Citation: | MI Xiang-Yuan, ZHANG Chao-Shuo, ZHANG Xiao-Juan, WANG Hai-Hua, GUO Xiao-Ze, LI Si-Ming, ZHAO Da-Xian, HONG Yi-Jiang, DUAN Ming. BENEFITS EVALUATION OF LOTUS-FISH INTEGRATED SYSTEM IN JINGGANGSHAN AREA[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(7): 983-994. DOI: 10.7541/2022.2021.078 |
[1] |
Williams M J. Aquaculture and Sustainable Food Security in the Developing World [M]. New York: Wiley, 1997: 15-51.
|
[2] |
马达文, 钱静, 刘家寿, 等. 稻渔综合种养及其发展建议 [J]. 中国工程科学, 2016, 18(3): 96-100. doi: 10.3969/j.issn.1009-1742.2016.03.017
Ma D W, Qian J, Liu J S, et al. Development strategy for integrated rice field aquaculture [J]. Strategic Study of CAE, 2016, 18(3): 96-100. doi: 10.3969/j.issn.1009-1742.2016.03.017
|
[3] |
Frei M, Becker K. Integrated rice-fish culture: Coupled production saves resources [J]. Natural Resources Forum, 2005, 29(2): 135-143. doi: 10.1111/j.1477-8947.2005.00122.x
|
[4] |
Xie J, Hu L L, Tang J J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): E1381-1387.
|
[5] |
Liu S W, Hu Z Q, Wu S, et al. Methane and nitrous oxide emissions reduced following conversion of Rice paddies to inland crab–fish aquaculture in Southeast China [J]. Environmental Science & Technology, 2016, 50(2): 633-642.
|
[6] |
Feng J, Li F, Zhou X, et al. Nutrient removal ability and economical benefit of a rice-fish co-culture system in aquaculture pond [J]. Ecological Engineering, 2016(94): 315-319.
|
[7] |
徐国刚, 李宏, 李松, 等. 发展稻渔综合种养, 探索山区产业扶贫新路径 [J]. 中国水产, 2019(7): 29-32.
Xu G G, Li H, Li S, et al. Exploring a new path for poverty alleviation in mountain industry by developing rice and fishery comprehensive breeding and raising [J]. China Fisheries, 2019(7): 29-32.
|
[8] |
Prein M. Integration of aquaculture into crop–animal systems in Asia [J]. Agricultural Systems, 2002, 71(1-2): 127-146. doi: 10.1016/S0308-521X(01)00040-3
|
[9] |
倪达书, 汪建国. 稻田养鱼的理论与实践 [M]. 北京: 农业出版社, 1988: 12.
Ni D S, Wang J G, Theory and Practice of Rice-fish Coculture [M]. Beijing: Agriculture Press, 1988: 12.
|
[10] |
Zhang J, Hu L L, Ren W Z, et al. Rice-soft shell turtle coculture effects on yield and its environment [J]. Agriculture Ecosystems & Environment, 2016(224): 116-122.
|
[11] |
Li F B, Feng J F, Zhou X Y, et al. Impact of rice-fish/shrimp co-culture on the N2O emission and NH3 volatilization in intensive aquaculture ponds [J]. Science of the Total Environment, 2019(655): 284-291.
|
[12] |
Liu Y B, Qin L, Li F B, et al. Impact of rice-catfish/shrimp co-culture on nutrients fluxes across sediment-water interface in intensive aquaculture ponds [J]. Rice Science, 2019, 26(6): 416-424. doi: 10.1016/j.rsci.2019.06.001
|
[13] |
Fang K K, Gao H, Sha Z M, et al. Mitigating global warming potential with increase net ecosystem economic budget by integrated rice-frog farming in eastern China [J]. Agriculture, Ecosystems & Environment, 2021(308): 107235.
|
[14] |
魏志兵, 柴毅, 罗静波, 等. 长湖浮游植物优势种季节演替及生态位分析 [J]. 水生生物学报, 2020, 44(3): 612-621.
Wei Z B, Chai Y, Luo J B, et al. Seasonal succession and ecological niche analysis of the dominant species of phytoplankton in Changhu lake [J]. Acta Hydrobiologica Sinica, 2020, 44(3): 612-621.
|
[15] |
Gao J, Wang F, Jiang W Q, et al. A full evaluation of chiral phenylpyrazole pesticide flufiprole and the metabolites to non-target organism in paddy field [J]. Environmental Pollution, 2020(264): 114808.
|
[16] |
陶忠虎, 胡德风, 周浠. 莲虾共生高效模式及生产技术要点 [J]. 中国水产, 2012(2): 71-72.
Tao Z H, Hu D F, Zhou X, High efficiency and key points of production technology of lotus shrimp coculture [J]. China Fisheries, 2012(2): 71-72.
|
[17] |
王雯慧. 科技扶贫, 永新交出满意答卷 [J]. 中国农村科技, 2018(10): 16-19. doi: 10.3969/j.issn.1005-9768.2018.10.006
Wang W H. Helping the poor through science and technology, Yongxin has delivered satisfactory results [J]. China Rural Science & Technology, 2018(10): 16-19. doi: 10.3969/j.issn.1005-9768.2018.10.006
|
[18] |
刘森, 陆敬波. 黔北山区高标准稻渔综合种养效益分析 [J]. 科学养鱼, 2019(11): 82-83.
Liu S, Lu J B. Analysis on the benefit of high standard rice-fish coculture in the north mountainous area of Guizhou province [J]. Scientific Fish Farming, 2019(11): 82-83.
|
[19] |
Guo H S, Qi M, Hu Z J, et al. Optimization of the rice-fish coculture in Qingtian, China: 1. Effects of rice spacing on the growth of the paddy fish and the chemical composition of both rice and fish [J]. Aquaculture, 2020(522): 735106.
|
[20] |
Suikkanen S, Laamanen M, Huttunen M. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea [J]. Estuarine Coastal and Shelf Science, 2007, 71(3-4): 580-592. doi: 10.1016/j.ecss.2006.09.004
|
[21] |
柴毅, 彭婷, 郭坤, 等. 海子湖春季浮游植物群落结构与环境因子相关性分析 [J]. 水生态学杂志, 2014, 35(2): 56-62. doi: 10.3969/j.issn.1674-3075.2014.02.009
Chai Y, Peng T, Guo K, et al. Correlation analysis of spring phytoplankton community and environmental factors in Hazihu lake [J]. Journal of Hydroecology, 2014, 35(2): 56-62. doi: 10.3969/j.issn.1674-3075.2014.02.009
|
[22] |
Wang Z H, Yuan M L, Liang Y, et al. Effects of temperature and organic and inorganic nutrients on the growth of Chattonella marina (Raphidophyceae) from the Daya Bay, South China Sea [J]. Acta Oceanologica Sinica, 2011(30): 124-131.
|
[23] |
Stevenson R J, Bennett B J, Jordan D N, et al. Phosphorus regulates stream injury by filamentous green algae, DO, and pH with thresholds in responses [J]. Hydrobiologia, 2012, 695(1): 25-42. doi: 10.1007/s10750-012-1118-9
|
[24] |
张启明, 铁文霞, 尹斌, 等. 藻类在稻田生态系统中的作用及其对氨挥发损失的影响 [J]. 土壤, 2006, 38(6): 814-819. doi: 10.3321/j.issn:0253-9829.2006.06.026
Zhang Q M, Tie W X, Yin B, et al. Algae function in paddy field ecosystem and its effect on reducing ammonia volatilization from paddy fields [J]. Soils, 2006, 38(6): 814-819. doi: 10.3321/j.issn:0253-9829.2006.06.026
|
[25] |
袁伟玲, 曹凑贵, 汪金平, 等. 稻鱼共作生态系统浮游植物群落结构和生物多样性 [J]. 生态学报, 2010, 30(1): 253-257.
Yuan W L, Cao C G, Wang J P, et al. The community structure and diversity of phytoplankton in rice-fish ecological system [J]. Acta Ecologica Sinica, 2010, 30(1): 253-257.
|
[26] |
Liu D, Tang R C, Xie J, et al. Valuation of ecosystem services of rice–fish coculture systems in Ruyuan County, China [J]. Ecosystem Services, 2020(41): 101054.
|
[27] |
Rees W E. Ecological footprints and appropriated carrying capacity: what urban economics leaves out [J]. Urbanisation, 1992, 4(2): 121-130. doi: 10.1177/095624789200400212
|
[28] |
Rees W E, Wackernagel M. Urban ecological footprints: why cities cannot be sustainable—and why they are a key to sustainability [J]. Environmental Impact Assessment Review, 1996, 16(4-6): 223-248. doi: 10.1016/S0195-9255(96)00022-4
|
[29] |
章宗涉, 黄祥飞, 等. 淡水浮游生物研究方法 [M]. 北京: 科学出版社, 1991: 333-339.
Zhang Z S, Huang X F, et al. Methods for Research on Freshwater Plankton [M]. Beijing: Science Press, 1991: 333-339.
|
[30] |
胡鸿钧, 李尧英, 魏印心, 等. 中国淡水藻类: 系统、分类及生态 [M]. 北京: 科学出版社, 2006: 23-948.
Hu H J, Li Y, Wei Y X, et al. The Freshwater Algae of China: System, Taxonomy and Ecology [M]. Beijing: Science Press, 2006: 23-948.
|
[31] |
Xu Y G, Li A J, Qin J H, et al. Seasonal patterns of water quality and phytoplankton dynamics in surface waters in Guangzhou and Foshan, China [J]. Science of the Total Environment, 2017(590): 361-369.
|
[32] |
毕安平, 朱鹤健, 王德光. 基于区域产量法测算的福建省农业生态足迹 [J]. 自然资源学报, 2010, 25(6): 967-977. doi: 10.11849/zrzyxb.2010.06.009
Bi A P, Zhu H J, Wang D G. Agricultural ecological footprint in Fujian province base on regional yield method [J]. Journal of Natural Resources, 2010, 25(6): 967-977. doi: 10.11849/zrzyxb.2010.06.009
|
[33] |
Woldeab B, Beyene A, Ambelu A, et al. Seasonal and spatial variation of reservoir water quality in the southwest of ethiopia. [J]. Environmental Monitoring and Assessment, 2018, 190(3): 163. doi: 10.1007/s10661-018-6527-4
|
[34] |
杜岩岩, 廖传松, 杨濯羽, 等. 刘家峡水库浮游植物群落结构与环境因子的关系 [J]. 水生生物学报, 2021, 45(6): 1299-1307.
Du Y Y, Liao C S, Yang Z Y, et al. Community structures of phytoplankton and its relationship with environmental factors in the Liujiaxia Reservoir [J]. Acta Hydrobiologica Sinica, 2021, 45(6): 1299-1307.
|
[35] |
Sommer U, Gliwiczz M, Lampert W, et al. The peg-model of seasonal succession of planktonic events in fresh water [J]. Archiv Fur Hydrobiologie, 1986, 106(4): 433-471.
|
[36] |
Abirhire O, North R L, Hunter K, et al. Environmental factors influencing phytoplankton communities in lake diefenbaker, saskatchewan, Canada [J]. Journal of Great Lakes Research, 2015, 41(s2): 118-128.
|
[37] |
Scheffer M, Rinaldi S, Gragnani A, et al. On the dominance of filamentous cyanobacteria in shallow, turbid lakes [J]. Ecology, 1997, 78(1): 272-282. doi: 10.1890/0012-9658(1997)078[0272:OTDOFC]2.0.CO;2
|
[38] |
Gu J, Jin H, He H, et al. Effects of small-sized crucian carp (Carassius carassius) on the growth of submerged macrophytes: Implications for shallow lake restoration [J]. Ecological Engineering, 2016(95): 567-573.
|
[39] |
Matsuzaki S I S, Usio N, Takamura N, et al. Contrasting impacts of invasive engineers on freshwater ecosystems: an experiment and meta-analysis [J]. Oecologia, 2009, 158(4): 673-686. doi: 10.1007/s00442-008-1180-1
|
[40] |
李娜, 黎佳茜, 李国文, 等. 中国典型湖泊富营养化现状与区域性差异分析 [J]. 水生生物学报, 2018, 42(4): 854-864. doi: 10.7541/2018.105
Li N, Li J X, Li G W, et al. The eutrophication and its regional heterogeneity in typical lakes of China [J]. Acta Hydrobiologica Sinica, 2018, 42(4): 854-864. doi: 10.7541/2018.105
|
[41] |
Peng S T, Qin X B, Shi H H, et al. Distribution and controlling factors of phytoplankton assemblages in a semienclosed bay during spring and summer [J]. Marine Pollution Bulletin, 2012, 64(5): 941-948.
|
[42] |
Paerl H W, Hall N S, Calandrino E S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change [J]. Science of the Total Environment, 2011, 409(10): 1739-1745.
|
[43] |
Poste A E, Hecky R E, Guildford S J, et al. Phosphorus enrichment and carbon depletion contribute to high Microcystis biomass and microcystin concentrations in Ugandan lakes [J]. Limnology and Oceanography, 2013, 58(3): 1075-1088.
|
[44] |
Nalewajko C, Murphy T P. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in lake Biwa, Japan: an experimental approach [J]. Limnology, 2001(2): 45-48.
|
[45] |
李坤阳, 储昭升, 金相灿, 等. 巢湖水体藻类生长潜力研究 [J]. 农业环境科学学报, 2009, 28(10): 2124-2131. doi: 10.3321/j.issn:1672-2043.2009.10.021
Li K Y, Chu Z S, Jin X C, et al. The algal growth potential of research in Chaohu lake water [J]. Journal of Agro-Environment Science, 2009, 28(10): 2124-2131. doi: 10.3321/j.issn:1672-2043.2009.10.021
|
[46] |
曾华献, 王敬富, 李玉麟, 等. 贵州红枫湖近10年来(2009-2018年) 年水质变化及影响因素 [J]. 湖泊科学, 2020, 32(3): 676-687. doi: 10.18307/2020.0308
Zeng H X, Wang J F, Li Y L, et al. Water quality change and influencing factors in Lake Hongfeng (Guizhou Province), 2009-2018 [J]. Journal of Lake Sciences, 2020, 32(3): 676-687. doi: 10.18307/2020.0308
|
[47] |
Chen W M, Liu H, Zhang Q M, et al. Effect of nitrite on growth and microcystins production of Microcystis aeruginosa PCC7806 [J]. Journal of Applied Phycology, 2011, 23(4): 665-671. doi: 10.1007/s10811-010-9558-y
|
[48] |
孙淑娟, 黄岁樑. 海河沉积物中磷释放的模拟研究 [J]. 环境科学研究, 2008, 21(4): 126-131.
Sun S J, Huang S L. Simulated experiment of phosphorus release from Haihe river sediment [J]. Research of Environmental Sciences, 2008, 21(4): 126-131.
|
[49] |
Huo Y Z, Shi H H, Zhang J H, et al. Spatio temporal variability of phytoplankton assemblages and its controlling factors in spring and summer in the Subei Shoal of Yellow Sea, China [J]. Acta Oceanologica Sinica, 2019, 38(10): 84-92. doi: 10.1007/s13131-019-1345-2
|
[50] |
况琪军, 马沛明, 胡征宇, 等. 湖泊富营养化的藻类生物学评价与治理研究进展 [J]. 安全与环境学报, 2005, 5(2): 87-91. doi: 10.3969/j.issn.1009-6094.2005.02.024
Kuang Q J, Ma P M, Hu Z Y, et al. Study on the evaluation and treatment of lake eutrophication by means of algae biology [J]. Journal of Safety and Environment, 2005, 5(2): 87-91. doi: 10.3969/j.issn.1009-6094.2005.02.024
|
[51] |
雷安平, 施之新, 魏印心. 武汉东湖浮游藻类物种多样性的研究 [J]. 水生生物学报, 2003, 27(2): 179-184. doi: 10.3321/j.issn:1000-3207.2003.02.015
Lei A P, Shi Z X, Wei Y X. Diversity of the phytoplankton in Donghu lake, Wuhan [J]. Acta Hydrobiologica Sinica, 2003, 27(2): 179-184. doi: 10.3321/j.issn:1000-3207.2003.02.015
|
[52] |
刘乾甫, 赖子尼, 高原, 等. 珠江三角洲地区精养淡水鱼塘浮游植物功能群特征 [J]. 中国水产科学, 2018, 25(1): 124-136. doi: 10.3724/SP.J.1118.2018.17045
Liu Q F, Lai Z N, Gao Y, et al. Characteristics of phytoplankton functional groups of intensive-culturing fishponds in the Pearl River Delta [J]. Journal of Fishery Sciences of China, 2018, 25(1): 124-136. doi: 10.3724/SP.J.1118.2018.17045
|
[53] |
肖溪, 楼莉萍, 李华, 等. 沉水植物化感作用控藻能力评述 [J]. 应用生态学报, 2009, 20(3): 705-712.
Xiao X, Lou L P, Li H, et al. Algal control ability of allelopathically active submerged macrophytes: A review [J]. Chinese Journal of Applied Ecology, 2009, 20(3): 705-712.
|
[54] |
Zhao S, Song K, Gui F, et al. The emergy ecological footprint for small fish farm in China [J]. Ecological Indicators, 2013, 29(3): 62-67.
|
[55] |
Cang P P, Yang Z Y, Duan Y. The economies of scale of turbot industrial running water aquaculture system in China: A case from Shandong Province [J]. Turkish Journal of Fisheries and Aquatic Sciences, 2018(18): 167-173.
|