Citation: | SONG Chan-Yuan, BAI Fang, LI Tian-Li, SONG Li-Rong. INHIBITORY EFFECT OF SCENEDESMUS SP. ON MICROCYSTIS AERUGINOSA AND ITS EVALUATION[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(12): 1916-1923. DOI: 10.7541/2023.2022.0042 |
[1] |
Harke M J, Steffen M M, Gobler C J, et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp [J]. Harmful Algae, 2016(54): 4-20. doi: 10.1016/j.hal.2015.12.007
|
[2] |
Hu X, Zhang R, Ye J, et al. Monitoring and research of microcystins and environmental factors in a typical artificial freshwater aquaculture pond [J]. Environmental Science and Pollution Research International, 2018, 25(6): 5921-5933. doi: 10.1007/s11356-017-0956-4
|
[3] |
王红强, 李宝宏, 张东令, 等. 藻类的生物控制技术研究进展 [J]. 安全与环境工程, 2013, 20(5): 38-41. doi: 10.3969/j.issn.1671-1556.2013.05.009
Wang H Q, Li B H, Zhang D L, et al. Research advance in biological techniques for controlling algae growth [J]. Safety and Environmental Engineering, 2013, 20(5): 38-41. doi: 10.3969/j.issn.1671-1556.2013.05.009
|
[4] |
谈伟强, 孔赟, 潘国强, 等. 湖库富营养化生物控藻技术的研究进展 [J]. 安全与环境工程, 2017, 24(4): 58-63.
Tan W Q, Kong Y, Pan G Q, et al. Advanced research of biological control algae techniques for eutrophication of lakes and reservoirs [J]. Safety and Environmental Engineering, 2017, 24(4): 58-63.
|
[5] |
张晶晶, 周进, 张怀瑾, 等. 不同营养条件下铜绿微囊藻(Microcystis aeruginosa)和小球藻(Chlorella vulgaris)的生长竞争行为 [J]. 海洋与湖沼, 2016, 47(5): 1013-1023. doi: 10.11693/hyhz20160400085
Zhang J J, Zhou J, Zhang H J, et al. Growth competition between Microcystis aeruginosa and Chlorella vulgaris under nutrition control [J]. Oceanologia et Limnologia Sinica, 2016, 47(5): 1013-1023. doi: 10.11693/hyhz20160400085
|
[6] |
曹煜成, 李卓佳, 杨莺莺, 等. 浮游微藻生态调控技术在对虾养殖应用中的研究进展 [J]. 南方水产, 2007, 3(4): 70-73.
Cao Y C, Li Z J, Yang Y Y, et al. Research progress on technology of microalgae ecological management in shrimp culture [J]. South China Fisheries Science, 2007, 3(4): 70-73.
|
[7] |
Qiu Y, Wang Z, Liu F, et al. Inhibition of Scenedesmus quadricauda on Microcystis flos-aquae [J]. Applied Microbiology and Biotechnology, 2019, 103(14): 5907-5916. doi: 10.1007/s00253-019-09809-9
|
[8] |
Bittencourt-Oliveira M D C, Chia M A, Oliveira H S B, et al. Allelopathic interactions between microcystin-producing and non-microcystin-producing cyanobacteria and green microalgae: implications for microcystins production [J]. Journal of Applied Phycology, 2015, 27(1): 275-284. doi: 10.1007/s10811-014-0326-2
|
[9] |
Briand E, Bormans M, Gugger M, et al. Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions [J]. Environmental Microbiology, 2016, 18(2): 384-400. doi: 10.1111/1462-2920.12904
|
[10] |
Wang X, Zhang Y, Li C, et al. Allelopathic effect of Oocystis borgei culture on Microcystis aeruginosa [J]. Environmental Technology, 2020, 43(11): 1662-1671.
|
[11] |
Bai F, Shi J, Yang S, et al. Interspecific competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa on different phosphorus substrates [J]. Environmental Science and Pollution Research International, 2020, 27(34): 42264-42275. doi: 10.1007/s11356-020-08652-0
|
[12] |
Schmidt K C, Jackrel S L, Smith D J, et al. Genotype and host microbiome alter competitive interactions between Microcystis aeruginosa and Chlorella sorokiniana [J]. Harmful Algae, 2020(99): 101939. doi: 10.1016/j.hal.2020.101939
|
[13] |
Ni M, Yuan J L, Liu M, et al. Assessment of water quality and phytoplankton community of Limpenaeus vannamei pond in intertidal zone of Hangzhou Bay, China [J]. Aquaculture Reports, 2018(11): 53-58. doi: 10.1016/j.aqrep.2018.06.002
|
[14] |
续钊. 浅析水产养殖水体污染及微生物修复 [J]. 生物化工, 2018, 4(6): 134-136,141. doi: 10.3969/j.issn.2096-0387.2018.06.039
Xu Z. Analysis of aquaculture water pollution and microbial remediation [J]. Biological Chemical Engineering, 2018, 4(6): 134-136,141. doi: 10.3969/j.issn.2096-0387.2018.06.039
|
[15] |
宋立荣, 张琪, 郑凌凌, 等. 微藻种质资源库——藻类科学研究和产业发展的重要平台 [J]. 水生生物学报, 2020, 44(5): 1020-1027. doi: 10.7541/2020.118
Song L R, Zhang Q, Zheng L L, et al. Microalgal culture collection: fundamental platform for algal research and industrial development [J]. Acta Hydrobiologica Sinica, 2020, 44(5): 1020-1027. doi: 10.7541/2020.118
|
[16] |
吴忠兴. 我国微囊藻多样性分析及其种群优势的生理学机制研究 [D]. 武汉: 中国科学院研究生院(水生生物研究所), 2006, 82-83.
Wu Z X. Studies on the genetic diversity and morphological and physiological adaptation of Microcystis [D]. Wuhan: Institute of Hydrobiology, Chinese Academy of Sciences, 2006, 82-83.
|
[17] |
Nusch E A. Comparison of different methods for chlorophyll and pheopigment determination [J]. Archiv für Hydrobiologie-Beiheft Ergebnisse der Limnologie, 1980(14): 14-36.
|
[18] |
江丽丽, 温小斌, 耿亚洪, 等. 一株产油微藻的筛选及分子鉴定 [J]. 水生生物学报, 2013, 37(4): 606-612. doi: 10.7541/2013.69
Jiang L L, Wen X B, Geng Y H, et al. A newly selected lipid-rich microalgae strain and its molecular identification [J]. Acta Hydrobiologica Sinica, 2013, 37(4): 606-612. doi: 10.7541/2013.69
|
[19] |
Zhang P, Zhai C, Wang X, et al. Growth competition between Microcystis aeruginosa and Quadrigula chodatii under controlled conditions [J]. Journal of Applied Phycology, 2013, 25(2): 555-565. doi: 10.1007/s10811-012-9890-5
|
[20] |
Wang L, Zi J M, Xu R B, et al. Allelopathic effects of Microcystis aeruginosa on green algae and a diatom: evidence from exudates addition and co-culturing [J]. Harmful Algae, 2017(61): 56-62. doi: 10.1016/j.hal.2016.11.010
|
[21] |
Ma Z, Fang T, Thring R W, et al. Toxic and non-toxic strains of Microcystis aeruginosa induce temperature dependent allelopathy toward growth and photosynthesis of Chlorella vulgaris [J]. Harmful Algae, 2015(48): 21-29. doi: 10.1016/j.hal.2015.07.002
|
[22] |
Harel M, Weiss G, Lieman-Hurwitz J, et al. Interactions between Scenedesmus and Microcystis may be used to clarify the role of secondary metabolites [J]. Environmental Microbiology Reports, 2013, 5(1): 97-104. doi: 10.1111/j.1758-2229.2012.00366.x
|
[23] |
Jiang Z, Guo P, Chang C, et al. Effects of allelochemicals from Ficus microcarpaon Chlorella pyrenoidosa [J]. Brazilian Archives of Biology and Technology, 2014, 57(4): 595-605.
|
[24] |
Zhu Z, Liu Y, Zhang P, et al. Co-culture with Cyperus alternifolius induces physiological and biochemical inhibitory effects in Microcystis aeruginosa [J]. Biochemical Systematics and Ecology, 2014(56): 118-124. doi: 10.1016/j.bse.2014.05.008
|
[25] |
He Y, Zhou Q H, Liu B Y, et al. Programmed cell death in the cyanobacterium Microcystis aeruginosa induced by allelopathic effect of submerged macrophyte Myriophyllum spicatum in co-culture system [J]. Journal of Applied Phycology, 2016, 28(5): 2805-2814. doi: 10.1007/s10811-016-0814-7
|
[26] |
Lu Z, Sha J, Tian Y, et al. Polyphenolic allelochemical pyrogallic acid induces caspase-3(like)-dependent programmed cell death in the cyanobacterium Microcystis aeruginosa [J]. Algal Research, 2017(21): 148-155. doi: 10.1016/j.algal.2016.11.007
|
[27] |
Mello M M E, Soares M C S, Roland F, et al. Growth inhibition and colony formation in the cyanobacterium Microcystis aeruginosa induced by the cyanobacterium Cylindrospermopsis raciborskii [J]. Journal of Plankton Research, 2012, 34(11): 987-994. doi: 10.1093/plankt/fbs056
|
[28] |
Dunker S, Jakob T, Wilhelm C. Contrasting effects of the cyanobacterium Microcystis aeruginosa on the growth and physiology of two green algae, Oocystis marsonii and Scenedesmus obliquus, revealed by flow cytometry [J]. Freshwater Biology, 2013, 58(8): 1573-1587. doi: 10.1111/fwb.12143
|
[29] |
Dai G Z, Shang J L, Qiu B S. Ammonia may play an important role in the succession of cyanobacterial blooms and the distribution of common algal species in shallow freshwater lakes [J]. Global Change Biology, 2012, 18(5): 1571-1581. doi: 10.1111/j.1365-2486.2012.02638.x
|
[30] |
许海, 陈洁, 朱广伟, 等. 水体氮、磷营养盐水平对蓝藻优势形成的影响 [J]. 湖泊科学, 2019, 31(5): 1239-1247. doi: 10.18307/2019.0518
Xu H, Chen J, Zhu G W, et al. Effect of concentrations of phosphorus and nitrogen on the dominance of cyanobacteria [J]. Journal of Lake Sciences, 2019, 31(5): 1239-1247. doi: 10.18307/2019.0518
|
[31] |
张青田, 王新华, 林超, 等. 不同氮源对铜绿微囊藻增殖的影响 [J]. 水生态学杂志, 2011, 32(4): 115-120.
Zhang Q T, Wang X H, Lin C, et al. Effects of different nitrogen on proliferation of Microcystis aeruginosa [J]. Journal of Hydroecology, 2011, 32(4): 115-120.
|
[32] |
Cheng P F, Chu R R, Zhang X Z, et al. Screening of the dominant Chlorella pyrenoidosa for biofilm attached culture and feed production while treating swine wastewater [J]. Bioresource Technology, 2020(318): 124054. doi: 10.1016/j.biortech.2020.124054
|
[33] |
芦尚德, 刘婧婧, 冯一平, 等. 固定化小球藻产氧及光合速率的研究 [J]. 生物技术通报, 2021, 37(3): 92-98.
Lu S D, Liu J J, Feng Y P, et al. Study on oxygen release and photosynthetic rate of immobilized Chlorella [J]. Biotechnology Bulletin, 2021, 37(3): 92-98.
|