LEI Yao, ZHOU Chun-Hua, OUYANG Shan, WU Xiao-Ping. DIFFERENCES IN ENVIRONMENTAL DNA MONITORING OF FRESHWATER MUSSELS FROM DIFFERENT ENVIRONMENTAL SAMPLE TYPES[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(3): 412-423. DOI: 10.7541/2023.2022.0266
Citation: LEI Yao, ZHOU Chun-Hua, OUYANG Shan, WU Xiao-Ping. DIFFERENCES IN ENVIRONMENTAL DNA MONITORING OF FRESHWATER MUSSELS FROM DIFFERENT ENVIRONMENTAL SAMPLE TYPES[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(3): 412-423. DOI: 10.7541/2023.2022.0266

DIFFERENCES IN ENVIRONMENTAL DNA MONITORING OF FRESHWATER MUSSELS FROM DIFFERENT ENVIRONMENTAL SAMPLE TYPES

Funds: Supported by the National Key Research and Development Program of China(2018YFD0900801); the Special Fund for Postgraduate Innovation of Jiangxi Province in 2021 (YC2021-S038)
  • Received Date: June 28, 2022
  • Rev Recd Date: August 23, 2022
  • Available Online: September 19, 2022
  • Published Date: March 14, 2023
  • In order to clarify how different environmental sample types affect the detectability of mussel species when using environmental DNA metabarcoding technology, surface water, bottom water and sediment were collected in Poyang Lake in winter and spring of 2021 for environmental DNA metabarcoding analysis, and then combined with traditional methods for collection and verification. A total of 33 species of mussels from Poyang Lake were detected by environmental DNA metabarcoding technology, while 18 species were collected by traditional methods. All the species collected by traditional methods could be detected by environmental DNA metabarcoding technology. The number of mussel species annotated in surface water and bottom water was respectively higher than that in sediment, and the mussel species annotated in surface water and bottom water completely covered sediment, respectively. There was no significant seasonal difference in α diversity level of mussels based on environmental DNA metabarcoding, but significant seasonal difference in β diversity level of mussels. The mussel diversity in both surface and bottom water was significantly respectively higher than that in sediment samples. The Beta diversity analysis also showed significant differences between water samples (surface and bottom water respectively) and sediment samples. But there were no significant differences in the diversity and community structure between surface and bottom water. Water depth (WD), depth of Secchi disk (SD), water temperature (WT) and total nitrogen (TN) significantly affected the community structure of mussels in Poyang Lake. Environmental DNA metabarcoding is feasible in monitoring mussel freshwater diversity, and water sampling is better than sediment sampling. There is no significant difference between surface water and bottom water.
  • [1]
    Graf D L, Cummings K S. Review of the systematics and global diversity of freshwater mussel species (Bivalvia: Unionoida) [J]. Journal of Molluscan Studies, 2007, 73(4): 291-314. doi: 10.1093/mollus/eym029
    [2]
    Lydeard C, Cowie R H, Ponder W F, et al. The global decline of nonmarine mollusks [J]. BioScience, 2004, 54(4): 321-330. doi: 10.1641/0006-3568(2004)054[0321:TGDONM]2.0.CO;2
    [3]
    Liu X J, Wu R W, Lopes-Lima M, et al. Changes and drivers of freshwater mussel diversity patterns in the middle and lower Yangtze River Basin, China [J]. Global Ecology and Conservation, 2020(22): e00998. doi: 10.1016/j.gecco.2020.e00998
    [4]
    吴小平. 长江中下游淡水贝类的研究 [D]. 武汉: 中国科学院水生生物研究所, 1998: 1-5.

    Wu X P. Studies on freshwater mollusca in mid-lower reaches of Changjiang River [D]. Wuhan: Institute of Hydrobiology, Chinese Academy of Sciences, 1998: 1-5.
    [5]
    舒凤月, 王海军, 潘保柱, 等. 长江中下游湖泊贝类物种濒危状况评估 [J]. 水生生物学报, 2009, 33(6): 1051-1058.

    Shu F Y, Wang H J, Pan B Z, et al. Assessment of species status of mollusca in the mid-lower Yangtze Lakes [J]. Acta Hydrobiologica Sinica, 2009, 33(6): 1051-1058.
    [6]
    Heude P M. Conchyliologie Fluviatile de la Province de Nanking [M]. Paris: F. Savy, 1874.
    [7]
    林振涛. 鄱阳湖的蚌类 [J]. 动物学报, 1962, 14(2): 249-260.

    Lin Z T. Unionidae (Mollusca) of Poyang Lake, KIANGSl Province, China [J]. Acta Zoologica Sinica, 1962, 14(2): 249-260.
    [8]
    张玺, 李世成. 鄱阳湖及其周围水域的双壳类包括一新种 [J]. 动物学报, 1965, 17(3): 309-319.

    Tchang S, Li S C. Bivalves (Mollusca) of the Poyang Lake and surrounding waters, Kiangsi Province, China, with description of a new species [J]. Acta Zoologica Sinica, 1965, 17(3): 309-319.
    [9]
    刘月英, 张文珍, 王跃先, 等. 中国经济动物志-淡水软体动物 [M]. 北京: 科学出版社, 1979: 66-125.

    Liu Y Y, Zhang W Z, Wang Y X, et al. Economic Fauna of China-Freshwater Mollusks [M]. Beijing: Science Press, 1979: 66-125.
    [10]
    吴小平, 欧阳珊, 胡起宇. 鄱阳湖的双壳类 [J]. 南昌大学学报(理科版), 1994, 18(3): 249-252.

    Wu X P, Ouyang S, Hu Q Y. Bivalves (Mollusca) of the Poyang Lake [J]. Journal of Nanchang University (Natural Science), 1994, 18(3): 249-252.
    [11]
    欧阳珊, 詹诚, 陈堂华, 等. 鄱阳湖大型底栖动物物种多样性及资源现状评价 [J]. 南昌大学学报(工科版), 2009, 31(1): 9-13.

    Ouyang S, Zhan C, Chen T H, et al. Species diversity and resource assessment of macrozoobenthos in Poyang Lake [J]. Journal of Nanchang University (Engineering& Technology), 2009, 31(1): 9-13.
    [12]
    熊六凤, 欧阳珊, 陈堂华, 等. 鄱阳湖区淡水蚌类多样性格局 [J]. 南昌大学学报(理科版), 2011, 35(3): 288-295.

    Xiong L F, Ouyang S, Chen T H, et al. Diversity patterns of freshwater mussels in Poyang Lake area [J]. Journal of Nanchang University (Natural Science), 2011, 35(3): 288-295.
    [13]
    李科. 鄱阳湖及其连通水域大型底栖动物群落时空格局 [D]. 南昌: 南昌大学, 2019: 18-19.

    Li K. Temporal and spatial patterns of macrozoobenthos community in Poyang Lake and its connected waters [D]. Nanchang: Nanchang University, 2019: 18-19.
    [14]
    葛玉双, 程起群. 环境DNA及其在水生生物多样性调查中的应用 [J]. 渔业信息与战略, 2020, 35(1): 55-62.

    Ge Y S, Cheng Q Q. Environmental DNA and its application in aquatic biodiversity [J]. Fishery Information & Strategy, 2020, 35(1): 55-62.
    [15]
    舒璐, 林佳艳, 徐源, 等. 基于环境DNA宏条形码的洱海鱼类多样性研究 [J]. 水生生物学报, 2020, 44(5): 1080-1086. doi: 10.7541/2020.125

    Shu L, Lin J Y, Xu Y, et al. Investigating the fish diversity in Erhai Lake based on environmental DNA metabarcoding [J]. Acta Hydrobiologica Sinica, 2020, 44(5): 1080-1086. doi: 10.7541/2020.125
    [16]
    Prié V, Valentini A, Lopes-Lima M, et al. Environmental DNA metabarcoding for freshwater bivalves biodiversity assessment: methods and results for the Western Palearctic (European sub-region) [J]. Hydrobiologia, 2021, 848(12): 2931-2950.
    [17]
    Klymus K E, Richter C A, Thompson N, et al. Metabarcoding assays for the detection of freshwater mussels (Unionida) with environmental DNA [J]. Environmental DNA, 2021, 3(1): 231-247. doi: 10.1002/edn3.166
    [18]
    陈金萍. 基于环境DNA宏条形码的鄱阳湖蚌类和鱼类多样性研究 [D]. 南昌: 南昌大学, 2021: 10-45.

    Chen J P. Analysis of the mussel and fish diversity in Poyang Lake using environmental DNA metabarcoding [D]. Nanchang: Nanchang University, 2021: 10-45.
    [19]
    Deiner K, Bik H M, Mächler E, et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities [J]. Molecular Ecology, 2017, 26(21): 5872-5895. doi: 10.1111/mec.14350
    [20]
    Shaw J L A, Clarke L J, Wedderburn S D, et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system [J]. Biological Conservation, 2016(197): 131-138. doi: 10.1016/j.biocon.2016.03.010
    [21]
    Sakata M K, Watanabe T, Maki N, et al. Determining an effective sampling method for eDNA metabarcoding: a case study for fish biodiversity monitoring in a small, natural river [J]. Limnology, 2021, 22(2): 221-235. doi: 10.1007/s10201-020-00645-9
    [22]
    Kusanke L M, Panteleit J, Stoll S, et al. Detection of the endangered European weather loach (Misgurnus fossilis) via water and sediment samples: testing multiple eDNA workflows [J]. Ecology and Evolution, 2020, 10(15): 8331-8344. doi: 10.1002/ece3.6540
    [23]
    钱瑭毅, 王伟继, 李苗, 等. 黄海中国对虾环境DNA(eDNA)的垂直分布规律及其影响因素初探 [J]. 渔业科学进展, 2021, 42(2): 1-9.

    Qian T Y, Wang W J, Li M, et al. A preliminary study on the vertical distribution of fenneropenaeus chinensis environmental DNA in the Yellow Sea and its influencing factors [J]. Progress in Fishery Sciences, 2021, 42(2): 1-9.
    [24]
    Moyer G R, Díaz-Ferguson E, Hill J E, et al. Assessing environmental DNA detection in controlled lentic systems [J]. PLoS One, 2014, 9(7): e103767. doi: 10.1371/journal.pone.0103767
    [25]
    Valdivia-Carrillo T, Rocha-Olivares A, Reyes-Bonilla H, et al. Integrating eDNA metabarcoding and simultaneous underwater visual surveys to describe complex fish communities in a marine biodiversity hotspot [J]. Molecular Ecology Resources, 2021, 21(5): 1558-1574. doi: 10.1111/1755-0998.13375
    [26]
    Rey A, Basurko O C, Rodriguez-Ezpeleta N. Considerations for metabarcoding-based port biological baseline surveys aimed at marine nonindigenous species monitoring and risk assessments [J]. Ecology and Evolution, 2020, 10(5): 2452-2465. doi: 10.1002/ece3.6071
    [27]
    杨江华. 太湖流域浮游动物物种多样性与环境污染群落生态效应研究 [D]. 南京: 南京大学, 2017: 19-20.

    Yang J H. Biodiversity of zooplankton and community effects of environmental pollution in Tai Lake Basin [D]. Nanjing: Nanjing University, 2017: 19-20.
    [28]
    Ushio M, Murakami H, Masuda R, et al. Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing [J]. Metabarcoding and Metagenomics, 2018(2): e23297.
    [29]
    Cowart D A, Murphy K R, Cheng C H C. Metagenomic sequencing of environmental DNA reveals marine faunal assemblages from the West Antarctic Peninsula [J]. Marine Genomics, 2018(37): 148-160. doi: 10.1016/j.margen.2017.11.003
    [30]
    Thomsen P F, Kielgast J, Iversen L L, et al. Monitoring endangered freshwater biodiversity using environmental DNA [J]. Molecular Ecology, 2012, 21(11): 2565-2573. doi: 10.1111/j.1365-294X.2011.05418.x
    [31]
    李晗溪, 黄雪娜, 李世国, 等. 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警 [J]. 生物多样性, 2019, 27(5): 491-504. doi: 10.17520/biods.2018233

    Li H X, Huang X N, Li S G, et al. Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems [J]. Biodiversity Science, 2019, 27(5): 491-504. doi: 10.17520/biods.2018233
    [32]
    胡成龙. 鄱阳湖大型底栖动物群落结构研究 [D]. 南昌: 东华理工大学, 2014: 21.

    Hu C L. Study on Study on the community structure of macrozoobenthos in Poyang Lake [D]. Nanchang: East China Institute of Technology, 2014: 21.
    [33]
    薛涛涛. 长江中下游四个湖泊蚌类群落结构及物种多样性历史变化 [D]. 南昌: 南昌大学, 2018: 1.

    Xue T T. The community structure and historical change of species diversity of unionids in four lakes in the middle and lower reaches of the Yangtze River [D]. Nanchang: Nanchang University, 2018: 1.
    [34]
    刘勇江. 鄱阳湖淡水双壳类的资源状况及优势种繁殖特性 [D]. 南昌: 南昌大学, 2008: 30-32.

    Liu Y J. Resource status and reproductive traits of freshwater bivalves in the Poyang Lake [D]. Nanchang: Nanchang University, 2008: 30-32.
    [35]
    杨小林, 李昊成, 宋浪. 橄榄蛏蚌性腺发育与生长 [J]. 水产科学, 2011, 30(9): 580-582. doi: 10.3969/j.issn.1003-1111.2011.09.014

    Yang X L, Li H C, Song L. Gonadal develpment and growth of freshwater mussel Solenaia oleivora [J]. Fisheries Science, 2011, 30(9): 580-582. doi: 10.3969/j.issn.1003-1111.2011.09.014
    [36]
    熊六凤. 鄱阳湖区淡水蚌类资源现状、多样性格局及其对不同环境因子的响应 [D]. 南昌: 南昌大学, 2011: 83-96.

    Xiong L F. Resource status, diversity patterns of freshwater mussels in Poyang Lake area and its response to the different environmental factors [D]. Nanchang: Nanchang University, 2011: 83-96.
    [37]
    Turner C R, Uy K L, Everhart R C. Fish environmental DNA is more concentrated in aquatic sediments than surface water [J]. Biological Conservation, 2015(183): 93-102. doi: 10.1016/j.biocon.2014.11.017
    [38]
    张子林, 黄立章. 浅析鄱阳湖采砂对生态环境的影响 [J]. 江西水利科技, 2008, 34(1): 7-10. doi: 10.3969/j.issn.1004-4701.2008.01.003

    Zhang Z L, Huang L Z. Influence of quarrying in Poyang Lake on the ecological environment [J]. Jiangxi Hydraulic Science & Technology, 2008, 34(1): 7-10. doi: 10.3969/j.issn.1004-4701.2008.01.003
    [39]
    马建薇, 刘俊良, 李燕, 等. 物理因素对白洋淀溶解氧的影响 [J]. 中国农村水利水电, 2013(8): 21-24. doi: 10.3969/j.issn.1007-2284.2013.08.005

    Ma J W, Liu J L, Li Y, et al. Effect of physical factors on dissolved oxygen in Baiyang Lake [J]. China Rural Water and Hydropower, 2013(8): 21-24. doi: 10.3969/j.issn.1007-2284.2013.08.005
    [40]
    邓思思. 嘉兴平原河网溶解氧平衡研究 [D]. 杭州: 浙江大学, 2013: 5-6.

    Deng S S. Dissolved oxygen in lowland Jiaxing Rivers [D]. Hangzhou: Zhejiang University, 2013: 5-6.
    [41]
    Stone N M, Earll R, Hodgson A, et al. The distributions of three sympatric mussel species (Bivalvia: Unionidae) in budworth mere, Cheshire [J]. Journal of Molluscan Studies, 1982, 48(3): 266-274. doi: 10.1093/oxfordjournals.mollus.a065648
    [42]
    罗丹婷, 杨品红, 骆贞耀, 等. 淡水育珠蚌对浮游藻类最佳需求量的研究 [J]. 养殖与饲料, 2017(1): 19-23. doi: 10.3969/j.issn.1671-427X.2017.01.007

    Luo D T, Yang P H, Luo Z Y, et al. Study on the optimum demand of freshwater pearl mussel for planktonic algae [J]. Animals Breeding and Feed, 2017(1): 19-23. doi: 10.3969/j.issn.1671-427X.2017.01.007
    [43]
    苏彦平, 陈修报, 刘洪波, 等. 背角无齿蚌幼蚌食物中的藻类组成 [J]. 中国水产科学, 2014, 21(4): 736-746.

    Su Y P, Chen X B, Liu H B, et al. The dietary algae at different juvenile stages of Anodonta woodiana [J]. Journal of Fishery Sciences of China, 2014, 21(4): 736-746.
    [44]
    李艳红, 钟家有, 郭春晶. 鄱阳湖典型蚌类养殖区理化环境参数研究——以都昌水域为例 [J]. 水生态学杂志, 2014, 35(2): 9-13. doi: 10.3969/j.issn.1674-3075.2014.02.002

    Li Y H, Zhong J Y, Guo C J. Study on physicochemical environment parameters in typical mussel aquaculture regions in the Poyang Lake—take Duchang waters for example [J]. Journal of Hydroecology, 2014, 35(2): 9-13. doi: 10.3969/j.issn.1674-3075.2014.02.002
    [45]
    Augspurger T, Keller A E, Black M C, et al. Water quality guidance for protection of freshwater mussels (Unionidae) from ammonia exposure [J]. Environmental Toxicology and Chemistry, 2003, 22(11): 2569-2575. doi: 10.1897/02-339
    [46]
    Keller A, Lydy M, Ruessler D S. Unionid mussel sensitivity to environmental contaminants [J]. Freshwater bivalve ecotoxicology, 2007: 151-167.
    [47]
    Galbraith H S, Spooner D E, Vaughn C C. Synergistic effects of regional climate patterns and local water management on freshwater mussel communities [J]. Biological Conservation, 2010, 143(5): 1175-1183. doi: 10.1016/j.biocon.2010.02.025
    [48]
    李林明, 何亮华. 水温、盐度对不同规格鱼尾楔蚌耗氧率的影响 [J]. 河北渔业, 2016(2): 13-15. doi: 10.3969/j.issn.1004-6755.2016.02.005

    Li L M, He L H. Effects of water temperature and salinity on oxygen consumption rate of different specifications of Cuneopsis pisciculus [J]. Hebei Fisheries, 2016(2): 13-15. doi: 10.3969/j.issn.1004-6755.2016.02.005
    [49]
    陈海生, 严力蛟. 浙江省长潭水库溶解氧变化特性及其与水温相关性 [J]. 科技通报, 2015, 31(3): 249-253. doi: 10.3969/j.issn.1001-7119.2015.03.060

    Chen H S, Yan L J. Study on changing characteristics of dissolved oxygen and its relationship to water temperature in changtan reservoir in Zhejiang Province [J]. Bulletin of Science and Technology, 2015, 31(3): 249-253. doi: 10.3969/j.issn.1001-7119.2015.03.060
    [50]
    潘向忠, 高玉蓉, 李佳, 等. 钱塘江杭州段水体中溶解氧现状及其影响因素 [J]. 环境保护科学, 2011, 37(4): 13-16. doi: 10.3969/j.issn.1004-6216.2011.04.005

    Pan X Z, Gao Y R, Li J, et al. Dissolved oxygen in water and influencing factors of Qiantang River in Hangzhou section [J]. Environmental Protection Science, 2011, 37(4): 13-16. doi: 10.3969/j.issn.1004-6216.2011.04.005
    [51]
    饶胡敏, 黄旺银. 影响水体中溶解氧含量因素的探讨 [J]. 盐科学与化工, 2017, 46(3): 40-43.

    Rao H M, Huang W Y. Discussion on influencing factor of content of dissolved oxygen in water [J]. Journal of Salt Science and Chemical Industry, 2017, 46(3): 40-43.
  • Cited by

    Periodical cited type(3)

    1. 武瑞文,高博宇,兰志春,张铭华,欧阳珊,吴小平. 基于淡水蚌类的生物学特征预测种群局部定居率和灭绝率——以鄱阳湖为例. 湖泊科学. 2017(03): 678-686 .
    2. 陆健刚,钟燮,吴海真,王华. GIS在B-IBI法评价鄱阳湖水生态系统健康性中的应用. 环境工程学报. 2016(03): 1553-1559 .
    3. 张方方,张萌,刘足根,陈宏文,齐述华. 基于底栖生物完整性指数的赣江流域河流健康评价. 水生生物学报. 2011(06): 963-971 . 本站查看

    Other cited types(10)

Catalog

    Article views (4465) PDF downloads (88) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return