Citation: | XI Yi-Cao, LIU Ling-Mei, YONG Cheng-Wen, CHEN Wei-Zhong, JIANG Hai-Bo. PROGRESS ON PHYSIOLOGICAL RESPONSE AND SIGNAL TRANSDUCTION MECHANISM OF CYANOBACTERIA IN IRON DEFICIENT ENVIRONMENT[J]. ACTA HYDROBIOLOGICA SINICA. DOI: 10.7541/2025.2024.0333 |
Cyanobacteria are one of the oldest photosynthetic oxygen evolving organisms on Earth and play a crucial role in global primary productivity, accounting for about a quarter of the world’s total carbon sequestration. Iron, an essential trace element, is vital for the growth and reproduction of cyanobacteria and an important cofactor in many key physiological reactions. As photosynthetic organisms, cyanobacteria exhibit a higher demand for iron than other non-photosynthetic organisms to support photosynthetic electron transport and chlorophyll synthesis. Although iron is abundant in the Earth’s environment, its bioavailability is low, which is an important factor limiting global primary productivity. In order to solve the contradiction between their own high-speed rail demand and the lack of iron in the environment, cyanobacteria have developed a unique iron deficiency adaptation mechanism during long-term evolution to meet their growth needs under iron limited conditions. This review summarized a series of physiological responses to iron deficiency stress and the absorption mechanisms of iron elements in cyanobacteria. It also provides an overview of the signal transduction mechanism by which cyanobacteria sense environmental iron concentration, and describes the molecular mechanisms of various transcription regulators in maintaining the intracellular iron homeostasis.
[1] |
Demoulin C F, Lara Y J, Lambion A, et al. Oldest thylakoids in fossil cells directly evidence oxygenic photosynthesis [J]. Nature, 2024, 625(7995): 529-534. doi: 10.1038/s41586-023-06896-7
|
[2] |
Huisman J, Codd G A, Paerl H W, et al. Cyanobacterial blooms [J]. Nature Reviews Microbiology, 2018, 16(8): 471-483. doi: 10.1038/s41579-018-0040-1
|
[3] |
Nutman A P, Bennett V C, Friend C R L, et al. Rapid emergence of life shown by discovery of 3, 700-million-year-old microbial structures [J]. Nature, 2016, 537(7621): 535-538. doi: 10.1038/nature19355
|
[4] |
Planavsky N J, Asael D, Hofmann A, et al. Evidence for oxygenic photosynthesis half a billion years before the great oxidation event [J]. Nature Geoscience, 2014(7): 283-286.
|
[5] |
Schmelling N M, Bross M. What is holding back cyanobacterial research and applications? A survey of the cyanobacterial research community [J]. Nature Communications, 2024, 15(1): 6758. doi: 10.1038/s41467-024-50828-6
|
[6] |
Shih P M, Matzke N J. Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(30): 12355-12360.
|
[7] |
Demoulin C F, Sforna M C, Lara Y J, et al. Polysphaeroides filiformis, a proterozoic cyanobacterial microfossil and implications for cyanobacteria evolution [J]. iScience, 2024, 27 (2): 108865.
|
[8] |
Lorenzi A S, Chia M A. Cyanobacteria’s power trio: auxin, siderophores, and nitrogen fixation to foster thriving agriculture [J]. World Journal of Microbiology & Biotechnology, 2024, 40(12): 381.
|
[9] |
Flombaum P, Gallegos J L, Gordillo R A, et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(24): 9824-9829.
|
[10] |
Zhang J, Zhang F, Dong Z, et al. Response and acclimation of cyanobacteria to acidification: A comprehensive review [J]. Science of the Total Environment, 2024(945): 173978-173989.
|
[11] |
Zehr J P, Capone D G. Changing perspectives in marine nitrogen fixation [J]. Science, 2020, 368(6492): eaay9514. doi: 10.1126/science.aay9514
|
[12] |
Lucius S, Hagemann M. The primary carbon metabolism in cyanobacteria and its regulation [J]. Frontiers in Plant Science, 2024(15): 1417680.
|
[13] |
Basu S, Gledhill M, de Beer D, et al. Colonies of marine cyanobacteria Trichodesmium interact with associated bacteria to acquire iron from dust [J]. Communications Biology, 2019(2): 284.
|
[14] |
Kelly L T, Reed L, Puddick J, et al. Growth conditions impact particulate absorption and pigment concentrations in two common bloom forming cyanobacterial species [J]. Harmful Algae, 2023(125): 102432.
|
[15] |
Layden T J, Kremer C T, Brubaker D L, et al. Thermal acclimation influences the growth and toxin production of freshwater cyanobacteria [J]. Limnology and Oceanography Letters, 2022, 7(1): 34-42. doi: 10.1002/lol2.10197
|
[16] |
Li Z, Li S, Chen L, et al. Fast-growing cyanobacterial chassis for synthetic biology application [J]. Critical Reviews in Biotechnology, 2024, 44(3): 414-428. doi: 10.1080/07388551.2023.2166455
|
[17] |
Qiu G-W, Koedooder C, Qiu B-S, et al. Iron transport in cyanobacteria–from molecules to communities [J]. Trends in Microbiology, 2022, 30(3): 229-240. doi: 10.1016/j.tim.2021.06.001
|
[18] |
Hutchins D A, Sañudo-Wilhelmy S A. The enzymology of ocean global change [J]. Annual Review of Marine Science, 2022(14): 187-211.
|
[19] |
Schoffman H, Lis H, Shaked Y, et al. Iron-nutrient interactions within phytoplankton [J]. Frontiers in Plant Science, 2016(7): 1223.
|
[20] |
Yang N, Lin Y A, Merkel C A, et al. Molecular mechanisms underlying iron and phosphorus co-limitation responses in the nitrogen-fixing cyanobacterium Crocosphaera [J]. The ISME Journal, 2022, 16(12): 2702-2711. doi: 10.1038/s41396-022-01307-7
|
[21] |
Utschig L M, Duckworth C L, Niklas J, et al. EPR studies of ferredoxin in spinach and cyanobacterial thylakoids related to photosystem I-driven NADP+ reduction [J]. Photosynthesis Research, 2024, 162(2/3): 239-250.
|
[22] |
Bolton R, Machelett M M, Stubbs J, et al. A redox switch allows binding of fe(Ⅱ) and fe(Ⅲ) ions in the cyanobacterial iron-binding protein FutA from Prochlorococcus [J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(12): e2308478121.
|
[23] |
Sharpe G, Zhao L, Meyer M G, et al. Synechococcus nitrogen gene loss in iron-limited ocean regions [J]. ISME Communications, 2023, 3 (1): 107.
|
[24] |
Liu L M, Sun C Y, Xi Y C, et al. A global transcriptional activator involved in the iron homeostasis in cyanobacteria [J]. Science Advances, 2024, 10(27): eadl6428. doi: 10.1126/sciadv.adl6428
|
[25] |
Yu S, Xu C, Tang T, et al. Down-regulation of iron/zinc ion transport and toxin synthesis in Microcystis aeruginosa exposed to 5, 4’-dihydroxyflavone [J]. Journal of Hazardous Materials, 2023(460): 132396.
|
[26] |
Anderson R F. GEOTRACES: accelerating research on the marine biogeochemical cycles of trace elements and their isotopes [J]. Annual Review of Marine Science, 2020(12): 49-85.
|
[27] |
do Nascimento E L, Koschek P R, dos Santos M E V, et al. Influence of iron on physiological parameters and intracellular microcystin in Microcystis panniformis strain isolated from a reservoir in the amazon [J]. Current Microbiology, 2021, 78(6): 2345-2354. doi: 10.1007/s00284-021-02499-5
|
[28] |
Jiang H B, Hutchins D A, Ma W, et al. Natural ocean iron fertilization and climate variability over geological periods [J]. Global Change Biology, 2023, 29(24): 6856-6866. doi: 10.1111/gcb.16990
|
[29] |
Jiang H B, Hutchins D A, Zhang H R, et al. Complexities of regulating climate by promoting marine primary production with ocean iron fertilization [J]. Earth-Science Reviews, 2024(249): 104675.
|
[30] |
Stoll H. 30 years of the iron hypothesis of ice ages [J]. Nature, 2020, 578(7795): 370-371. doi: 10.1038/d41586-020-00393-x
|
[31] |
Liu L M, Li D L, Deng B, et al. Special roles for efflux systems in iron homeostasis of non-siderophore-producing cyanobacteria [J]. Environmental Microbiology, 2022, 24(2): 551-565. doi: 10.1111/1462-2920.15506
|
[32] |
Qiu G W, Lou W J, Sun C Y, et al. Outer membrane iron uptake pathways in the model cyanobacterium Synechocystis sp. strain PCC 6803 [J]. Applied and Environmental Microbiology, 2018, 84(19): e01512-18.
|
[33] |
Qiu G W, Jiang H B, Lis H, et al. A unique porin meditates iron-selective transport through cyanobacterial outer membranes [J]. Environmental Microbiology, 2021, 23(1): 376-390. doi: 10.1111/1462-2920.15324
|
[34] |
Gledhill M, Buck K N. The organic complexation of iron in the marine environment: a review [J]. Frontiers in Microbiology, 2012(3): 69.
|
[35] |
Yong C W, Deng B, Liu L M, et al. Diversity and evolution of iron uptake pathways in marine cyanobacteria from the perspective of the coastal strain Synechococcus sp. strain PCC 7002 [J]. Applied and Environmental Microbiology, 2023, 89(1): e0173222. doi: 10.1128/aem.01732-22
|
[36] |
Rudolf M, Stevanovic M, Kranzler C, et al. Multiplicity and specificity of siderophore uptake in the cyanobacterium Anabaena sp. PCC 7120 [J]. Plant Molecular Biology, 2016, 92(1/2): 57-69.
|
[37] |
Årstøl E, Hohmann-Marriott M F. Cyanobacterial siderophores-physiology, structure, biosynthesis, and applications [J]. Marine Drugs, 2019, 17(5): 281. doi: 10.3390/md17050281
|
[38] |
Kundu K, Teta R, Esposito G, et al. A four-step platform to optimize growth conditions for high-yield production of siderophores in cyanobacteria [J]. Metabolites, 2023, 13(2): 154. doi: 10.3390/metabo13020154
|
[39] |
Boiteau R M, Repeta D J. An extended siderophore suite from Synechococcus sp. PCC 7002 revealed by LC-ICPMS-ESIMS [J]. Metallomics, 2015, 7(5): 877-884. doi: 10.1039/C5MT00005J
|
[40] |
Galica T, Borbone N, Mareš J, et al. Cyanochelins, an overlooked class of widely distributed cyanobacterial siderophores, discovered by silent gene cluster awakening [J]. Applied and Environmental Microbiology, 2021, 87(17): e0312820. doi: 10.1128/AEM.03128-20
|
[41] |
Ito Y, Butler A. Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002 [J]. Limnology and Oceanography, 2005, 50(6): 1918-1923. doi: 10.4319/lo.2005.50.6.1918
|
[42] |
Granger J, Price N M. The importance of siderophores in iron nutrition of heterotrophic marine bacteria [J]. Limnology and Oceanography, 1999, 44(3): 541-555. doi: 10.4319/lo.1999.44.3.0541
|
[43] |
Obando S T A, Babykin M M, Zinchenko V V. A cluster of five genes essential for the utilization of dihydroxamate xenosiderophores in Synechocystis sp. PCC 6803 [J]. Current Microbiology, 2018, 75(9): 1165-1173. doi: 10.1007/s00284-018-1505-1
|
[44] |
Sutak R, Camadro J M, Lesuisse E. Iron uptake mechanisms in marine phytoplankton [J]. Frontiers in Microbiology, 2020(11): 566691.
|
[45] |
Boiteau R M, Mende D R, Hawco N J, et al. Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(50): 14237-14242.
|
[46] |
Masuda T, Inomura K, Mareš J, et al. Crocosphaera Watsonii [J]. Trends in Microbiology, 2022, 30 (8): 805-806.
|
[47] |
Saito M A, Bertrand E M, Dutkiewicz S, et al. Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(6): 2184-2189.
|
[48] |
Yang B, Xu C, Cheng Y, et al. Research progress on the biosynthesis and delivery of iron-sulfur clusters in the plastid [J]. Plant Cell Reports, 2023, 42(8): 1255-1264. doi: 10.1007/s00299-023-03024-7
|
[49] |
Zang S S, Jiang H B, Song W Y, et al. Characterization of the sulfur-formation (suf) genes in Synechocystis sp. PCC 6803 under photoautotrophic and heterotrophic growth conditions [J]. Planta, 2017, 246(5): 927-938. doi: 10.1007/s00425-017-2738-0
|
[50] |
Gao F. Iron-sulfur cluster biogenesis and iron homeostasis in cyanobacteria [J]. Frontiers in Microbiology, 2020(11): 165.
|
[51] |
Sandmann G, Malkin R. Iron-sulfur centers and activities of the photosynthetic electron transport chain in iron-deficient cultures of the blue-green alga Aphanocapsa [J]. Plant Physiology, 1983, 73(3): 724-728. doi: 10.1104/pp.73.3.724
|
[52] |
Li J, Hamaoka N, Makino F, et al. Structure of cyanobacterial photosystem i complexed with ferredoxin at 1.97 Å Resolution [J]. Communications Biology, 2022, 5(1): 951. doi: 10.1038/s42003-022-03926-4
|
[53] |
Schuller J M, Birrell J A, Tanaka H, et al. Structural adaptations of photosynthetic complex i enable ferredoxin-dependent electron transfer [J]. Science, 2019, 363(6424): 257-260. doi: 10.1126/science.aau3613
|
[54] |
Raven J A, Evans M C W, Korb R E. The role of trace metals in photosynthetic electron transport in O2 evolving organisms [J]. Photosynthesis Research, 1999, 60(2): 111-150.
|
[55] |
Chereskin B M, Castelfranco P A. Effects of iron and oxygen on chlorophyll biosynthesis: ii. observations on the biosynthetic pathway in isolated etiochloroplasts [J]. Plant Physiology, 1982, 69(1): 112-116. doi: 10.1104/pp.69.1.112
|
[56] |
Miller G W, Denney A, Pushnik J, et al. The formation of delta‐aminolevulinate a precursor of chlorophyll, in barley and the role of iron [J]. Journal of Plant Nutrition, 1982, 5(4-7): 289-300. doi: 10.1080/01904168209362958
|
[57] |
Shi T, Sun Y, Falkowski P G. Effects of iron limitation on the expression of metabolic genes in the marine cyanobacterium Trichodesmium erythraeum IMS101 [J]. Environmental Microbiology, 2007, 9(12): 2945-2956. doi: 10.1111/j.1462-2920.2007.01406.x
|
[58] |
Singh A K, Bhattacharyya-Pakrasi M, Pakrasi H B. Identification of an atypical membrane protein involved in the formation of protein disulfide bonds in oxygenic photosynthetic organisms [J]. Journal of Biological Chemistry, 2008, 283(23): 15762-15770. doi: 10.1074/jbc.M800982200
|
[59] |
Cao P, Cao D, Si L, et al. Structural basis for energy and electron transfer of the photosystem I-IsiA-flavodoxin super complex [J]. Nature Plants, 2020, 6(2): 167-176. doi: 10.1038/s41477-020-0593-7
|
[60] |
Qiu G W, Zheng W C, Yang H M, et al. Phosphorus deficiency alleviates iron limitation in Synechocystis cyanobacteria through direct PhoB-mediated gene regulation [J]. Nature Communications, 2024, 15(1): 4426. doi: 10.1038/s41467-024-48847-4
|
[61] |
Jia A, Zheng Y, Chen H, et al. Regulation and functional complexity of the chlorophyll-binding protein IsiA [J]. Frontiers in Microbiology, 2021(12): 774107.
|
[62] |
Cai X, Gao K. Levels of daily light doses under changed day-night cycles regulate temporal segregation of photosynthesis and N2 fixation in the cyanobacterium Trichodesmium erythraeum IMS101 [J]. PLOS ONE, 2015, 10(8): e0135401. doi: 10.1371/journal.pone.0135401
|
[63] |
Chakraborty S, Mishra A K. Effects of zinc toxicity on the nitrogen-fixing cyanobacterium Anabaena sphaerica-ultastructural, physiological and biochemical analyses [J]. Environmental Science and Pollution Research International, 2021, 28(25): 33292-33306. doi: 10.1007/s11356-021-12882-1
|
[64] |
Held N A, Waterbury J B, Webb E A, et al. Dynamic diel proteome and daytime nitrogenase activity supports buoyancy in the cyanobacterium Trichodesmium [J]. Nature Microbiology, 2022, 7(2): 300-311. doi: 10.1038/s41564-021-01028-1
|
[65] |
Küpper H, Šetlík I, Seibert S, et al. Iron limitation in the marine cyanobacterium Trichodesmium reveals new insights into regulation of photosynthesis and nitrogen fixation [J]. The New Phytologist, 2008, 179(3): 784-798. doi: 10.1111/j.1469-8137.2008.02497.x
|
[66] |
Regelsberger G, Laaha U, Dietmann D, et al. The iron superoxide dismutase from the filamentous cyanobacterium Nostoc PCC 7120. Localization, overexpression, and biochemical characterization [J]. The Journal of Biological Chemistry, 2004, 279(43): 44384-44393. doi: 10.1074/jbc.M406254200
|
[67] |
Georg J, Kostova G, Vuorijoki L, et al. Acclimation of oxygenic photosynthesis to iron starvation is controlled by the sRNA IsaR1 [J]. Current Biology, 2017, 27 (10): 1425-1436. e7.
|
[68] |
Rusch D B, Martiny A C, Dupont C L, et al. Characterization of Prochlorococcus clades from iron-depleted oceanic regions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(37): 16184-16189.
|
[69] |
Yu J, Zhang Y, Liu J, et al. Proteomic discovery of H2O2 response in roots and functional characterization of putGLP gene from alkaligrass [J]. Planta, 2018, 248(5): 1079-1099. doi: 10.1007/s00425-018-2940-8
|
[70] |
Ma X, Jin H, Yang J, et al. Effects of terrestrial dissolved organic matter on the growth, photosynthesis and colonial morphology of Microcystis aeruginosa at different levels of iron [J]. Ecotoxicology and Environmental Safety, 2024(283): 116790.
|
[71] |
Ma F, Zhang X, Zhu X, et al. Dynamic changes of IsiA-containing complexes during long-term iron deficiency in Synechocystis sp. PCC 6803 [J]. Molecular Plant, 2017, 10(1): 143-154. doi: 10.1016/j.molp.2016.10.009
|
[72] |
Salomon E, Keren N. Acclimation to environmentally relevant mn concentrations rescues a cyanobacterium from the detrimental effects of iron limitation [J]. Environmental Microbiology, 2015, 17(6): 2090-2098. doi: 10.1111/1462-2920.12826
|
[73] |
Nagao R, Kato K, Hamaguchi T, et al. Structure of a monomeric photosystem Ⅰ core associated with iron-stress-induced-a proteins from Anabaena sp. PCC 7120 [J]. Nature Communications, 2023(14): 920.
|
[74] |
Akhtar P, Jana S, Lambrev P H, et al. Inhomogeneous energy transfer dynamics from iron-stress-induced protein a to photosystem Ⅰ [J]. Frontiers in Plant Science, 2024(15): 1393886.
|
[75] |
Zhao L S, Huokko T, Wilson S, et al. Structural variability, coordination and adaptation of a native photosynthetic machinery [J]. Nature Plants, 2020, 6(7): 869-882. doi: 10.1038/s41477-020-0694-3
|
[76] |
Polyviou D, Machelett M M, Hitchcock A, et al. Structural and functional characterization of IdiA/FutA (Tery_3377), an iron-binding protein from the ocean diazotroph Trichodesmium erythraeum [J]. The Journal of Biological Chemistry, 2018, 293(47): 18099-18109. doi: 10.1074/jbc.RA118.001929
|
[77] |
Webb E A, Moffett J W, Waterbury J B. Iron stress in open-ocean cyanobacteria (Synechococcus, Trichodesmium, and Crocosphaera spp.): identification of the IdiA protein [J]. Applied and Environmental Microbiology, 2001, 67(12): 5444-5452. doi: 10.1128/AEM.67.12.5444-5452.2001
|
[78] |
Rivers A R, Jakuba R W, Webb E A. Iron stress genes in marine Synechococcus and the development of a flow cytometric iron stress assay [J]. Environmental Microbiology, 2009, 11(2): 382-396. doi: 10.1111/j.1462-2920.2008.01778.x
|
[79] |
Hernández J A, Pellicer S, Huang L, et al. FurA modulates gene expression of alr3808, a DpsA homologue in Nostoc (Anabaena) sp. PCC7120 [J]. FEBS Letters, 2007, 581(7): 1351-1356. doi: 10.1016/j.febslet.2007.02.053
|
[80] |
Palenik B, Ren Q, Dupont C L, et al. Genome sequence of Synechococcus CC9311: insights into adaptation to a coastal environment [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(36): 13555-13559.
|
[81] |
Michel K P, Berry S, Hifney A, et al. Adaptation to iron deficiency: a comparison between the cyanobacterium Synechococcus elongatus PCC 7942 wild-type and a DpsA-free mutant [J]. Photosynthesis Research, 2003, 75(1): 71-84. doi: 10.1023/A:1022459919040
|
[82] |
Chen X, Wang J, Du Z, et al. Transcriptomic analysis of the molecular response mechanism of Microcystis aeruginosa to iron limitation stress [J]. Water, 2022, 14(11): 1679. doi: 10.3390/w14111679
|
[83] |
El-Sheekh M M, Prášil O, El-Mohsnawy E. Physiological and spectroscopical changes of the thermophilic cyanobacterium Synechococcus elongatus under iron stress and recovery culture [J]. Acta Physiologiae Plantarum, 2021, 43(5): 72. doi: 10.1007/s11738-021-03242-0
|
[84] |
Gilbert N E, LeCleir G R, Strzepek R F, et al. Bioavailable iron titrations reveal oceanic Synechococcus ecotypes optimized for different iron availabilities [J]. ISME Communications, 2022, 2(1): 54. doi: 10.1038/s43705-022-00132-5
|
[85] |
Qiu G W, Lis H, Qiu B S, et al. Long-term iron deprivation and subsequent recovery uncover heterogeneity in the response of cyanobacterial populations [J]. Environmental Microbiology, 2021, 23(3): 1793-1804. doi: 10.1111/1462-2920.15443
|
[86] |
Lis H, Kranzler C, Keren N, et al. A comparative study of iron uptake rates and mechanisms amongst marine and fresh water cyanobacteria: prevalence of reductive iron uptake [J]. Life, 2015, 5(1): 841-860. doi: 10.3390/life5010841
|
[87] |
Blanco-Ameijeiras S, Moisset S A M, Trimborn S, et al. Elemental stoichiometry and photophysiology regulation of Synechococcus sp. PCC7002 under increasing severity of chronic iron limitation [J]. Plant & Cell Physiology, 2018, 59(9): 1803-1816.
|
[88] |
Chen Z, Li X, Tan X, et al. Recent advances in biological functions of thick pili in the cyanobacterium Synechocystis sp. PCC 6803 [J]. Frontiers in Plant Science, 2020(11): 241.
|
[89] |
Conradi F D, Mullineaux C W, Wilde A. The role of the cyanobacterial type Ⅳ pilus machinery in finding and maintaining a favourable environment [J]. Life, 2020, 10(11): 252. doi: 10.3390/life10110252
|
[90] |
Lamb J J, Hill R E, Eaton-Rye J J, et al. Functional role of pila in iron acquisition in the cyanobacterium Synechocystis sp. PCC 6803 [J]. PLoS One, 2014, 9(8): e105761. doi: 10.1371/journal.pone.0105761
|
[91] |
Lis H, Shaked Y, Kranzler C, et al. Iron bioavailability to phytoplankton: an empirical approach [J]. The ISME Journal, 2015, 9(4): 1003-1013. doi: 10.1038/ismej.2014.199
|
[92] |
Arosio P, Elia L, Poli M. Ferritin, cellular iron storage and regulation [J]. IUBMB Life, 2017, 69(6): 414-422. doi: 10.1002/iub.1621
|
[93] |
Bradley J M, Pullin J, Moore G R, et al. Routes of iron entry into, and exit from, the catalytic ferroxidase sites of the prokaryotic ferritin SynFtn [J]. Dalton Transactions Cambridge, England, 2020, 49(5): 1545-1554. doi: 10.1039/C9DT03570B
|
[94] |
Howe C, Ho F, Nenninger A, et al. Differential biochemical properties of three canonical Dps proteins from the cyanobacterium Nostoc punctiforme suggest distinct cellular functions [J]. Journal of Biological Chemistry, 2018, 293(43): 16635-16646. doi: 10.1074/jbc.RA118.002425
|
[95] |
Hernández-Prieto M A, Schön V, Georg J, et al. Iron deprivation in Synechocystis: inference of pathways, non-coding rnas, and regulatory elements from comprehensive expression profiling [J]. G3, 2012, 2(12): 1475-1495. doi: 10.1534/g3.112.003863
|
[96] |
Kranzler C, Lis H, Shaked Y, et al. The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium [J]. Environmental Microbiology, 2011, 13(11): 2990-2999. doi: 10.1111/j.1462-2920.2011.02572.x
|
[97] |
Agarwal R. Elucidation of the coping strategy in an omp homozygous knockout mutant of Synechocystis 6803 defective in iron uptake [J]. Archives of Microbiology, 2022, 204(7): 358. doi: 10.1007/s00203-022-02968-w
|
[98] |
Fujita M, Mori K, Hara H, et al. A TonB-dependent receptor constitutes the outer membrane transport system for a lignin-derived aromatic compound [J]. Communications Biology, 2019, 2(1): 432. doi: 10.1038/s42003-019-0676-z
|
[99] |
Ferguson A D, Chakraborty R, Smith B S, et al. Structural basis of gating by the outer membrane transporter FecA [J]. Acta Crystallographica Section A: Foundations of Crystallography, 2002, 58(s1): c283.
|
[100] |
Maldonado M T, Strzepek R F, Sander S, et al. Acquisition of iron bound to strong organic complexes, with different Fe binding groups and photochemical reactivities, by plankton communities in Fe-limited subantarctic waters [J]. Global Biogeochemical Cycles, 2005, 19(4): GB4S23.
|
[101] |
Amin S A, Green D H, Hart M C, et al. Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(40): 17071-17076.
|
[102] |
Sher D, Thompson J W, Kashtan N, et al. Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria [J]. The ISME Journal, 2011, 5(7): 1125-1132. doi: 10.1038/ismej.2011.1
|
[103] |
Vergalli J, Bodrenko I V, Masi M, et al. Porins and small-molecule translocation across the outer membrane of gram-negative bacteria [J]. Nature Reviews Microbiology, 2020, 18(3): 164-176. doi: 10.1038/s41579-019-0294-2
|
[104] |
Jiang H B, Lou W J, Ke W T, et al. New insights into iron acquisition by cyanobacteria: an essential role for ExbB-ExbD complex in inorganic iron uptake [J]. The ISME Journal, 2015, 9 (2): 297-309.
|
[105] |
Kowata H, Tochigi S, Takahashi H, et al. Outer membrane permeability of cyanobacterium Synechocystis sp. strain PCC 6803: studies of passive diffusion of small organic nutrients reveal the absence of classical porins and intrinsically low permeability [J]. Journal of Bacteriology, 2017, 199(19): e00371-17.
|
[106] |
Kranzler C, Lis H, Finkel O M, et al. Coordinated transporter activity shapes high-affinity iron acquisition in cyanobacteria [J]. The ISME Journal, 2014, 8(2): 409-417. doi: 10.1038/ismej.2013.161
|
[107] |
Coale T H, Moosburner M, Horák A, et al. Reduction-dependent siderophore assimilation in a model pennate diatom [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(47): 23609-23617.
|
[108] |
Hopkinson B M, Barbeau K A. Iron transporters in marine prokaryotic genomes and metagenomes [J]. Environmental Microbiology, 2012, 14(1): 114-128. doi: 10.1111/j.1462-2920.2011.02539.x
|
[109] |
Marlovits T C, Haase W, Herrmann C, et al. The membrane protein FeoB contains an intramolecular G protein essential for Fe(Ⅱ) uptake in bacteria [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(25): 16243-16248.
|
[110] |
Kim H, Lee H, Shin D. The FeoA protein is necessary for the FeoB transporter to import ferrous iron [J]. Biochemical and Biophysical Research Communications, 2012, 423(4): 733-738. doi: 10.1016/j.bbrc.2012.06.027
|
[111] |
Katoh H, Hagino N, Grossman A R, et al. Genes essential to iron transport in the cyanobacterium Synechocystis sp. strain PCC 6803 [J]. Journal of Bacteriology, 2001, 183(9): 2779-2784. doi: 10.1128/JB.183.9.2779-2784.2001
|
[112] |
Jiang H B, Lou W J, Du H Y, et al. Sll1263, a unique cation diffusion facilitator protein that promotes iron uptake in the cyanobacterium Synechocystis sp. strain PCC 6803 [J]. Plant & Cell Physiology, 2012, 53(8): 1404-1417.
|
[113] |
Xu N, Qiu G W, Lou W J, et al. Identification of an iron permease, cFTR1, in cyanobacteria involved in the iron reduction/re-oxidation uptake pathway [J]. Environmental Microbiology, 2016, 18(12): 5005-5017. doi: 10.1111/1462-2920.13464
|
[114] |
Enzingmüller-Bleyl T C, Boden J S, Herrmann A J, et al. On the trail of iron uptake in ancestral cyanobacteria on early earth [J]. Geobiology, 2022, 20(6): 776-789. doi: 10.1111/gbi.12515
|
[115] |
Brune I, Werner H, Hüser A T, et al. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum [J]. BMC Genomics, 2006, 7(1): 1-19. doi: 10.1186/1471-2164-7-1
|
[116] |
Bsat N, Herbig A, Casillas-Martinez L, et al. Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors [J]. Molecular Microbiology, 1998, 29 (1): 189-198.
|
[117] |
Gray E, Stewart M Y Y, Hanwell L, et al. Stabilisation of the RirA [4Fe-4S] cluster results in loss of iron-sensing function [J]. Chemical Science, 2023, 14(36): 9744-9758. doi: 10.1039/D3SC03020B
|
[118] |
Rodionov D A, Gelfand M S, Todd J D, et al. Computational reconstruction of iron- and manganese-responsive transcriptional networks in α-proteobacteria [J]. PLoS Computational Biology, 2006, 2(12): e163. doi: 10.1371/journal.pcbi.0020163
|
[119] |
Hernández J A, López-Gomollón S, Bes M T, et al. Three fur homologues from Anabaena sp. PCC7120: exploring reciprocal protein-promoter recognition [J]. FEMS Microbiology Letters, 2004, 236(2): 275-282. doi: 10.1111/j.1574-6968.2004.tb09658.x
|
[120] |
Hernández J A, Muro-Pastor A M, Flores E, et al. Identification of a furA cis antisense RNA in the cyanobacterium Anabaena sp. PCC 7120 [J]. Journal of Molecular Biology, 2006, 355(3): 325-334. doi: 10.1016/j.jmb.2005.10.079
|
[121] |
González A, Angarica V E, Sancho J, et al. The FurA regulon in Anabaena sp. PCC 7120: in Silico prediction and experimental validation of novel target genes [J]. Nucleic Acids Research, 2014, 42(8): 4833-4846. doi: 10.1093/nar/gku123
|
[122] |
Kaushik M S, Singh P, Tiwari B, et al. Ferric Uptake Regulator (FUR) Protein: properties and implications in cyanobacteria [J]. Annals of Microbiology, 2016, 66(1): 61-75. doi: 10.1007/s13213-015-1134-x
|
[123] |
Guío J, Bes M T, Balsera M, et al. Thioredoxin dependent changes in the redox states of FurA from Anabaena sp. PCC 7120 [J]. Antioxidants, 2021, 10(6): 913. doi: 10.3390/antiox10060913
|
[124] |
Riediger M, Hernández-Prieto M A, Song K, et al. Genome-wide identification and characterization of Fur-binding sites in the cyanobacteria Synechocystis sp. PCC 6803 and PCC 6714 [J]. DNA Research, 2021, 28(6): dsab023. doi: 10.1093/dnares/dsab023
|
[125] |
Krynická V, Georg J, Jackson P J, et al. Depletion of the FtsH1/3 proteolytic complex suppresses the nutrient stress response in the cyanobacterium Synechocystis sp strain PCC 6803 [J]. The Plant Cell, 2019, 31(12): 2912-2928. doi: 10.1105/tpc.19.00411
|
[126] |
Sevilla E, Bes M T, Peleato M L, et al. Fur-like proteins: beyond the ferric uptake regulator (Fur) paralog [J]. Archives of Biochemistry and Biophysics, 2021(701): 108770.
|
[127] |
Botello-Morte L, Bes M T, Heras B, et al. Unraveling the redox properties of the global regulator FurA from Anabaena sp. PCC 7120: disulfide reductase activity based on its CXXC motifs [J]. Antioxidants & Redox Signaling, 2014, 20(9): 1396-1406.
|
[128] |
Fillat M F. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators [J]. Archives of Biochemistry and Biophysics, 2014(546): 41-52.
|
[129] |
Sarvan S, Charih F, Askoura M, et al. Functional insights into the interplay between DNA interaction and metal coordination in ferric uptake regulators [J]. Scientific Reports, 2018, 8(1): 7140. doi: 10.1038/s41598-018-25157-6
|
[130] |
Lostao A, Peleato M L, Gómez-Moreno C, et al. Oligomerization properties of FurA from the cyanobacterium Anabaena sp. PCC 7120: direct visualization by in situ atomic force microscopy under different redox conditions [J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2010, 1804(9): 1723-1729. doi: 10.1016/j.bbapap.2010.04.002
|
[131] |
Zheng M, Doan B, Schneider T D, et al. OxyR and SoxRS regulation of fur [J]. Journal of Bacteriology, 1999, 181(15): 4639-4643. doi: 10.1128/JB.181.15.4639-4643.1999
|
[132] |
Wang Y, Ge H, Xiao Z, et al. Spatial proteome reorganization of a photosynthetic model cyanobacterium in response to abiotic stresses [J]. Journal of Proteome Research, 2023, 22(4): 1255-1269. doi: 10.1021/acs.jproteome.2c00759
|
[133] |
Flint A, Sun Y Q, Stintzi A. Cj1386 is an ankyrin-containing protein involved in heme trafficking to catalase in Campylobacter jejuni [J]. Journal of Bacteriology, 2012, 194(2): 334-345. doi: 10.1128/JB.05740-11
|
[134] |
Moore L R, Caspi R, Campbell D A, et al. CyanoCyc cyanobacterial web portal [J]. Frontiers in Microbiology, 2024(15): 1340413.
|
[135] |
González A, Bes M T, Peleato M L, et al. Expanding the role of FurA as essential global regulator in cyanobacteria [J]. PLoS One, 2016, 11(3): e0151384. doi: 10.1371/journal.pone.0151384
|
[136] |
González A, Bes M T, Valladares A, et al. FurA is the master regulator of iron homeostasis and modulates the expression of tetrapyrrole biosynthesis genes in Anabaena sp. PCC 7120 [J]. Environmental Microbiology, 2012, 14(12): 3175-3187. doi: 10.1111/j.1462-2920.2012.02897.x
|
[137] |
Bhukya H, Anand R. TetR regulators: a structural and functional perspective [J]. Journal of the Indian Institute of Science, 2017, 97(2): 245-259. doi: 10.1007/s41745-017-0025-5
|
[138] |
Cheng D, He Q. PfsR is a key regulator of iron homeostasis in Synechocystis PCC 6803 [J]. PLoS One, 2014, 9(7): e101743. doi: 10.1371/journal.pone.0101743
|
[139] |
Stekel D J, Jenkins D J. Strong negative self regulation of prokaryotic transcription factors increases the intrinsic noise of protein expression [J]. BMC Systems Biology, 2008(2): 6.
|
[140] |
Cheng Y, Lyu M, Yang R, et al. SufR, a [4Fe-4S] cluster-containing transcription factor, represses the sufRBDCSU operon in Streptomyces avermitilis iron-sulfur cluster assembly [J]. Applied and Environmental Microbiology, 2020, 86(18): e01523-20.
|
[141] |
Rübsam H, Kirsch F, Reimann V, et al. The iron-stress activated RNA 1 (IsaR1) coordinates osmotic acclimation and iron starvation responses in the cyanobacterium Synechocystis sp. PCC 6803 [J]. Environmental Microbiology, 2018, 20(8): 2757-2768. doi: 10.1111/1462-2920.14079
|
[142] |
Dühring U, Axmann I M, Hess W R, et al. An internal antisense RNA regulates expression of the photosynthesis gene isiA [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(18): 7054-7058.
|
[143] |
Martin J H. Glacial-interglacial CO2 change: the iron hypothesis [J]. Paleoceanography, 1990, 5(1): 1-13. doi: 10.1029/PA005i001p00001
|
[144] |
Martin J H, Fitzwater S E. Iron deficiency limits phytoplankton growth in the north-east pacific subarctic [J]. Nature, 1988, 331(6154): 341-343. doi: 10.1038/331341a0
|
[145] |
Costa K M, McManus J F, Anderson R F, et al. No iron fertilization in the equatorial Pacific Ocean during the last ice age [J]. Nature, 2016, 529 (7587): 519-522.
|
[146] |
Nishioka J, Obata H, Hirawake T, et al. A review: iron and nutrient supply in the subarctic pacific and its impact on phytoplankton production [J]. Journal of Oceanography, 2021, 77 (4): 561-587.
|
[147] |
Li J, Babcock-Adams L, Boiteau R M, et al. Microbial iron limitation in the ocean’s twilight zone [J]. Nature, 2024, 633(8031): 823-827. doi: 10.1038/s41586-024-07905-z
|
[1] | HU Shao-Qiu, DUAN Rui, ZHANG Dong-Xu, BAO Jiang-Hui, LÜ Hua-Fei, DUAN Ming. CLASSIFICATION OF 3D POINT CLOUD MODELS OF FISH BASED ON POINT TRANSFORMER APPROACH[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(2): 022515. DOI: 10.7541/2024.2024.0053 |
[2] | YE Yuan-Tu, CAI Chun-Fang, XU Fan, LIN Xiu-Xiu, HUANG Yu-Wei, DONG Jiao-Jiao, ZHANG Bao-Tong, XIAO Pei-Zhen. Effects of oxidized fish oil on oxidative stress pathways of intestinal mucosa of grass carp (Ctenopharyngodon idellus)[J]. ACTA HYDROBIOLOGICA SINICA, 2016, 40(4): 758-766. DOI: 10.7541/2016.100 |
[3] | SUN Lu-Ming, YU Meng-Jun, CHEN Ya-Dong, CHEN Xue-Jie, LIU Yang, QIU Xue-Mei, SHA Zhen-Xia. AKT-INTERACTING PROTEIN GENE CLONING AND ITS EXPRESSION PROFILE IN RESPONSE TO PATHOGEN INFECTION IN HALF SMOOTH TONGUE SOLE (CYNOGLOSSUS SEMILAEVIS)[J]. ACTA HYDROBIOLOGICA SINICA, 2016, 40(3): 467-473. DOI: 10.7541/2016.62 |
[4] | QIANG Jun, YANG Hong, WANG Hui, XU Pao, HE Jie. EFFECTS OF DIFFERENT DIETARY PROTEIN LEVELS ON SERUM BIOCHEMICAL INDICES AND EXPRESSION OF LIVER HSP70 mRNA IN GIFT TILAPIA (OREOCHROMIS NILOTICUS) UNDER LOW TEMPERATURE STRESS[J]. ACTA HYDROBIOLOGICA SINICA, 2013, 37(3): 434-443. DOI: 10.7541/2013.40 |
[5] | LI Zhong, LIANG Hong-Wei, ZOU Gui-Wei. A RAPID PCR-QUALITY DNA EXTRACTION METHOD IN FISH[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(2): 365-367. DOI: 10.3724/SP.J.1035.2012.00365 |
[6] | MA XiLan, LIU XiaoChun, ZHOU LiBin, CHEN YongZhi, ZHANG Yong. PROGRESS ON GHRELIN IN FISH[J]. ACTA HYDROBIOLOGICA SINICA, 2009, 33(3): 546-551. |
[7] | Shahid Mahboob, Bilal Hussain, Zahid Iqbal, Abdul Shakoor Chaudhry. ESTIMATION OF VOLATILE CONSTITUENTS IN THE FISH FLESH FROM WILD AND FARMED CIRRHINA MRIGALA AND CYPRINUS CARPIO[J]. ACTA HYDROBIOLOGICA SINICA, 2009, 33(3): 484-491. |
[8] | ZHANG Wen-bing, XIE Xiao-jun, FU Shi-jian, CAO Zhen-dong. THE NUTRITION OF SILURUS MERIDIONALIS: OPTIMUM DIETARY PROTEIN LEVEL[J]. ACTA HYDROBIOLOGICA SINICA, 2000, 24(6): 602-609. |
[9] | Zhou Dinggang, Wang kangning. EFFECTS OF RESERPINE AND DOMPERIDONE ON LHRH-A INDUCED OVULATION IN MONOPTERUS ALBUS[J]. ACTA HYDROBIOLOGICA SINICA, 1993, 17(1): 98-100. |
[10] | Lin Ding, Mao Yongqing, Cai Fasheng. EXPERIMENTS ON THE PROTEIN REQUIREMENTS OF GRASS CARP(CTENOPHARYNGODON IDELLUS (C. V.))JUVENILES[J]. ACTA HYDROBIOLOGICA SINICA, 1980, 4(2): 207-212. |