HUANG Ying, LOU Ge-Ge, LIU Xuan-Yu, MAN Zhou, JIANG Neng-Zuo, GUO Ya-Zhe, ZHU Xiao-Ming, GE Ru-Xiang, LIU Hao-Kun, CHEN Xin-Hua, TONG Meng-Qi. REPLACING FISH MEAL WITH RAPESEED MEAL ON GROWTH PERFORMANCE, ANTIOXIDANT CAPACITY AND DIGESTIVE SYSTEM MORPHOLOGY OF JUVENILE PROCAMBARUS CLARKII[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(12): 1918-1931. DOI: 10.7541/2023.2022.0458
Citation: HUANG Ying, LOU Ge-Ge, LIU Xuan-Yu, MAN Zhou, JIANG Neng-Zuo, GUO Ya-Zhe, ZHU Xiao-Ming, GE Ru-Xiang, LIU Hao-Kun, CHEN Xin-Hua, TONG Meng-Qi. REPLACING FISH MEAL WITH RAPESEED MEAL ON GROWTH PERFORMANCE, ANTIOXIDANT CAPACITY AND DIGESTIVE SYSTEM MORPHOLOGY OF JUVENILE PROCAMBARUS CLARKII[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(12): 1918-1931. DOI: 10.7541/2023.2022.0458

REPLACING FISH MEAL WITH RAPESEED MEAL ON GROWTH PERFORMANCE, ANTIOXIDANT CAPACITY AND DIGESTIVE SYSTEM MORPHOLOGY OF JUVENILE PROCAMBARUS CLARKII

Funds: Supported by the Natural Science Foundation of Fujian Province (2023J01494); National Key R & D Program of China (2019Y2FD0900200); Cooperative Project with DSM Vitamins (Shanghai) Limited (KH220128A and KH210114A)
  • Received Date: November 12, 2022
  • Rev Recd Date: January 16, 2023
  • Available Online: February 13, 2023
  • Issue Publish Date: September 10, 2023
  • To elucidate the effects of rapeseed meal replacing fish meal on growth performance, feed utilization, digestive activity and antioxidant capacity of juvenile Procambarus clarkii, five isonitrogenous and isocaloric diets were formulated to feed juvenile Procambarus clarkii with the average initial body weight of (2.49±0.01) g for 42d. The inclusion levels of rapeseed meal were 0, 21.25%, 42.50%, 63.75% and 85% by using rapeseed meal instead of fish meal in different proportions [0 (R0), 25% (R25), 50% (R0), 75% (R0) and 100% (R0)], respectively. The results showed that: (1) no significant differences in FBW, SGR, FE, and PER were observed among the R0, R25 and R50 groups (P>0.05), however, FBW, SGR, FE, and PER in R75 and R100 groups were significantly lower than those in R0 group (P<0.05). Compared with the R0 group, the crude protein and crude lipid contents of juvenile Procambarus clarkii in the R50, R75 and R100 groups were significantly reduced (P<0.05). The activities of hepatopancreatic trypsin, hepatopancreatic lipase and intestinal trypsin of juvenile Procambarus clarkii in the R75 and R100 groups were significantly lower than those in the R0 group (P<0.05), while there was no significant difference in amylase activity among all the groups (P>0.05). NPY and TRY genes expressions levels in hepatopancreas and intestine of R75 and R100 groups significantly decreased than those of R0 group (P<0.05), while MSNP gene expression level significantly increased (P<0.05). (2) Hepatopancreatic alkaline phosphatase (AKP), alanine aminotransferase (GPT), and aspartate aminotransferase (GOT) activities in the R100 group significantly increased compared with the R0 group (P<0.05). With the increase of rapeseed meal level, the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione S-transferase (GST) in hepatopancreas showed a decreasing tendency, which in the R75 and R100 groups were significantly lower than those in the R0 group (P<0.05). The expression levels of AKP gene in hepatopancreas and intestine of the R50, R75 and R100 groups significantly increased compared with the R0 group (P<0.05), while the expression levels of CAT, SOD and GPX genes significantly decreased (P<0.05). (3) The structures of hepatopancreas and intestine in the R25 group were not significantly different from those in the R0 group. With the increase of replacement ratio, the vacuolation of hepatopancreas epithelial cells in the juvenile Procambarus clarkii gradually increased, R cells atrophy by degrees, and the hepatopancreas tubules lumens were misshapened and had become enlarged. The intestinal cells fall off and the intestinal villi become significantly shorter. In summary, the appropriate content of rapeseed meal in the feed for juvenile Procambarus clarkii should not be more than 21.25%.

  • [1]
    Zhang Y Q, Wu Y B, Jiang D L, et al. Gamma-irradiated soybean meal replaced more fish meal in the diets of Japanese seabass (Lateolabrax japonicus) [J]. Animal Feed Science and Technology, 2014(197): 155-163.
    [2]
    Ding Z L, Zhang Y X, Ye J Y, et al. An evaluation of replacing fish meal with fermented soybean meal in the diet of Macrobrachium nipponense: growth, nonspecific immunity, and resistance to Aeromonas hydrophila [J]. Fish & Shellfish Immunology, 2015, 44(1): 295-301.
    [3]
    Tan Q, Song D, Chen X, et al. Replacing fish meal with vegetable protein sources in feed for juvenile red swamp crayfish, Procambarus clarkii: effects of amino acids supplementation on growth and feed utilization [J]. Aquaculture Nutrition, 2018, 24(2): 858-864. doi: 10.1111/anu.12621
    [4]
    Hu Y, Shi Y, Liu Y L, et al. Effects of tributyrin on growth performance, immune response and intestinal barrier function of juvenile grass carp (Ctenopharyngodon idellus) fed diets with high cottonseed and rapeseed meal [J]. Aquaculture Nutrition, 2021, 27(6): 2468-2480. doi: 10.1111/anu.13378
    [5]
    Mohammadi M, Imani A, Farhangi M, et al. Replacement of fishmeal with processed canola meal in diets for juvenile Nile tilapia (Oreochromis niloticus): growth performance, mucosal innate immunity, hepatic oxidative status, liver and intestine histology [J]. Aquaculture, 2020(518): 734824.
    [6]
    Nagel F, von Danwitz A, Tusche K, et al. Nutritional evaluation of rapeseed protein isolate as fish meal substitute for juvenile turbot (Psetta maxima L.)-impact on growth performance, body composition, nutrient digestibility and blood physiology [J]. Aquaculture, 2012(356/357): 357-364.
    [7]
    Qian D W, Yang X L, Xu C, et al. Growth and health status of the red claw crayfish, cherax quadricarinatus, fed diets with four typical plant protein sources as a replacement for fish meal [J]. Aquaculture Nutrition, 2021, 27(3): 795-806. doi: 10.1111/anu.13224
    [8]
    Luo Z, Li X D, Wang W M, et al. Partial replacement of fish meal by a mixture of soybean meal and rapeseed meal in practical diets for juvenile Chinese mitten crab Eriocheir sinensis: effects on growth performance and in vivo digestibility [J]. Aquaculture Research, 2011, 42(11): 1615-1622. doi: 10.1111/j.1365-2109.2010.02751.x
    [9]
    Elizabeth Cruz-Suarez L, Ricque-Marie D, Tapia-Salazar M, et al. Assessment of differently processed feed pea (Pisum sativum) meals and canola meal (Brassica sp. ) in diets for blue shrimp (Litopenaeus stylirostris) [J]. Aquaculture, 2001, 196(1/2): 87-104.
    [10]
    Ngo D T, Wade N M, Pirozzi I, et al. Effects of canola meal on growth, feed utilisation, plasma biochemistry, histology of digestive organs and hepatic gene expression of barramundi (Asian seabass; Lates calcarifer) [J]. Aquaculture, 2016(464): 95-105.
    [11]
    Adem H N, Tressel R, Pudel F, et al. Rapeseed use in aquaculture [J]. Oilseeds & Fats Crops and Lipids, 2014, 21(1): D105.
    [12]
    Xu W, Jin J, Han D, et al. Physiological and transcriptomic responses to fishmeal-based diet and rapeseed meal-based diet in two strains of gibel carp (Carassius gibelio) [J]. Fish Physiology and Biochemistry, 2018, 45(1): 267-286.
    [13]
    Cai C, Song L, Wang Y, et al. Assessment of the feasibility of including high levels of rapeseed meal and peanut meal in diets of juvenile crucian carp (Carassius auratus gibelio♀×Cyprinus carpio♂): Growth, immunity, intestinal morphology, and microflora [J]. Aquaculture, 2013(410/411): 203-215.
    [14]
    Hu Y J, Hu Y, Wu T Q, et al. Effects of high dietary levels of cottonseed meal and rapeseed meal on growth performance, muscle texture, and expression of muscle-related genes in grass carp [J]. North American Journal of Aquaculture, 2019, 81(3): 235-241. doi: 10.1002/naaq.10091
    [15]
    Zhang X, Wang H, Zhang J, et al. Assessment of rapeseed meal as fish meal alternative in diets for juvenile Asian red-tailed catfish (Hemibagrus wyckioides) [J]. Aquaculture Reports, 2020(18): 100497.
    [16]
    Tan Q S, Liu Q, Chen X X, et al. Growth performance, biochemical indices and hepatopancreatic function of grass carp, Ctenopharyngodon idellus, would be impaired by dietary rapeseed meal [J]. Aquaculture, 2013(414/415): 119-126.
    [17]
    Iqbal M, Yaqub A, Ayub M. Partial and full substitution of fish meal and soybean meal by canola meal in diets for genetically improved farmed tilapia (O. niloticus): growth performance, carcass composition, serum biochemistry, immune response, and intestine histology [J]. Journal of Applied Aquaculture, 2022, 34(4): 829-854. doi: 10.1080/10454438.2021.1890661
    [18]
    Li J, Liang X F, Alam M S, et al. Adaptation of AMPK-mTOR-signal pathways and lipid metabolism in response to low- and high-level rapeseed meal diet in Chinese perch (Siniperca chuatsi) [J]. Journal of Comparative Physiology B, 2021, 191(5): 881-894. doi: 10.1007/s00360-021-01393-7
    [19]
    Liu Y L, Zhong L, Chen T, et al. Dietary sanguinarine supplementation on the growth performance, immunity and intestinal health of grass carp (Ctenopharyngodon idellus) fed cottonseed and rapeseed meal diets [J]. Aquaculture, 2020(528): 735521.
    [20]
    Bu X Y, Wang Y Y, Chen F Y, et al. An evaluation of replacing fishmeal with rapeseed meal in the diet of Pseudobagrus ussuriensis: growth, feed utilization, nonspecific immunity, and growth-related gene expression [J]. Journal of the World Aquaculture Society, 2018, 49(6): 1068-1080. doi: 10.1111/jwas.12470
    [21]
    许文斌. 豆粕与两种双低菜粕营养价值的比较及在奶牛饲料中的应用 [D]. 哈尔滨: 东北农业大学, 2017.

    Xu W B. Comparison of nutritional value of soybean meal with two kinds of canola meal and its application in dairy cattle feed [D]. Harbin: Northeast Agricultural University, 2017.
    [22]
    黄云, 胡毅, 肖调义, 等. 双低菜粕替代豆粕对青鱼幼鱼生长及生理生化指标的影响 [J]. 水生生物学报, 2012, 36(1): 41-48.

    Huang Y, Hu Y, Xiao T Y, et al. Influence of dietary canola meal levels on growth and biochemical indices in juvenile Mylopharvngodon piceus [J]. Acta Hydrobiologica Sinica, 2012, 36(1): 41-48.
    [23]
    吴志军. 不同蛋白源日粮和补饲蛋氨酸羟基类似物异丙酯对奶牛生产性能的影响 [D]. 南京: 南京农业大学, 2015.

    Wu Z J. Effects of different protein resource ration and supplementing 2-hydroxy-4-methylthio butanoic acid isopropyl ester on milk performance in dairy cows [D]. Nanjing: Nanjing Agricultural University, 2015.
    [24]
    陈佳毅, 叶元土, 张伟涛, 等. 双低菜粕是水产饲料中的优质植物蛋白源 [J]. 饲料研究, 2008(2): 58-60. doi: 10.13557/j.cnki.issn1002-2813.2008.02.025

    Chen J Y, Ye Y T, Zhang W T, et al. Double-low rapeseed meal is a high-quality plant protein source in aquatic feed [J]. Feed Research, 2008(2): 58-60. doi: 10.13557/j.cnki.issn1002-2813.2008.02.025
    [25]
    Ren X, Peng G H, Zhang H Y, et al. Sex differences in the disease resistance of red swamp crayfish (Procambarus clarkii) [J]. Aquaculture, 2022(548): 737712.
    [26]
    李晨露, 李京昊, 成永旭, 等. 不同饵料对克氏原螯虾仔虾养殖水质、生长、消化酶和非特异性免疫酶的影响 [J]. 上海海洋大学学报, 2022, 31(4): 883-892.

    Li C L, Li J H, Cheng Y X, et al. Effects of different initial diets on water quality, growth, digestive enzymes and non-specific immune enzymes of Procambarus clarkii [J]. Journal of Shanghai Ocean University, 2022, 31(4): 883-892.
    [27]
    史振鹏, 王爱民, 陈开健, 等. 克氏原螯虾营养与饲料的研究进展 [J]. 盐城工学院学报(自然科学版), 2019, 32(2): 52-56. doi: 10.16018/j.cnki.cn32-1650/n.201902011

    Shi Z P, Wang A M, Chen K J, et al. Research Progress on nutrition and feed of Procambarus clarkii [J]. Journal of Yancheng Institute of Technology (Natural Science Edition), 2019, 32(2): 52-56. doi: 10.16018/j.cnki.cn32-1650/n.201902011
    [28]
    杨长庚, 苏富强, 文华, 等. 不同蛋白源饲料对克氏原螯虾生长及胰岛素生长因子受体基因表达的影响 [J]. 淡水渔业, 2019, 49(5): 86-92. doi: 10.3969/j.issn.1000-6907.2019.05.013

    Yang C G, Su F Q, Wen H, et al. Effects of different protein sources feed on growth and IGF1R mRNA expression of Procambarus clarkii [J]. Freshwater Fisheries, 2019, 49(5): 86-92. doi: 10.3969/j.issn.1000-6907.2019.05.013
    [29]
    刘敏, 张海涛, 孙广文, 等. 克氏原螯虾营养需求与功能性饲料研究进展 [J]. 广东饲料, 2021, 30(11): 37-44. doi: 10.3969/j.issn.1005-8613.2021.11.009

    Liu M, Zhang H T, Sun G W, et al. Research progress of nutritional requirements and functional feed of Procambarus clarkii [J]. Guangdong Feed, 2021, 30(11): 37-44. doi: 10.3969/j.issn.1005-8613.2021.11.009
    [30]
    AOAC (Association of Official Analytical Chemists) [M]. Animal Feed//Williams S (Eds.), Official Methods of Analysis, 14th edn AOAC, Inc., Arlington, VA, Washington, DC, 1984: 152-161.
    [31]
    Cheng Z Y, Ai Q H, Mai K S, et al. Effects of dietary canola meal on growth performance, digestion and metabolism of Japanese seabass, Lateolabrax japonicus [J]. Aquaculture, 2010, 305(1/2/3/4): 102-108.
    [32]
    张恒, 刘立鹤, 贺国龙, 等. 凡纳滨对虾饲料中菜籽粕替代鱼粉适宜比例的研究 [J]. 水产科学, 2011, 30(10): 591-596. doi: 10.3969/j.issn.1003-1111.2011.10.001

    Zhang H, Liu L H, He G L, et al. Proper proportion of rapeseed meal substitution for fish meal in diet of pacific white leg shrimp Litopenaeus vannamei [J]. Fisheries Science, 2011, 30(10): 591-596. doi: 10.3969/j.issn.1003-1111.2011.10.001
    [33]
    Chung K T, Wong T Y, Wei C I, et al. Tannins and human health: a review [J]. Critical Reviews in Food Science and Nutrition, 1998, 38(6): 421-464. doi: 10.1080/10408699891274273
    [34]
    孟玉琼, 苗新, 孙瑞健, 等. 双低菜粕高水平替代饲料鱼粉对大黄鱼潜在风险的评估: 生长、健康和营养价值 [J]. 水生生物学报, 2017, 41(1): 127-138. doi: 10.7541/2017.17

    Meng Y Q, Miao X, Sun R J, et al. Potential risks of high level replacement of dietary fish meal by canola meal on large yellow croaker Larimichthys crocea (Richardson, 1846): growth, health and nutritional values as a food fish [J]. Acta Hydrobiologica Sinica, 2017, 41(1): 127-138. doi: 10.7541/2017.17
    [35]
    吴志新, 覃江凤, 陈孝煊, 等. 双低菜籽粕在草鱼、鲤和日本沼虾配合饲料中适宜使用量的研究 [J]. 淡水渔业, 2005, 35(5): 12-15. doi: 10.3969/j.issn.1000-6907.2005.05.003

    Wu Z X, Qin J F, Chen X X, et al. Study on the suitable dosage of double-low rapeseed meal in the compound feed of grass carp, carp and Macrobrachium nipponense [J]. Freshwater Fisheries, 2005, 35(5): 12-15. doi: 10.3969/j.issn.1000-6907.2005.05.003
    [36]
    Zhou Q L, Habte-Tsion H M, Ge X, et al. Graded replacing fishmeal with canola meal in diets affects growth and target of rapamycin pathway gene expression of juvenile blunt snout bream, Megalobrama amblycephala [J]. Aquaculture Nutrition, 2018, 24(1): 300-309. doi: 10.1111/anu.12560
    [37]
    Shafaeipour A, Yavari V, Falahatkar B, et al. Effects of canola meal on physiological and biochemical parameters in rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture Nutrition, 2008, 14(2): 110-119. doi: 10.1111/j.1365-2095.2007.00509.x
    [38]
    Yang Z F, Huang Z X, Cao L J. Biotransformation technology and high-value application of rapeseed meal: a review [J]. Bioresources and Bioprocessing, 2022, 9(1): 103. doi: 10.1186/s40643-022-00586-4
    [39]
    Kou H Y, Xu S Y, Wang A L. Effect of replacing canola meal for fish meal on the growth, digestive enzyme activity, and amino acids, of ovate pompano, Trachinotus ovatus [J]. The Israeli Journal of Aquaculture-Bamidgeh, 2015(67): 1140.
    [40]
    Bell J M. Factors affecting the nutritional value of canola meal: a review [J]. Canadian Journal of Animal Science, 1993, 73(4): 689-697. doi: 10.4141/cjas93-075
    [41]
    Zhou Q C, Yue Y R. Effect of replacing soybean meal with canola meal on growth, feed utilization and haematological indices of juvenile hybrid tilapia, Oreochromis niloticus×Oreochromis aureus [J]. Aquaculture Research, 2010, 41(7): 982-990.
    [42]
    孔凡双. 维生素C对克氏原螯虾幼虾生长和健康的影响 [D]. 武汉: 华中农业大学, 2021.

    Kong F S. Effects of vitamin c on the growth and health of juvenile Procambarus clarkii [D]. Wuhan: Huazhong Agricultural University, 2021.
    [43]
    Poels C L M, Van der Gaag M A, Van de Kerkhoff J F J. An investigation into the long-term effects of rhine water on rainbow trout [J]. Water Research, 1980, 14(8): 1029-1035. doi: 10.1016/0043-1354(80)90148-7
    [44]
    李一鸣. 日本沼虾杂交和亲本群体遗传多样性与抗逆性的比较研究 [D]. 上海: 华东师范大学, 2022.

    Li Y M. Comparision of genetic diversity and stress resistance between broodstock and hybrid offspring of Macrobrachium nIpponense [D]. Shanghai: East China Normal University, 2022.
    [45]
    钟小群. 发酵饲料对鲤鱼幼鱼生长性能、消化酶活性、肌肉品质和免疫机能的影响 [D]. 南京: 南京农业大学, 2018.

    Zhong X Q. Effects of fermented feed on growth performance, digestive enzyme activity, fillet quality and immunity of juvenile carp (Cyprinus carpio) [D]. Nanjing: Nanjing Agricultural University, 2018.
    [46]
    Wu F, Tian J, Yu L J, et al. Effects of dietary rapeseed meal levels on growth performance, biochemical indices and flesh quality of juvenile genetically improved farmed tilapia [J]. Aquaculture Reports, 2021(20): 100679.
    [47]
    Luo Z, Liu C X, Wen H. Effect of dietary fish meal replacement by canola meal on growth performance and hepatic intermediary metabolism of genetically improved farmed tilapia strain of nile tilapia, Oreochromis niloticus, reared in fresh water [J]. Journal of the World Aquaculture Society, 2012, 43(5): 670-678. doi: 10.1111/j.1749-7345.2012.00601.x
    [48]
    Phumee P, Wei W Y, Ramachandran S, et al. Evaluation of soybean meal in the formulated diets for juvenile Pangasianodon hypophthalmus (Sauvage, 1878) [J]. Aquaculture Nutrition, 2011, 17(2): 214-222. doi: 10.1111/j.1365-2095.2009.00729.x
    [49]
    De Francesco M, Parisi G, Pérez-Sánchez J, et al. Effect of high-level fish meal replacement by plant proteins in gilthead sea bream (Sparus aurata) on growth and body/fillet quality traits [J]. Aquaculture Nutrition, 2007, 13(5): 361-372. doi: 10.1111/j.1365-2095.2007.00485.x
    [50]
    王托. 凡纳滨对虾对棉粕及菜粕的利用研究 [D]. 湛江: 广东海洋大学, 2010.

    Wang T. Study on utilization of cottonseed meal and canola meal for the pacific white shrimp, Litopenaeus vannamei [D]. Zhanjiang: Guangdong Ocean University, 2010.
    [51]
    Yİğİt N Ö, Koca S B, Bayrak H, et al. Effects of canola meal on growth and digestion of rainbow trout (Oncorhynchus mykiss) fry [J]. Turkish Journal of Veterinary & Animal Sciences, 2012, 36(5): 533-538.
    [52]
    张明明, 文华, 蒋明, 等. 饲料菜粕水平对吉富罗非鱼幼鱼生长、肝脏组织结构和部分非特异性免疫指标的影响 [J]. 水产学报, 2011, 35(5): 748-755.

    Zhang M M, Wen H, Jiang M, et al. Effects of dietary rapeseed meal levels on growth, liver tissue structure and some nonspecific immunity indices of juvenile GIFT tilapia (Oreochromis niloticus) [J]. Journal of Fisheries of China, 2011, 35(5): 748-755.
    [53]
    Chung K T, Wei C I, Johnson M G. Are tannins a double-edged sword in biology and health [J]? Trends in Food Science & Technology, 1998, 9(4): 168-175.
    [54]
    Wan J J, Xi Q K, Tang J Q, et al. Effects of pelleted and extruded feed on growth performance, intestinal histology and microbiota of Juvenile red swamp crayfish (Procambarus clarkii) [J]. Animals, 2022, 12(17): 2252.
    [55]
    Ravindran V, Cabahug S, Ravindra G, et al. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorous levels. Ⅱ. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention [J]. British Poultry Science, 2000, 41(2): 193-200. doi: 10.1080/00071660050022263
    [56]
    张莉莉. 饲料中添加含氮小分子化合物及磷虾水解物对大菱鲆生长性能及相关基因表达的影响 [D]. 上海: 上海海洋大学, 2017.

    Zhang L L. Effects of dietary small molecular nitrogen compounds and krill hydrolysates on growth performance and expression of growth related genes of juvenile turbot (Scophthalmus maximus L.) [D]. Shanghai: Shanghai Ocean University, 2017.
    [57]
    Pulido-Rodriguez L F, Cardinaletti G, Secci G, et al. Appetite regulation, growth performances and fish quality are modulated by alternative dietary protein ingredients in gilthead sea bream (Sparus aurata) culture [J]. Animals, 2021, 11(7): 1919.
    [58]
    Abasubong K P, Cheng H H, Li Z Q, et al. Effects of replacing fish meal with plant proteins at different dietary protein levels on growth and feed intake regulation of juvenile channel catfish Ictalurus punctatus [J]. Aquaculture Research, 2021, 52(10): 4911-4922. doi: 10.1111/are.15325
    [59]
    Ye B, Xue M, Wu X F, et al. Replacing poultry by-product meal protein with soybean protein isolate in low fishmeal diets for juvenile hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂) [J]. Aquaculture Nutrition, 2021, 27(6): 2405-2415. doi: 10.1111/anu.13372
    [60]
    Nian Y Y, Chen B K, Wang J J, et al. Transcriptome analysis of Procambarus clarkii infected with infectious hypodermal and haematopoietic necrosis virus [J]. Fish & Shellfish Immunology, 2020(98): 766-772.
    [61]
    Jiang J, Shi D, Zhou X Q, et al. Effects of lysine and methionine supplementation on growth, body composition and digestive function of grass carp (Ctenopharyngodon idella) fed plant protein diets using high-level canola meal [J]. Aquaculture Nutrition, 2016, 22(5): 1126-1133. doi: 10.1111/anu.12339
    [62]
    Nguyen T V, Cummins S F, Elizur A, et al. Transcriptomic characterization and curation of candidate neuropeptides regulating reproduction in the eyestalk ganglia of the Australian crayfish, Cherax quadricarinatus [J]. Scientific Reports, 2016(6): 38658.
    [63]
    Marciniak P, Kuczer M, Rosinski G. New physiological activities of myosuppressin, sulfakinin and NVP-like peptide in Zophobas atratus beetle [J]. Journal of Comparative Physiology B, 2011, 181(6): 721-730. doi: 10.1007/s00360-011-0563-5
    [64]
    Vilaplana L, Pascual N, Perera N, et al. Antifeeding properties of myosuppressin in a generalist phytophagous leafworm, Spodoptera littoralis (Boisduval) [J]. Regulatory Peptides, 2008, 148(1/2/3): 68-75.
    [65]
    Yamanaka N, Yamamoto S, Zitnan D, et al. Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways [J]. PLoS One, 2008, 3(8): e3048. doi: 10.1371/journal.pone.0003048
    [66]
    Wang Q L, Liang X F, Gao J J, et al. Lysine regulates TOR and NPY through taste receptor T1R1 in Chinese perch (Siniperca chuatsi) [J]. Aquaculture, 2022(559): 738445.
    [67]
    Zhu L, Wang X Y, Hou L B, et al. The related immunity responses of red swamp crayfish (Procambarus clarkii) following infection with Aeromonas veronii [J]. Aquaculture Reports, 2021(21): 100849.
    [68]
    Li Q P, Yi P H, Zhang J Z, et al. Bioconversion of food waste to crayfish feed using solid-state fermentation with yeast [J]. Environmental Science and Pollution Research, 2022: 1-10.
    [69]
    Zhao L L, Yang X Z, Cheng Y X, et al. Effects of histamine on survival and immune parameters of the Chinese mitten crab (Eriocheir sinensis) [J]. Journal of Shellfish Research, 2012, 31(3): 827-834. doi: 10.2983/035.031.0329
    [70]
    Huang Y, Han D, Zhu X M, et al. Response and recovery of gibel carp from subchronic oral administration of aflatoxin B1 [J]. Aquaculture, 2011, 319(1/2): 89-97.
    [71]
    Cheng Y X, Wu S J. Effect of dietary astaxanthin on the growth performance and nonspecific immunity of red swamp crayfish Procambarus clarkii [J]. Aquaculture, 2019(512): 734341.
    [72]
    Wang X, Lei X Y, Guo Z X, et al. The immuneoreaction and antioxidant status of Chinese mitten crab (Eriocheir sinensis) involve protein metabolism and the response of mTOR signaling pathway to dietary methionine levels [J]. Fish & Shellfish Immunology, 2022(127): 703-714.
    [73]
    Hou S Q, Li J Y, Huang J, et al. Effects of dietary phospholipid and cholesterol levels on antioxidant capacity, nonspecial immune response and intestinal microflora of juvenile female crayfish, Procambarus clarkii [J]. Aquaculture Reports, 2022(25): 101245.
    [74]
    Zhao D, Zhang X, Liu D, et al. Cu accumulation, detoxification and tolerance in the red swamp crayfish Procambarus clarkii [J]. Ecotoxicology and Environmental Safety, 2019(175): 201-207.
    [75]
    Zhang Y, Sun K, Li Z Y, et al. Effescts of acute diclofenac exposure on intestinal histology, antioxidant defense, and microbiota in freshwater crayfish (Procambarus clarkii) [J]. Chemosphere, 2021(263): 128130.
    [76]
    Huang Q, Zhu Y L, Yu J, et al. Effects of sulfated β-glucan from Saccharomyces cerevisiae on growth performance, antioxidant ability, nonspecific immunity, and intestinal flora of the red swamp crayfish (Procambarus clarkii) [J]. Fish & Shellfish Immunology, 2022(127): 891-900.
    [77]
    Liu F, Qu Y K, Geng C, et al. Effects of hesperidin on the growth performance, antioxidant capacity, immune responses and disease resistance of red swamp crayfish (Procambarus clarkii) [J]. Fish & Shellfish Immunology, 2020(99): 154-166.
    [78]
    Zhang Y, Li Z Y, Kholodkevich S, et al. Cadmium-induced oxidative stress, histopathology, and transcriptome changes in the hepatopancreas of freshwater crayfish (Procambarus clarkii) [J]. Science of the Total Environment, 2019(666): 944-955.
    [79]
    Gan L, Wu P, Feng L, et al. Erucic acid inhibits growth performance and disrupts intestinal structural integrity of on-growing grass carp (Ctenopharyngodon idella) [J]. Aquaculture, 2019(513): 734437.
    [80]
    Wang J, Mai K S, Ai Q H. Conventional soybean meal as fishmeal alternative in diets of Japanese seabass (Lateolabrax japonicus): effects of functional additives on growth, immunity, antioxidant capacity and disease resistance [J]. Antioxidants (Basel, Switzerland), 2022, 11(5): 951.
    [81]
    Liu X R, Han B, Xu J, et al. Replacement of fishmeal with soybean meal affects the growth performance, digestive enzymes, intestinal microbiota and immunity of Carassius auratus gibelio♀×Cyprinus carpio♂ [J]. Aquaculture Reports, 2020(18): 100472.
    [82]
    田立立, 万金娟, 孟祥龙, 等. 高pH急性和慢性胁迫对克氏原螯虾非特异性免疫和抗氧化能力的影响 [J]. 淡水渔业, 2021, 51(4): 101-107. doi: 10.3969/j.issn.1000-6907.2021.04.014

    Tian L L, Wan J J, Meng X L, et al. Effects of acute and chronic high pH stress on non-specific immunity and antioxidant capacity in Procambarus clarkii [J]. Freshwater Fisheries, 2021, 51(4): 101-107. doi: 10.3969/j.issn.1000-6907.2021.04.014
    [83]
    Hong Y H, Huang Y, Yan G W, et al. Antioxidative status, immunological responses, and heat shock protein expression in hepatopancreas of Chinese mitten crab, Eriocheir sinensis under the exposure of glyphosate [J]. Fish & Shellfish Immunology, 2019(86): 840-845.
    [84]
    Tan C, Zhou H, Wang X, et al. Resveratrol attenuates oxidative stress and inflammatory response in turbot fed with soybean meal based diet [J]. Fish & Shellfish Immunology, 2019(91): 130-135.
    [85]
    Jia E T, Zheng X C, Cheng H H, et al. Dietary fructooligosaccharide can mitigate the negative effects of immunity on Chinese mitten crab fed a high level of plant protein diet [J]. Fish & Shellfish Immunology, 2019(84): 100-107.
    [86]
    Wei K Q, Wei Y, Song C X. The response of phenoloxidase to cadmium-disturbed hepatopancreatic immune-related molecules in freshwater crayfish Procambarus clarkii [J]. Fish & Shellfish Immunology, 2020(99): 190-198.
    [87]
    Wei K Q, Yang J X. Histological alterations and immune response in the crayfish Procambarus clarkii given rVP28-incorporated diets [J]. Fish & Shellfish Immunology, 2011, 31(6): 1122-1128.
    [88]
    苗新. 大黄鱼对豆粕和双低菜粕的耐受性研究 [D]. 青岛: 中国海洋大学, 2014.

    Miao X. Studies on the tolerance of large yellow croaker (Larimichthys croceus) to dietary soybean meal and canola meal [D]. Qingdao: Ocean University of China, 2014.
    [89]
    Xiao X C, Han D, Zhu X M, et al. Effect of dietary cornstarch levels on growth performance, enzyme activity and hepatopancreas histology of juvenile red swamp crayfish, Procambarus clarkii (Girard) [J]. Aquaculture, 2014(426/427): 112-119.
    [90]
    Li X Y, Yao X Z, Zhang X C, et al. Effects of dietary chenodeoxycholic acid supplementation in a low fishmeal diet on growth performance, lipid metabolism, autophagy and intestinal health of Pacific white shrimp, Litopenaeus vannamei [J]. Fish & Shellfish Immunology, 2022(127): 1088-1099.
    [91]
    Wei K Q, Yang J X. Oxidative damage of hepatopancreas induced by pollution depresses humoral immunity response in the freshwater crayfish Procambarus clarkii [J]. Fish & Shellfish Immunology, 2015, 43(2): 510-519.
    [92]
    何烈华, 邢廷铣, 陈惠萍, 等. 腈在肉鸡体内蓄积和分布特性及其对物质代谢的影响 [J]. 动物营养学报, 1995, 7(3): 15-20.

    He L H, Xing T X, Chen H P, et al. The characteristics of accumulation and distribution of the nitrile and its effects on metabolism in broiler chickens [J]. Acta Zoonutrimenta Sinica, 1995, 7(3): 15-20.
    [93]
    Margaret A, Constantine C O, Euglance G, et al. Intestine histology, nutrient digestibility and body composition of Nile tilapia (Oreochromis niloticus) fed on diets with both cotton and sunflower seed cakes [J]. African Journal of Biotechnology, 2014, 13(37): 3831-3839. doi: 10.5897/AJB12.1895
    [94]
    王杰, 梁旭方, 李姣, 等. 菜粕替代鱼粉对翘嘴鳜肠道吸收和氨基酸代谢的影响 [J]. 华中农业大学学报, 2018, 37(4): 93-101. doi: 10.13300/j.cnki.hnlkxb.2018.04.013

    Wang J, Liang X F, Li J, et al. Effect of substituting fish meal with rapeseed meal on intestinal absorption and amino acids metabolism in Chinese perch (Siniperca chuatsi) [J]. Journal of Huazhong Agricultural University, 2018, 37(4): 93-101. doi: 10.13300/j.cnki.hnlkxb.2018.04.013

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return