MI Xiang-Yuan, ZHANG Chao-Shuo, ZHANG Xiao-Juan, WANG Hai-Hua, GUO Xiao-Ze, LI Si-Ming, ZHAO Da-Xian, HONG Yi-Jiang, DUAN Ming. BENEFITS EVALUATION OF LOTUS-FISH INTEGRATED SYSTEM IN JINGGANGSHAN AREA[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(7): 983-994. DOI: 10.7541/2022.2021.078
Citation: MI Xiang-Yuan, ZHANG Chao-Shuo, ZHANG Xiao-Juan, WANG Hai-Hua, GUO Xiao-Ze, LI Si-Ming, ZHAO Da-Xian, HONG Yi-Jiang, DUAN Ming. BENEFITS EVALUATION OF LOTUS-FISH INTEGRATED SYSTEM IN JINGGANGSHAN AREA[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(7): 983-994. DOI: 10.7541/2022.2021.078

BENEFITS EVALUATION OF LOTUS-FISH INTEGRATED SYSTEM IN JINGGANGSHAN AREA

Funds: Supported by the National Key R&D program of China (2018YFD0901701)]
  • Received Date: April 15, 2021
  • Rev Recd Date: November 25, 2021
  • Available Online: April 13, 2022
  • Published Date: July 14, 2022
  • The study of phytoplankton community structure and its reaction to environmental factors, which plays an important role and has realistic significance, provide a scientific basis for the development of water quality and algal facies management measures. However, there is a lack of researches on the characteristics of phytoplankton community in lotus-fish integrated system, which is the same of comprehensive analysis method of the benefit and its ecological cost. To study the phytoplankton community characteristic of ecosystem and its ecological and economic benefits in lotus-fish integrated system in 2019, a traditional water quality survey following by “Water Quality-Guidance on Sampling Techniques” and “Technical Regulation Waterquality Sampling” and an investigation the phytoplankton community structure according to “The Freshwater Algae of China” were conducted, and then analyzed the three systems of ecological footprint with the local production condition. The results showed that (1) A total of 103 species of 7 phyla of phytoplankton were identified, among which, 56 species of green algae, 21 species of Cyanobacteria, 16 species of Diatoms, 3 species of Euglysophyta, 4 species of Cryptosophyta, 2 species of golden algae and 1 species of Xanthophyta. The water quality of the coculture system was in the clean-less pollution type, which was better than that of the fish monoculture and lotus monoculture, and there were seasonal differences in the dominant species. (2) Redundancy analysis demonstrated that water temperature and dissolved oxygen were the main environmental factors affecting the phytoplankton community. (3) The lowest ecological footprint per ten thousand yuan was in the lotus-fish integrated system in Jinggangshan area, which was 4.48 hm2, 80.9% of the fish monoculture pattern and 33.2% of the lotus monoculture. This study indicated that the lotus-fish integrated system in Jinggangshan area of Jiangxi Province has high benefit and low ecological load, and is suitable for local promotion.
  • [1]
    Williams M J. Aquaculture and Sustainable Food Security in the Developing World [M]. New York: Wiley, 1997: 15-51.
    [2]
    马达文, 钱静, 刘家寿, 等. 稻渔综合种养及其发展建议 [J]. 中国工程科学, 2016, 18(3): 96-100. doi: 10.3969/j.issn.1009-1742.2016.03.017

    Ma D W, Qian J, Liu J S, et al. Development strategy for integrated rice field aquaculture [J]. Strategic Study of CAE, 2016, 18(3): 96-100. doi: 10.3969/j.issn.1009-1742.2016.03.017
    [3]
    Frei M, Becker K. Integrated rice-fish culture: Coupled production saves resources [J]. Natural Resources Forum, 2005, 29(2): 135-143. doi: 10.1111/j.1477-8947.2005.00122.x
    [4]
    Xie J, Hu L L, Tang J J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): E1381-1387.
    [5]
    Liu S W, Hu Z Q, Wu S, et al. Methane and nitrous oxide emissions reduced following conversion of Rice paddies to inland crab–fish aquaculture in Southeast China [J]. Environmental Science & Technology, 2016, 50(2): 633-642.
    [6]
    Feng J, Li F, Zhou X, et al. Nutrient removal ability and economical benefit of a rice-fish co-culture system in aquaculture pond [J]. Ecological Engineering, 2016(94): 315-319.
    [7]
    徐国刚, 李宏, 李松, 等. 发展稻渔综合种养, 探索山区产业扶贫新路径 [J]. 中国水产, 2019(7): 29-32.

    Xu G G, Li H, Li S, et al. Exploring a new path for poverty alleviation in mountain industry by developing rice and fishery comprehensive breeding and raising [J]. China Fisheries, 2019(7): 29-32.
    [8]
    Prein M. Integration of aquaculture into crop–animal systems in Asia [J]. Agricultural Systems, 2002, 71(1-2): 127-146. doi: 10.1016/S0308-521X(01)00040-3
    [9]
    倪达书, 汪建国. 稻田养鱼的理论与实践 [M]. 北京: 农业出版社, 1988: 12.

    Ni D S, Wang J G, Theory and Practice of Rice-fish Coculture [M]. Beijing: Agriculture Press, 1988: 12.
    [10]
    Zhang J, Hu L L, Ren W Z, et al. Rice-soft shell turtle coculture effects on yield and its environment [J]. Agriculture Ecosystems & Environment, 2016(224): 116-122.
    [11]
    Li F B, Feng J F, Zhou X Y, et al. Impact of rice-fish/shrimp co-culture on the N2O emission and NH3 volatilization in intensive aquaculture ponds [J]. Science of the Total Environment, 2019(655): 284-291.
    [12]
    Liu Y B, Qin L, Li F B, et al. Impact of rice-catfish/shrimp co-culture on nutrients fluxes across sediment-water interface in intensive aquaculture ponds [J]. Rice Science, 2019, 26(6): 416-424. doi: 10.1016/j.rsci.2019.06.001
    [13]
    Fang K K, Gao H, Sha Z M, et al. Mitigating global warming potential with increase net ecosystem economic budget by integrated rice-frog farming in eastern China [J]. Agriculture, Ecosystems & Environment, 2021(308): 107235.
    [14]
    魏志兵, 柴毅, 罗静波, 等. 长湖浮游植物优势种季节演替及生态位分析 [J]. 水生生物学报, 2020, 44(3): 612-621.

    Wei Z B, Chai Y, Luo J B, et al. Seasonal succession and ecological niche analysis of the dominant species of phytoplankton in Changhu lake [J]. Acta Hydrobiologica Sinica, 2020, 44(3): 612-621.
    [15]
    Gao J, Wang F, Jiang W Q, et al. A full evaluation of chiral phenylpyrazole pesticide flufiprole and the metabolites to non-target organism in paddy field [J]. Environmental Pollution, 2020(264): 114808.
    [16]
    陶忠虎, 胡德风, 周浠. 莲虾共生高效模式及生产技术要点 [J]. 中国水产, 2012(2): 71-72.

    Tao Z H, Hu D F, Zhou X, High efficiency and key points of production technology of lotus shrimp coculture [J]. China Fisheries, 2012(2): 71-72.
    [17]
    王雯慧. 科技扶贫, 永新交出满意答卷 [J]. 中国农村科技, 2018(10): 16-19. doi: 10.3969/j.issn.1005-9768.2018.10.006

    Wang W H. Helping the poor through science and technology, Yongxin has delivered satisfactory results [J]. China Rural Science & Technology, 2018(10): 16-19. doi: 10.3969/j.issn.1005-9768.2018.10.006
    [18]
    刘森, 陆敬波. 黔北山区高标准稻渔综合种养效益分析 [J]. 科学养鱼, 2019(11): 82-83.

    Liu S, Lu J B. Analysis on the benefit of high standard rice-fish coculture in the north mountainous area of Guizhou province [J]. Scientific Fish Farming, 2019(11): 82-83.
    [19]
    Guo H S, Qi M, Hu Z J, et al. Optimization of the rice-fish coculture in Qingtian, China: 1. Effects of rice spacing on the growth of the paddy fish and the chemical composition of both rice and fish [J]. Aquaculture, 2020(522): 735106.
    [20]
    Suikkanen S, Laamanen M, Huttunen M. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea [J]. Estuarine Coastal and Shelf Science, 2007, 71(3-4): 580-592. doi: 10.1016/j.ecss.2006.09.004
    [21]
    柴毅, 彭婷, 郭坤, 等. 海子湖春季浮游植物群落结构与环境因子相关性分析 [J]. 水生态学杂志, 2014, 35(2): 56-62. doi: 10.3969/j.issn.1674-3075.2014.02.009

    Chai Y, Peng T, Guo K, et al. Correlation analysis of spring phytoplankton community and environmental factors in Hazihu lake [J]. Journal of Hydroecology, 2014, 35(2): 56-62. doi: 10.3969/j.issn.1674-3075.2014.02.009
    [22]
    Wang Z H, Yuan M L, Liang Y, et al. Effects of temperature and organic and inorganic nutrients on the growth of Chattonella marina (Raphidophyceae) from the Daya Bay, South China Sea [J]. Acta Oceanologica Sinica, 2011(30): 124-131.
    [23]
    Stevenson R J, Bennett B J, Jordan D N, et al. Phosphorus regulates stream injury by filamentous green algae, DO, and pH with thresholds in responses [J]. Hydrobiologia, 2012, 695(1): 25-42. doi: 10.1007/s10750-012-1118-9
    [24]
    张启明, 铁文霞, 尹斌, 等. 藻类在稻田生态系统中的作用及其对氨挥发损失的影响 [J]. 土壤, 2006, 38(6): 814-819. doi: 10.3321/j.issn:0253-9829.2006.06.026

    Zhang Q M, Tie W X, Yin B, et al. Algae function in paddy field ecosystem and its effect on reducing ammonia volatilization from paddy fields [J]. Soils, 2006, 38(6): 814-819. doi: 10.3321/j.issn:0253-9829.2006.06.026
    [25]
    袁伟玲, 曹凑贵, 汪金平, 等. 稻鱼共作生态系统浮游植物群落结构和生物多样性 [J]. 生态学报, 2010, 30(1): 253-257.

    Yuan W L, Cao C G, Wang J P, et al. The community structure and diversity of phytoplankton in rice-fish ecological system [J]. Acta Ecologica Sinica, 2010, 30(1): 253-257.
    [26]
    Liu D, Tang R C, Xie J, et al. Valuation of ecosystem services of rice–fish coculture systems in Ruyuan County, China [J]. Ecosystem Services, 2020(41): 101054.
    [27]
    Rees W E. Ecological footprints and appropriated carrying capacity: what urban economics leaves out [J]. Urbanisation, 1992, 4(2): 121-130. doi: 10.1177/095624789200400212
    [28]
    Rees W E, Wackernagel M. Urban ecological footprints: why cities cannot be sustainable—and why they are a key to sustainability [J]. Environmental Impact Assessment Review, 1996, 16(4-6): 223-248. doi: 10.1016/S0195-9255(96)00022-4
    [29]
    章宗涉, 黄祥飞, 等. 淡水浮游生物研究方法 [M]. 北京: 科学出版社, 1991: 333-339.

    Zhang Z S, Huang X F, et al. Methods for Research on Freshwater Plankton [M]. Beijing: Science Press, 1991: 333-339.
    [30]
    胡鸿钧, 李尧英, 魏印心, 等. 中国淡水藻类: 系统、分类及生态 [M]. 北京: 科学出版社, 2006: 23-948.

    Hu H J, Li Y, Wei Y X, et al. The Freshwater Algae of China: System, Taxonomy and Ecology [M]. Beijing: Science Press, 2006: 23-948.
    [31]
    Xu Y G, Li A J, Qin J H, et al. Seasonal patterns of water quality and phytoplankton dynamics in surface waters in Guangzhou and Foshan, China [J]. Science of the Total Environment, 2017(590): 361-369.
    [32]
    毕安平, 朱鹤健, 王德光. 基于区域产量法测算的福建省农业生态足迹 [J]. 自然资源学报, 2010, 25(6): 967-977. doi: 10.11849/zrzyxb.2010.06.009

    Bi A P, Zhu H J, Wang D G. Agricultural ecological footprint in Fujian province base on regional yield method [J]. Journal of Natural Resources, 2010, 25(6): 967-977. doi: 10.11849/zrzyxb.2010.06.009
    [33]
    Woldeab B, Beyene A, Ambelu A, et al. Seasonal and spatial variation of reservoir water quality in the southwest of ethiopia. [J]. Environmental Monitoring and Assessment, 2018, 190(3): 163. doi: 10.1007/s10661-018-6527-4
    [34]
    杜岩岩, 廖传松, 杨濯羽, 等. 刘家峡水库浮游植物群落结构与环境因子的关系 [J]. 水生生物学报, 2021, 45(6): 1299-1307.

    Du Y Y, Liao C S, Yang Z Y, et al. Community structures of phytoplankton and its relationship with environmental factors in the Liujiaxia Reservoir [J]. Acta Hydrobiologica Sinica, 2021, 45(6): 1299-1307.
    [35]
    Sommer U, Gliwiczz M, Lampert W, et al. The peg-model of seasonal succession of planktonic events in fresh water [J]. Archiv Fur Hydrobiologie, 1986, 106(4): 433-471.
    [36]
    Abirhire O, North R L, Hunter K, et al. Environmental factors influencing phytoplankton communities in lake diefenbaker, saskatchewan, Canada [J]. Journal of Great Lakes Research, 2015, 41(s2): 118-128.
    [37]
    Scheffer M, Rinaldi S, Gragnani A, et al. On the dominance of filamentous cyanobacteria in shallow, turbid lakes [J]. Ecology, 1997, 78(1): 272-282. doi: 10.1890/0012-9658(1997)078[0272:OTDOFC]2.0.CO;2
    [38]
    Gu J, Jin H, He H, et al. Effects of small-sized crucian carp (Carassius carassius) on the growth of submerged macrophytes: Implications for shallow lake restoration [J]. Ecological Engineering, 2016(95): 567-573.
    [39]
    Matsuzaki S I S, Usio N, Takamura N, et al. Contrasting impacts of invasive engineers on freshwater ecosystems: an experiment and meta-analysis [J]. Oecologia, 2009, 158(4): 673-686. doi: 10.1007/s00442-008-1180-1
    [40]
    李娜, 黎佳茜, 李国文, 等. 中国典型湖泊富营养化现状与区域性差异分析 [J]. 水生生物学报, 2018, 42(4): 854-864. doi: 10.7541/2018.105

    Li N, Li J X, Li G W, et al. The eutrophication and its regional heterogeneity in typical lakes of China [J]. Acta Hydrobiologica Sinica, 2018, 42(4): 854-864. doi: 10.7541/2018.105
    [41]
    Peng S T, Qin X B, Shi H H, et al. Distribution and controlling factors of phytoplankton assemblages in a semienclosed bay during spring and summer [J]. Marine Pollution Bulletin, 2012, 64(5): 941-948.
    [42]
    Paerl H W, Hall N S, Calandrino E S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change [J]. Science of the Total Environment, 2011, 409(10): 1739-1745.
    [43]
    Poste A E, Hecky R E, Guildford S J, et al. Phosphorus enrichment and carbon depletion contribute to high Microcystis biomass and microcystin concentrations in Ugandan lakes [J]. Limnology and Oceanography, 2013, 58(3): 1075-1088.
    [44]
    Nalewajko C, Murphy T P. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in lake Biwa, Japan: an experimental approach [J]. Limnology, 2001(2): 45-48.
    [45]
    李坤阳, 储昭升, 金相灿, 等. 巢湖水体藻类生长潜力研究 [J]. 农业环境科学学报, 2009, 28(10): 2124-2131. doi: 10.3321/j.issn:1672-2043.2009.10.021

    Li K Y, Chu Z S, Jin X C, et al. The algal growth potential of research in Chaohu lake water [J]. Journal of Agro-Environment Science, 2009, 28(10): 2124-2131. doi: 10.3321/j.issn:1672-2043.2009.10.021
    [46]
    曾华献, 王敬富, 李玉麟, 等. 贵州红枫湖近10年来(2009-2018年) 年水质变化及影响因素 [J]. 湖泊科学, 2020, 32(3): 676-687. doi: 10.18307/2020.0308

    Zeng H X, Wang J F, Li Y L, et al. Water quality change and influencing factors in Lake Hongfeng (Guizhou Province), 2009-2018 [J]. Journal of Lake Sciences, 2020, 32(3): 676-687. doi: 10.18307/2020.0308
    [47]
    Chen W M, Liu H, Zhang Q M, et al. Effect of nitrite on growth and microcystins production of Microcystis aeruginosa PCC7806 [J]. Journal of Applied Phycology, 2011, 23(4): 665-671. doi: 10.1007/s10811-010-9558-y
    [48]
    孙淑娟, 黄岁樑. 海河沉积物中磷释放的模拟研究 [J]. 环境科学研究, 2008, 21(4): 126-131.

    Sun S J, Huang S L. Simulated experiment of phosphorus release from Haihe river sediment [J]. Research of Environmental Sciences, 2008, 21(4): 126-131.
    [49]
    Huo Y Z, Shi H H, Zhang J H, et al. Spatio temporal variability of phytoplankton assemblages and its controlling factors in spring and summer in the Subei Shoal of Yellow Sea, China [J]. Acta Oceanologica Sinica, 2019, 38(10): 84-92. doi: 10.1007/s13131-019-1345-2
    [50]
    况琪军, 马沛明, 胡征宇, 等. 湖泊富营养化的藻类生物学评价与治理研究进展 [J]. 安全与环境学报, 2005, 5(2): 87-91. doi: 10.3969/j.issn.1009-6094.2005.02.024

    Kuang Q J, Ma P M, Hu Z Y, et al. Study on the evaluation and treatment of lake eutrophication by means of algae biology [J]. Journal of Safety and Environment, 2005, 5(2): 87-91. doi: 10.3969/j.issn.1009-6094.2005.02.024
    [51]
    雷安平, 施之新, 魏印心. 武汉东湖浮游藻类物种多样性的研究 [J]. 水生生物学报, 2003, 27(2): 179-184. doi: 10.3321/j.issn:1000-3207.2003.02.015

    Lei A P, Shi Z X, Wei Y X. Diversity of the phytoplankton in Donghu lake, Wuhan [J]. Acta Hydrobiologica Sinica, 2003, 27(2): 179-184. doi: 10.3321/j.issn:1000-3207.2003.02.015
    [52]
    刘乾甫, 赖子尼, 高原, 等. 珠江三角洲地区精养淡水鱼塘浮游植物功能群特征 [J]. 中国水产科学, 2018, 25(1): 124-136. doi: 10.3724/SP.J.1118.2018.17045

    Liu Q F, Lai Z N, Gao Y, et al. Characteristics of phytoplankton functional groups of intensive-culturing fishponds in the Pearl River Delta [J]. Journal of Fishery Sciences of China, 2018, 25(1): 124-136. doi: 10.3724/SP.J.1118.2018.17045
    [53]
    肖溪, 楼莉萍, 李华, 等. 沉水植物化感作用控藻能力评述 [J]. 应用生态学报, 2009, 20(3): 705-712.

    Xiao X, Lou L P, Li H, et al. Algal control ability of allelopathically active submerged macrophytes: A review [J]. Chinese Journal of Applied Ecology, 2009, 20(3): 705-712.
    [54]
    Zhao S, Song K, Gui F, et al. The emergy ecological footprint for small fish farm in China [J]. Ecological Indicators, 2013, 29(3): 62-67.
    [55]
    Cang P P, Yang Z Y, Duan Y. The economies of scale of turbot industrial running water aquaculture system in China: A case from Shandong Province [J]. Turkish Journal of Fisheries and Aquatic Sciences, 2018(18): 167-173.

Catalog

    Article views (2933) PDF downloads (49) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return