Citation: | LI Xiao-Hong, FU Cheng, FU Shi-Jian. ANXIETY ON THERMAL TOLERANCE AND SWIMMING ABILITY IN FEMALE ADULT ZEBRAFISH (DANIO RERIO)[J]. ACTA HYDROBIOLOGICA SINICA, 2024, 48(9): 1566-1572. DOI: 10.7541/2024.2024.0080 |
To investigate the impact of anxiety on the thermal tolerance and swimming ability of fish, this study focuses on female adult zebrafish (Danio rerio), where experimental subjects were randomly divided into anxious and control groups. The anxious group underwent a 2-week treatment of chronic unpredictable stress (UCS) to establish an anxious model, while the control group remained untreated. Following the treatment period, anxiety-related behavioral indicators, whole-body cortisol and estradiol levels, thermal tolerance [Critical thermal maximum (CTmax), critical thermal minimum (CTmin), lethal thermal maximum (LTmax), and lethal thermal minimum (LTmin)], and swimming ability (Maximum sustained swimming speed, Ucat) were assessed in both groups. The results showed significantly heightened anxiety levels and cortisol concentrations in the anxious group compared to the control group (P<0.01), accompanied by notably lower estradiol levels (P<0.01). The CTmin of the anxiety group was significantly elevated in contrast to the control group (P<0.01), and LTmin also showed a higher trend (P<0.05), although no statistically significant differences were observed in CTmax, LTmax, and Ucat between the two groups (P>0.05). The study suggests that a 2-week UCS regimen effectively establishes an anxiety model in zebrafish, and the consequential reduction in estradiol secretion in adult female may detrimentally impact reproduction in the later stages. Additionally, anxiety attenuates the cold tolerance of zebrafish, which may be related to the elevation of cortisol levels and the decrease in physical fitness caused by anxiety.
[1] |
Xiong W, Zhu Y, Zhang P, et al. Effects of temperature on metabolic scaling in silver carp [J]. Journal of Experimental Zoology Part A,Ecological and Integrative Physiology, 2022, 337(2): 141-149. doi: 10.1002/jez.2542
|
[2] |
Liu D, Zhu B, Liang Q, et al. High temperatures enhance the strength of multiple predator effects in a typical crab-clam system [J]. Marine Pollution Bulletin, 2023(188): 114670. doi: 10.1016/j.marpolbul.2023.114670
|
[3] |
李武新, 付世建, 秦丽萍, 等. 个体大小对草鱼耐高温能力及升温过程中群体行为的影响 [J]. 水生生物学报, 2022, 46(6): 856-864. doi: 10.7541/2022.2021.099
Li W X, Fu S J, Qin L P, et al. Thermal tolerances and collective behavior during water temperature rising in juvenile grass carp (Ctenopharyngodon idellus) [J]. Acta Hydrobiologica Sinica, 2022, 46(6): 856-864. doi: 10.7541/2022.2021.099
|
[4] |
覃英莲, 柏杨, 付康康, 等. 中华倒刺鲃不同生理性能对降温的响应速率 [J]. 生态学报, 2017, 37(15): 5179-5188.
Qin Y L, Bai Y, Fu K K, et al. The matebolize response of different physiological performances to decreased temperature in Spinibarbus sinensis [J]. Acta Ecologica Sinica, 2017, 37(15): 5179-5188.
|
[5] |
王云松, 曹振东, 付世建, 等. 南方鲇幼鱼的热耐受特征 [J]. 生态学杂志, 2008, 27(12): 2136-2140.
Wang Y S, Cao Z D, Fu S J, et al. Thermal tolerance of juvenile Silurus meridionalis Chen [J]. Chinese Journal of Ecology, 2008, 27(12): 2136-2140.
|
[6] |
Underwood Z E, Myrick C A, Rogers K B. Effect of acclimation temperature on the upper thermal tolerance of Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus: thermal limits of a North American salmonid [J]. Journal of Fish Biology, 2012, 80(7): 2420-2433. doi: 10.1111/j.1095-8649.2012.03287.x
|
[7] |
张永飞, 黄可人, 罗玉莲, 等. 力竭运动胁迫对三种鲤科鱼类低氧耐受和热耐受的影响 [J]. 水生生物学报, 2023, 47(12): 1986-1992. doi: 10.7541/2023.2022.0193
Zhang Y F, Huang K R, Luo Y L, et al. Exhaustion exercise stress on hypoxia and thermal tolerances of three cyprinid species [J]. Acta Hydrobiologica Sinica, 2023, 47(12): 1986-1992. doi: 10.7541/2023.2022.0193
|
[8] |
黄悌基, 李秀明, 樊美黠, 等. 禁食对胭脂鱼幼鱼游泳能力、热耐受能力和自发运动的影响 [J]. 水生生物学报, 2023, 47(6): 950-957. doi: 10.7541/2023.2022.0307
Huang T J, Li X M, Fan M X, et al. Fasting on swimming performance, thermal tolerance and spontaneous activity juvenile Myxocyprinus asiaticus [J]. Acta Hydrobiologica Sinica, 2023, 47(6): 950-957. doi: 10.7541/2023.2022.0307
|
[9] |
庞旭, 付世建, 刘小红, 等. 中华倒刺鲃能量代谢和热耐受特征的体重效应 [J]. 生态学报, 2020, 40(16): 5814-5821.
Pang X, Fu S J, Liu X H, et al. Effects of body mass on energy metabolism and thermal tolerance in Qingbo (Spinibarbus sinensis) [J]. Acta Ecologica Sinica, 2020, 40(16): 5814-5821.
|
[10] |
夏继刚, 蔡瑞钰, 吕潇, 等. 升温/降温速率和驯化模式对斑马鱼及孔雀鱼热耐受性测定的影响 [J]. 生态学杂志, 2016, 35(8): 2170-2174.
Xia J G, Cai R Y, Lv X, et al. The effects of heating/cooling rate and acclimation mode on the determination of thermal tolerance of zebrafish (Danio rerio) and guppy (Poecilia reticulata) [J]. Chinese Journal of Ecology, 2016, 35(8): 2170-2174.
|
[11] |
Peng J, Cao Z D, Fu S J. The effects of constant and diel-fluctuating temperature acclimation on the thermal tolerance, swimming capacity, specific dynamic action and growth performance of juvenile Chinese bream [J]. Comparative Biochemistry and Physiology Part A,Molecular & Integrative Physiology, 2014(176): 32-40.
|
[12] |
Lawson N D. Reverse genetics in zebrafish: mutants, morphants, and moving forward [J]. Trends in Cell Biology, 2016, 26(2): 77-79. doi: 10.1016/j.tcb.2015.11.005
|
[13] |
Bicego K C, Barros R C H, Branco L G S. Physiology of temperature regulation: comparative aspects [J]. Comparative Biochemistry and Physiology Part A,Molecular & Integrative Physiology, 2007, 147(3): 616-639.
|
[14] |
刘智皓, 李庆玲, 李柯叡, 等. 不同光周期急性暴露对雄性斑马鱼攻击、焦虑和恐惧行为的干扰效应 [J]. 重庆师范大学学报(自然科学版), 2020, 37(6): 33-38.
Liu Z H, Li Q L, Li K R, et al. Acute photoperiod disturbances disrupted the aggressive, anxiety, and fear behaviors of male zebrafish [J]. Journal of Chongqing Normal University (Natural Science), 2020, 37(6): 33-38.
|
[15] |
Cheng R K, Tan J X M, Chua K X, et al. Osmotic stress uncovers correlations and dissociations between larval zebrafish anxiety endopheno types [J]. Frontiers in Molecular Neuroscience, 2022(15): 900223. doi: 10.3389/fnmol.2022.900223
|
[16] |
Steimer T. The biology of fear- and anxiety-related behaviors [J]. Dialogues in Clinical Neuroscience, 2002, 4(3): 231-249. doi: 10.31887/DCNS.2002.4.3/tsteimer
|
[17] |
Shepard R, Coutellier L. Changes in the prefrontal glutamatergic and parvalbumin systems of mice exposed to unpredictable chronic stress [J]. Molecular Neurobiology, 2018, 55(3): 2591-2602. doi: 10.1007/s12035-017-0528-0
|
[18] |
Horzmann K A, Lin L F, Taslakjian B, et al. Anxiety-related behavior and associated brain transcriptome and epigenome alterations in adult female zebrafish exposed to atrazine during embryogenesis [J]. Chemosphere, 2022, 308(Pt 3): 136431.
|
[19] |
Gatto E, Dadda M, Bruzzone M, et al. Environmental enrichment decreases anxiety-like behavior in zebrafish larvae [J]. Developmental Psychobiology, 2022, 64(3): e22255. doi: 10.1002/dev.22255
|
[20] |
DePasquale C, Leri J. The influence of exercise on anxiety-like behavior in zebrafish (Danio rerio) [J]. Behavioural Processes, 2018(157): 638-644. doi: 10.1016/j.beproc.2018.04.006
|
[21] |
Kalueff A V, Stewart A M, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders [J]. Trends in Pharmacological Sciences, 2014, 35(2): 63-75. doi: 10.1016/j.tips.2013.12.002
|
[22] |
Piato  L, Capiotti K M, Tamborski A R, et al. Unpredictable chronic stress model in zebrafish (Danio rerio): behavioral and physiological responses [J]. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2011, 35(2): 561-567.
|
[23] |
Mocelin R, Marcon M, D’Ambros S, et al. N-acetylcysteine reverses anxiety and oxidative damage induced by unpredictable chronic stress in zebrafish [J]. Molecular Neurobiology, 2019, 56(2): 1188-1195. doi: 10.1007/s12035-018-1165-y
|
[24] |
Stewart A, Gaikwad S, Kyzar E, et al. Modeling anxiety using adult zebrafish: a conceptual review [J]. Neuropharmacology, 2012, 62(1): 135-143. doi: 10.1016/j.neuropharm.2011.07.037
|
[25] |
Stewart A, Wu N, Cachat J, et al. Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models [J]. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2011, 35(6): 1421-1431.
|
[26] |
郭鹤. 温度驯化对齐口裂腹鱼热耐受和生长代谢的影响 [D]. 重庆: 西南大学, 2019: 1-4.
Guo H. Effects of temperature acclimation on the heat tolerance and growth metabolism in Schizothorax prenanti [D]. Chongqing: Southwest University, 2019: 1-4.
|
[27] |
周龙艳, 李秀明, 付世建. 中华倒刺鲃和胭脂鱼游泳行为、应激和免疫能力对短期禁食的响应 [J]. 生态学报, 2022, 42(17): 7288-7295.
Zhou L Y, Li X M, Fu S J. The swimming behavior, stress and immune responses of juvenile qingbo and Chinese sucker subjected to short-term fasting [J]. Acta Ecologica Sinica, 2022, 42(17): 7288-7295.
|
[28] |
周龙艳, 李秀明, 付世建. 捕食驯化对胭脂鱼和中华倒刺鲃游泳行为、应激和免疫功能的影响 [J]. 水生生物学报, 2021, 45(5): 1112-1119. doi: 10.7541/2021.2020.015
Zhou L Y, Li X M, Fu S J. The effect of predation acclimation on swimming behavior, stress and immune responses of juvenile Myxocyprinus asiaticus and Spinibarbus sinensis [J]. Acta Hydrobiologica Sinica, 2021, 45(5): 1112-1119. doi: 10.7541/2021.2020.015
|
[29] |
Griffiths B B, Schoonheim P J, Ziv L, et al. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response [J]. Frontiers in Behavioral Neuroscience, 2012(6): 68.
|
[30] |
Dudgeon D, Arthington A H, Gessner M O, et al. Freshwater biodiversity: importance, threats, status and conservation challenges [J]. Biological Reviews of the Cambridge Philosophical Society, 2006, 81(2): 163-182. doi: 10.1017/S1464793105006950
|
[31] |
Chakravarty S, Reddy B R, Sudhakar S R, et al. Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: altered brain proteome profile implicates mitochondrial dysfunction [J]. PLoS One, 2013, 8(5): e63302. doi: 10.1371/journal.pone.0063302
|
[32] |
Leong K C, Packard M G. Exposure to predator odor influences the relative use of multiple memory systems: role of basolateral amygdala [J]. Neurobiology of Learning and Memory, 2014(109): 56-61. doi: 10.1016/j.nlm.2013.11.015
|
[33] |
McEwen B S. The neurobiology of stress: from serendipity to clinical relevance [J]. Brain Research, 2000, 886(1/2): 172-189.
|
[34] |
McEwen B S. Glucocorticoids, depression, and mood disorders: structural remodeling in the brain [J]. Metabolism: Clinical and Experimental, 2005, 54(5 Suppl 1): 20-23.
|
[35] |
Mark F C, Bock C, Pörtner H O. Oxygen-limited thermal tolerance in Antarctic fish investigated by MRI and 31 [J]. Integrative and Comparative Physiology, 2002, 283(5): R1254-R1262. doi: 10.1152/ajpregu.00167.2002
|
[36] |
Ern R. A mechanistic oxygen- and temperature-limited metabolic niche framework [J]. Philosophical Transactions of the Royal Society of London Series B,Biological Sciences, 2019, 374(1778): 20180540. doi: 10.1098/rstb.2018.0540
|
[37] |
Shelford V E. Some concepts of bioecology [J]. Ecology, 1931, 12(3): 455-467. doi: 10.2307/1928991
|
[38] |
Yang C, Jiang M, Wen H, et al. Analysis of differential gene expression under low-temperature stress in Nile tilapia (Oreochromis niloticus) using digital gene expression [J]. Gene, 2015, 564(2): 134-140. doi: 10.1016/j.gene.2015.01.038
|
[39] |
汪亚平, 王祖熊. 几种鱼类线粒体ATP酶活性的比较研究 [J]. 水生生物学报, 1993, 17(3): 216-221. doi: 10.3321/j.issn:1000-3207.1993.03.004
Wang Y P, Wang Z X. A comparative study of activities of the mitochondria atpase of the liver cells in several fishes [J]. Acta Hydrobiologica Sinica, 1993, 17(3): 216-221. doi: 10.3321/j.issn:1000-3207.1993.03.004
|
[40] |
Anttila K, Dhillon R S, Boulding E G, et al. Variation in temperature tolerance among families of Atlantic salmon (Salmo salar) is associated with hypoxia tolerance, ventricle size and myoglobin level [J]. The Journal of Experimental Biology, 2013, 216(Pt 7): 1183-1190.
|
[41] |
邓淑怡, 王佳佳, 张永平, 等. 海马改善斑马鱼慢性应激所致抑郁样行为和病理变化的机制 [J]. 中国药理学通报, 2023, 39(3): 520-525. doi: 10.12360/CPB202204118
Deng S Y, Wang J J, Zhang Y P, et al. Mechanism of seahorse ameliorating depression-like behavioral and pathological changes caused by chronic stress in zebrafish [J]. Chinese Pharmacological Bulletin, 2023, 39(3): 520-525. doi: 10.12360/CPB202204118
|
[42] |
Rodgers E M, Gomez Isaza D F. Stress history affects heat tolerance in an aquatic ectotherm (Chinook salmon, Oncorhynchus tshawytscha) [J]. Journal of Thermal Biology, 2022(106): 103252. doi: 10.1016/j.jtherbio.2022.103252
|
[43] |
谭淦, 史函颖, 陈拥军, 等. 摄食和饥饿对大口黑鲈游泳运动能力和低氧耐受的影响 [J]. 水生生物学报, 2022, 46(6): 826-831. doi: 10.7541/2022.2021.0330
Tan G, Shi H Y, Chen Y J, et al. Feeding and fasting on swimming performence and hypoxia tolerance of Micropterus salmoides [J]. Acta Hydrobiologica Sinica, 2022, 46(6): 826-831. doi: 10.7541/2022.2021.0330
|
[44] |
Plaut I. Critical swimming speed: its ecological relevance [J]. Comparative Biochemistry and Physiology Part A,Molecular & Integrative Physiology, 2001, 131(1): 41-50.
|
[45] |
Marras S, Claireaux G, McKenzie D J, et al. Individual variation and repeatability in aerobic and anaerobic swimming performance of European sea bass, Dicentrarchus labrax [J]. The Journal of Experimental Biology, 2010, 213(1): 26-32. doi: 10.1242/jeb.032136
|
[46] |
Christou M, Ropstad E, Brown S, et al. Developmental exposure to a POPs mixture or PFOS increased body weight and reduced swimming ability but had no effect on reproduction or behavior in zebrafish adults [J]. Aquatic Toxicology, 2021(237): 105882. doi: 10.1016/j.aquatox.2021.105882
|
[47] |
Fu S J, Dong Y W, Killen S S. Aerobic scope in fishes with different lifestyles and across habitats: trade-offs among hypoxia tolerance, swimming performance and digestion [J]. Comparative Biochemistry and Physiology Part A,Molecular & Integrative Physiology, 2022(272): 111277.
|
[48] |
Zhang C, Li Y, Yu H, et al. Co-exposure of nanoplastics and arsenic causes neurotoxicity in zebrafish (Danio rerio) through disrupting homeostasis of microbiota-intestine-brain axis [J]. The Science of the Total Environment, 2024(912): 169430. doi: 10.1016/j.scitotenv.2023.169430
|