102.
    [30]
    高天珩, 田辉伍, 叶超, 等. 长江上游珍稀特有鱼类国家级自然保护区干流段鱼类组成及其多样性 [J]. 淡水渔业, 2013, 43(2): 36-42. doi: 10.3969/j.issn.1000-6907.2013.02.007

    Gao T H, Tian H W, Ye C, et al. Fish composition and diversity in the mainstream of the National Nature Reserve for Rare and Endemic Fish in the Upper Yangtze River [J]. Freshwater Fisheries, 2013, 43(2): 36-42. doi: 10.3969/j.issn.1000-6907.2013.02.007
    [31]
    单秀娟, 李苗, 王伟继. 环境DNA(eDNA)技术在水生生态系统中的应用研究进展 [J]. 渔业科学进展, 2018, 39(3): 23-29.

    Dan X J, Li M, Wang W J. Research progress in the application of environmental DNA (eDNA) technology in aquatic ecosystems [J]. Progress in Fishery Sciences, 2018, 39(3): 23-29.
    [32]
    Dejean T, Valentini A, Miquel C, et al. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus [J]. Journal of Applied Ecology, 2012(49): 953-959.
    [33]
    巴家文, 陈大庆. 三峡库区的入侵鱼类及库区蓄水对外来鱼类入侵的影响初探 [J]. 湖泊科学, 2012, 24(2): 185-189. doi: 10.3969/j.issn.1003-5427.2012.02.003

    Ba J W, Chen D Q. Preliminary study on invasive fishes in the three gorges reservoir area and the impact of water storage in the seservoir [J]. Journal of Lake Sciences, 2012, 24(2): 185-189. doi: 10.3969/j.issn.1003-5427.2012.02.003
    [34]
    严太明, 何佳洋, 罗杰, 等. 基于鱼类多样性及完整性指数评价南河中上游流域健康状况 [J]. 淡水渔业, 2021, 51(5): 3-12.

    Yan T M, He J Y, Luo J, et al. Evaluation of the health status of the middle and upper reaches of the Nanhe River Basin based on fish diversity and integrity index [J]. Freshwater Fisheries, 2021, 51(5): 3-12.
    [35]
    陈世静. 基于eDNA宏条形码技术的西南大学崇德湖鱼类与浮游生物多样性分析 [D]. 重庆: 西南大学, 2020: 21-25.

    Chen S J. Analysis of fish and plankton diversity in Chongde lake of Southwest University based on eDNA macrobarcoding technology [D]. Chongqing: Southwest University, 2020: 21-25.
    [36]
    唐晟凯, 钱胜峰, 沈冬冬, 等. 应用环境DNA技术对邵伯湖浮游动物物种检测的初步研究 [J]. 水产养殖, 2021, 42(3): 13-20. doi: 10.3969/j.issn.1004-2091.2021.03.003

    Tang S K, Qian S F, Shen D D, et al. Preliminary study on the detection of zooplankton species in Shaobo Lake by environmental DNA technology [J]. Journal of Aquaculture, 2021, 42(3): 13-20. doi: 10.3969/j.issn.1004-2091.2021.03.003
    [37]
    何美峰. 汀江中上游鱼类多样性及其影响因子 [J]. 福建农业学报, 2016, 31(6): 566-574.

    He M F. Fish diversity and its influencing factors in the upper and middle reaches of Tingjiang River [J]. Fujian Journal of Agriculture Sciences, 2016, 31(6): 566-574.
    [38]
    凌建忠, 姜亚洲, 孙鹏, 等. 环境DNA技术在象山港水域鱼类多样性调查中的应用与评估 [J]. 中国水产科学, 2021, 28(2): 205-214.

    Ling J Z, Jiang Y Z, Sun P, et al. Application and evaluation of environmental DNA technology in the investingation of fish diversity in Xiangshan Harbor [J]. Journal of Fishery Sciences of China, 2021, 28(2): 205-214.
    [39]
    Erickson R A, Merkes C M, Jackson C A, et al. Seasonal trends in eDNA detection and occupancy of bigheaded carps [J]. Journal of Great Lakes Research, 2017, 43(4): 762-770. doi: 10.1016/j.jglr.2017.06.003
    [40]
    石睿杰, 唐莉华, 高广东, 等. 长江流域鱼类多样性与流域特性关系分析 [J]. 清华大学学报(自然科学版), 2018, 58(7): 650-657.

    Shi R J, Tang L H, Gao G D, et al. Analysis of the relationship between fish diversity and watershed characteristics in the Yangtze River Basin [J]. Journal of Tsinghua University (Science and Technology), 2018, 58(7): 650-657.
    [41]
    刘军, 曹文宣, 常剑波. 长江上游主要河流鱼类多样性与流域特征关系 [J]. 吉首大学学报(自然科学版), 2004(1): 42-47.

    Liu J, Cao W X, Chang J B. The relationship between fish diversity and watershed characteristics in the main rivers of the upper Yangtze River [J]. Journal of Jishou University (Natural Sciences Edition), 2004(1): 42-47.
    [42]
    郑从奇, 武玮, 魏杰, 等. 黄河下游支流大汶河鱼类多样性及影响因子分析 [J]. 水资源保护, 2020, 36(6): 31-38,52. doi: 10.3880/j.issn.1004-6933.2020.06.006

    Zheng C Q, Wu W, Wei J, et al. Analysis of fish diversity and influencing factors in Dawen River, a Tributary of the lower Yellow River [J]. Water Resources Protection, 2020, 36(6): 31-38,52. doi: 10.3880/j.issn.1004-6933.2020.06.006
    [43]
    白音包力皋, 陈兴茹. 水库排沙对下游河流鱼类影响研究进展 [J]. 泥沙研究, 2012(1): 74-80. doi: 10.3969/j.issn.0468-155X.2012.01.013

    Bai Y B L H, Chen X R. Research progress on the impact of reservoir sediment discharge on fishes in downstream rivers [J]. Journal of Sediment Research, 2012(1): 74-80. doi: 10.3969/j.issn.0468-155X.2012.01.013
    [44]
    陈治, 宋娜, 源利文, 等. 舟山近海水样环境DNA获取方法的建立 [J]. 水生生物学报, 2020, 44(1): 50-58.

    Chen Z, Song N, Minamoto Toshifumi, et al. The edna collection method of Zhoushan coastal waters [J]. Acta Hydrobiologica Sinica, 2020, 44(1): 50-58.
    [45]
    Strickler K M, Fremier A K, Goldberg C S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms [J]. Biological Conservation, 2015(183): 85-92.
    [46]
    吴昀晟, 唐永凯, 李建林, 等. 环境DNA在长江江豚监测中的应用. 中国水产科学, 2019, 26(1): 124-132.

    Wu Y S, Tang Y K, Lin J L, et al. Application of environmental DNA in monitoring of Yangtze finless porpoise [J]. Journal of Fishery Sciences of China, 2019, 26(1): 124-132.
    [47]
    马娟. 黄河郑州段鱼类资源调查及保护建议 [J]. 河南水产, 2020(3): 42-44.

    Ma J. Investigation of fish resources and suggestions for protection in Zhengzhou section of the Yellow River [J]. Henan Fisheries, 2020(3): 42-44.
    [48]
    王继斌. 大中型水面生态渔业发展措施 [J]. 南方农业, 2021, 15(15): 129-130.

    Wang J B. Measures for the development of large and medium-sized surface ecological fishery [J]. South China Agriculture, 2021, 15(15): 129-130.
    [49]
    曹亮, 张鹗, 臧春鑫, 等. 通过红色名录评估研究中国内陆鱼类受威胁现状及其成因 [J]. 生物多样性, 2016, 24(5): 598-609. doi: 10.17520/biods.2015331

    Cao L, Zhang E, Zang C X, et al. Research on the threatened status and causes of inland fishes in China through the Red List assessment [J]. Biodiversity Science, 2016, 24(5): 598-609. doi: 10.17520/biods.2015331
    [50]
    曹文宣. 长江上游水电梯级开发的水域生态保护问题 [J]. 长江技术经济, 2017(1): 25-30.

    Cao W X. Ecological protection of water area in hydro-elevator grading development in the upper reaches of the Yangtze River [J]. Technology and Economy of Changjing, 2017(1): 25-30.
  • Cited by

    Periodical cited type(7)

    1. 李乐洲,孙广伟,张东升,王玉龙,杨耿介,芦宇婷,卢宏博,周玮. 养水机工作时长对参池氮磷营养盐及初级生产力的影响. 海洋科学. 2022(02): 105-112 .
    2. 黄磊. 珞珈山三大湖泊浮游植物初级生产力的检测及其水质分析. 当代化工研究. 2021(10): 143-145 .
    3. 郑淑娴,黄彬彬,戴明. 水体悬浮物增加对浮游植物种群增长的影响研究. 海洋湖沼通报. 2020(01): 143-150 .
    4. 赵亚楠,徐宝军,彭雨婷. 城市黑臭水体治理技术研究现状和发展趋势. 沧州师范学院学报. 2020(02): 28-31 .
    5. 姜霞,王书航,张晴波,王雯雯. 污染底泥环保疏浚工程的理念·应用条件·关键问题. 环境科学研究. 2017(10): 1497-1504 .
    6. 祁闯,王国祥,吴馨婷,许晓光,韩睿明,吴松峻. 太湖湖滨带春季悬浮物沉降特征与水体营养盐响应. 环境科学. 2017(01): 95-103 .
    7. 苟婷,马千里,王振兴,王丽,姚玲爱,许振成,赵学敏,梁荣昌,蓝郁. 龟石水库夏季富营养化状况与蓝藻水华暴发特征. 环境科学. 2017(10): 4141-4150 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return