Citation: | GAO Ming-Yue, CHU Xin, LIU Si-Yu, YAO Jia-Yun, LIN Ling-Yun, SHEN Jin-Yu, PAN Xiao-Yi. EVALUATION OF IMMUNE EFFECT ON ATTENUATED STRAIN OF LARGEMOUTH BASS RANAVIRUS[J]. ACTA HYDROBIOLOGICA SINICA. DOI: 10.7541/2025.2024.0447 |
In order to investigate the characteristics of LMBV-ZJDSS-F110, an attenuated transmissible strain of Largemouth bass virus (LMBV), this study examined various factors, including replication efficiency, virulence, in vivo viral load changes, comparative genomes, immune protection rate, expression of immune-related genes after immunization, and virulence regression of the virus. The results showed that, when cultured in FHM, the viral titer of F110 strain reached 109.1 TCID50/mL, and no mortality was observed in largemouth bass when injected at a dose of 108.0 TCID50/mL×0.1 mL. Tissue viral load tests on different generations of strains showed that the viral loads in spleen and gills of passaged strains F5, F45, and F110 were higher in the 7d than that of the 3d, whereas the viral loads of F90 did not change significantly at the two time points, which indicated that the characteristics of the transmission strain F90 had changed compared with those of F45 and F110. Comparative genomic analyses of the F5 and F110 strains showed that LMBV-ZJDSS-F110 exhibited 10 mutations, of which 7 could cause changes in the coding region. Immunization trials using both injection and immersion showed that the 108.0 TCID50/mL concentration group obtained 70% immune protection rate against the strong F5 strain. Gene expression of immune factors (TNF-α, CD8b, IgM, IgT, IFN-γ) in the head and kidney reached a peak on the 14d after immunization and was significantly higher in the injected group than that of the immersion group, with the expression of IFN-γ was significantly higher. Specifically, the expression of IFN-γ was nearly 50 times that of the control group. The results of in vivo virulence reversion test showed that F110 did not cause any mortality in 5 generations of blind in vivo transmission. The above studies indicate that LMBV-ZJDSS-F110 is a safe and effective attenuated vaccine strain, which provides a pathway for the immunization of largemouth bass virus.
[1] |
李江涛, 杨凯宇, 邱晓桐, 等. 大口黑鲈佛山和台湾群体自交与杂交子代的生长和形态差异分析 [J]. 南方水产科学, 2021, 17(5): 1-9.] doi: 10.12131/20200262
Li J T, Yang K Y, Qiu X T, et al. Comparison of growth and morphological characteristics of inbred and hybrid families of Micropterus salmoides from Foshan and Taiwan populations [J]. South China Fisheries Science, 2021, 17(5): 1-9. [ doi: 10.12131/20200262
|
[2] |
Coyle S D, Tidwell J H, Webster C D. Response of largemouth bass (Micropterus salmoides) to dietary supplementation of lysine, methionine, and highly unsaturated fatty acids [J]. Journal of the World Aquaculture Society, 2000, 31(1): 89-95. doi: 10.1111/j.1749-7345.2000.tb00702.x
|
[3] |
王庆, 李凯彬, 曾伟伟, 等. 大口黑鲈虹彩病毒病研究进展 [J]. 动物医学进展, 2011, 32(2): 73-76.] doi: 10.3969/j.issn.1007-5038.2011.02.018
Wang Q, Li K B, Zeng W W, et al. Progress on viral disease caused by largemouth bass ranavirus [J]. Progress in Veterinary Medicine, 2011, 32(2): 73-76. [ doi: 10.3969/j.issn.1007-5038.2011.02.018
|
[4] |
Wei X F, Yong L, Yuting F, et al. The inactivated ISKNV-Ⅰ vaccine confers highly effective cross-protection against epidemic RSIV-Ⅰ and RSIV-Ⅱ from cultured spotted sea bass Lateolabrax maculatus [J]. Microbiology Spectrum, 2023, 11(3): e0449522. doi: 10.1128/spectrum.04495-22
|
[5] |
章文言, 张玉军, 李陈, 等. 大口黑鲈弹状病毒的分离与鉴定 [J]. 华中农业大学学报, 2022, 41(6): 230-236.] doi: 10.3969/j.issn.1000-2421.2022.6.hznydx202206027
Zhang W Y, Zhang Y J, Li C, et al. Isolation and identification of Micropterus salmoides rhabdovirus [J]. Journal of Huazhong Agricultural University, 2022, 41(6): 230-236. [ doi: 10.3969/j.issn.1000-2421.2022.6.hznydx202206027
|
[6] |
Wang D, Zhang B, Chen M, et al. Comparison and evaluation of DNA vaccines against Nocardia seriolae infection in largemouth bass (Micropterus salmoides) [J]. Aquaculture, 2025(596): 741772. doi: 10.1016/j.aquaculture.2024.741772
|
[7] |
Deng G, Li S, Xie J, et al. Characterization of a ranavirus isolated from cultured largemouth bass (Micropterus salmoides) in China [J]. Aquaculture, 2011, 312(1-4): 198-204. doi: 10.1016/j.aquaculture.2010.12.032
|
[8] |
Plumb J A, Grizzle J M, Young H E, et al. An iridovirus isolated from wild largemouth bass [J]. Journal of Aquatic Animal Health, 1996, 8(4): 265-270. doi: 10.1577/1548-8667(1996)008<0265:AIIFWL>2.3.CO;2
|
[9] |
邓国成, 谢骏, 李胜杰, 等. 大口黑鲈病毒性溃疡病病原的分离和鉴定 [J]. 水产学报, 2009, 33(5): 871-877.]
Deng G C, Xie J, Li S J, et al. Isolation and preliminary identification of the pathogen from largemouth bass ulcerative syndrome [J]. Journal of Fisheries of China, 2009, 33(5): 871-877. [
|
[10] |
董寒旭, 曾伟伟. 大口黑鲈蛙虹彩病毒病研究进展 [J]. 病毒学报, 2022, 38(3): 746-756.]
Dong H X, Zeng W W. Research progress on largemouth bass ranavirus disease [J]. Chinese Journal of Virology, 2022, 38(3): 746-756. [
|
[11] |
许峰, 鲁建飞, 魏永伟, 等. 一株大口黑鲈(Micropterus salmoides)虹彩病毒(Iridoviridae)的分离及鉴定 [J]. 海洋与湖沼, 2020, 51(1): 156-162.] doi: 10.11693/hyhz20190800163
Xu F, Lu J F, Wei Y W, et al. Characterization of an iridovirus isolate from largemouth bass Micropterus salmoides [J]. Oceanologia et Limnologia Sinica, 2020, 51(1): 156-162. [ doi: 10.11693/hyhz20190800163
|
[12] |
Zhao R, Geng Y, Qin Z, et al. A new ranavirus of the Santee-Cooper group invades largemouth bass (Micropterus salmoides) culture in southwest China [J]. Aquaculture, 2020(526): 735363. doi: 10.1016/j.aquaculture.2020.735363
|
[13] |
Grizzle J M, Altinok I, Noyes A D. PCR method for detection of largemouth bass virus [J]. Diseases of Aquatic Organisms, 2003, 54(1): 29-33.
|
[14] |
Yi W, Zhang X, Zeng K, et al. Construction of a DNA vaccine and its protective effect on largemouth bass (Micropterus salmoides) challenged with largemouth bass virus (LMBV) [J]. Fish & Shellfish Immunology, 2020(106): 103-109.
|
[15] |
Fu X Z, Li W X, Liu C, et al. A naturaly attenuated largemouth bass ranavirus strain provided protection for Micropterus salmoides by immersion immunization [J]. Fish & Shellfish Immunology, 2024(153): 109871.
|
[16] |
Hu T, Wang Y, Wang Y, et al. Production and evaluation of three kinds of vaccines against largemouth bass virus, and DNA vaccines show great application prospects [J]. Fish & Shellfish Immunology, 2024(153): 109841. doi: 10.1016/j.fsi.2024.109841
|
[17] |
Luo X, Wang R, Ma B, et al. Inactivated LMBV vaccine with nano-aluminum adjuvant provided immune protection in largemouth bass (Micropterus salmoides) [J]. Aquaculture, 2025(595): 741634. doi: 10.1016/j.aquaculture.2024.741634
|
[18] |
刘志玲, 陈茹, 朱道中, 等. 病毒性出血性败血症病毒RNA标准物质的研制 [J]. 中国兽医杂志, 2018, 54(3): 15-19.]
Liu Z L, Chen R, Zhu D Z, et al. Preparation of VHS reference materical used for nucleic acid detection [J]. Chinese Journal of Veterinary Medicine, 2018, 54(3): 15-19. [
|
[19] |
陈桂花, 徐黎明, 赵景壮, 等. 传染性造血器官坏死病灭活疫 苗的制备及免疫保护效果 [J]. 水产学报, 2021, 45(11): 1909-1920.]
Chen G H, Xu L M, Zhao J Z, et al. Preparation and immune protective efficacy analysis of aninactivated vaccineagainst infectious hematopoietic necrosis (IHN) [J]. Journal of Fisheries of China, 2021, 45(11): 1909-1920. [
|
[20] |
Liu F, Wu X, Li L, et al. Evolutionary characteristics of morbilliviruses during serial passages in vitro: Gradual attenuation of virus virulence [J]. Comparative Immunology, Microbiology and Infectious Diseases, 2016(47): 7-18. doi: 10.1016/j.cimid.2016.05.007
|
[21] |
王丛旭, 潘晓艺, 周可欣, 等. 体外传代对大口黑鲈蛙虹彩病毒毒株毒力的影响 [J]. 大连海洋大学学报, 2023, 38(4): 623-629.]
Wang C X, Pan X Y, Zhou K X, et al. Effect of in vitro passage on virulence of largemouth bass (Microperus salmoides) ranavirus [J]. Journal of Dalian Ocean University, 2023, 38(4): 623-629. [
|
[22] |
杨展展, 林强, 付小哲, 等. 大口黑鲈蛙病毒分子流行病学及组织病理分析 [J]. 水产学报, 2022, 46(6): 1063-1073.]
Yang Z Z, Lin Q, Fu X Z, et al. Molecular epidemiology and histopathological analysis of largemouth bass ranavirus [J]. Journal of Fisheries of China, 2022, 46(6): 1063-1073. [
|
[23] |
郑男, 王秋举, 马悦, 等. L-肉碱对胖头鱥肌肉细胞和草鱼性腺细胞抗氧化功能的调节作用 [J]. 大连海洋大学学报, 2018, 33(6): 736-742.]
Zheng N, Wang Q J, Ma Y, et al. Regulation of L-carnitine on antioxidant function in Pimephales promelas muscle cell line and grass carp Ctenopharyngodon idellus ovary cell line [J]. Journal of Dalian Ocean University, 2018, 33(6): 736-742. [
|
[24] |
LaBarre D D, Lowy R J. Improvements in methods for calculating virus titer estimates from TCID50 and plaque assays [J]. Journal of Virological Methods, 2001, 96(2): 107-126. doi: 10.1016/S0166-0934(01)00316-0
|
[25] |
巩金鹏, 潘晓艺, 蔺凌云, 等. 大口黑鲈虹彩病毒TaqMan荧光定量PCR检测方法的建立与应用 [J]. 中国预防兽医学报, 2022, 44(5): 508-513.] doi: 10.3969/j.issn.1008-0589.202109001
Gong J P, Pan X Y, Lin L Y, et al. Establishment and application of TaqMan qPCR method for largemouth bass ranavirus [J]. Chinese Journal of Preventive Veterinary Medicine, 2022, 44(5): 508-513. [ doi: 10.3969/j.issn.1008-0589.202109001
|
[26] |
张星朗, 周小愿, 张辉. 大鲵虹彩病毒的分离纯化及其MCP基因序列分析 [J]. 西北农林科技大学学报(自然科学版), 2014, 42(12): 23-28.]
Zhang X L, Zhou X Y, Zhang H. Isolation, purification and major capsid protein gene sequence analysis of Iridovirus isolated from Chinese giant salamander, Andrias davidianus [J]. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(12): 23-28. [
|
[27] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method [J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
|
[28] |
Gayle R B 3rd, Sleath P R, Srinivason S, et al. Importance of the amino terminus of the interleukin-8 receptor in ligand interactions [J]. The Journal of Biological Chemistry, 1993, 268(10): 7283-7289. doi: 10.1016/S0021-9258(18)53174-4
|
[29] |
Kayesh M E H, Hashem M A, Maetani F, et al. CD4, CD8b, and cytokines expression profiles in peripheral blood mononuclear cells infected with different subtypes of KoRV from koalas (Phascolarctos cinereus) in a Japanese zoo [J]. Viruses, 2020, 12 (12): 1415.
|
[30] |
Uchuwittayakul A, Thangsunan P, Thangsunan P, et al. Molecular structure and functional responses of IgM, IgT and IgD to Flavobacterium covae and Streptococcus iniae infection in Asian seabass (Lates calcarifer Bloch, 1790) [J]. Fish & Shellfish Immunology, 2024(153): 109823.
|
[31] |
Gasperini S, Marchi M, Calzetti F, et al. Gene expression and production of the monokine induced by IFN-gamma (MIG), IFN-inducible T cell αlpha chemoattractant (I-TAC), and IFN-gamma-inducible protein-10 (IP-10) chemokines by human neutrophils [J]. Journal of Immunology, 1999, 162(8): 4928-4937. doi: 10.4049/jimmunol.162.8.4928
|
[32] |
Byadgi O, Chen C W, Wang P C, et al. Transcriptome analysis of differential functional gene expression in largemouth bass (Micropterus salmoides) after challenge with Nocardia seriolae [J]. Fish & Shellfish Immunology, 2016(53): 124.
|
[33] |
孙雨雨. 一株鲤疱疹病毒Ⅱ型弱毒株作为活疫苗候选株效果评价研究 [D]. 盐城: 盐城工学院, 2023: 26-28.]
Sun Y Y. Evaluation of the effect of a attenuated strain of carp herpesvirus type Ⅱ as a candidate strain of live vaccine [D]. Yancheng: Yancheng Institute of Technology, 2023: 26-28. [
|
[34] |
刘丹, 耿毅, 汪开毓, 等. 大鲵蛙病毒感染大鲵的动态病理损伤及病原的组织分布 [J]. 中国水产科学, 2017, 24 (1): 146-155.]
Liu D, Geng Y, Wang K Y. et al. 2017, Dynamic pathological lesions and tissue distribution of Chinese giant salamanders infected with CGSRV [J]. Journal of Fishery Sciences of China, 24 (1): 146-155. [
|
[35] |
Hu S B, Li J B. RNA editing and immune control: from mechanism to therapy [J]. Current Opinion in Genetics & Development, 2024(86): 102195.
|
[36] |
Holopainen R, Ohlemeyer S, Schütze H, et al. Ranavirus phylogeny and differentiation based on major capsid protein, DNA polymerase and neurofilament triplet H1-like protein genes [J]. Diseases of Aquatic Organisms, 2009, 85(2): 81-91.
|
[37] |
李亚南, 陈全震, 邵健忠, 等. 鱼类免疫学研究进展 [J]. 动物学研究, 1995, 16(1): 83-94.]
Li Y N, Chen Q Z, Shao J Z, et al. Advances in research of fish immunology [J]. Zoological Research, 1995, 16(1): 83-94. [
|
[38] |
宋杰, 胡雅洁, 刘龙丁. 病毒逃逸宿主免疫反应机制的研究进展 [J]. 生命科学, 2016, 28(1): 118-123.]
Song J, Hu Y J, Liu L D. Research progress on viral evasion mechanisms of host immune responses [J]. Chinese Bulletin of Life Sciences, 2016, 28(1): 118-123. [
|
[39] |
Xu L, Zhao J, Liu M, et al. Bivalent DNA vaccine induces significant immune responses against infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus in rainbow trout [J]. Scientific Reports, 2017, 7(1): 5700. doi: 10.1038/s41598-017-06143-w
|
[40] |
Ballesteros N A, Alonso M, Saint-Jean S R, et al. An oral DNA vaccine against infectious haematopoietic necrosis virus (IHNV) encapsulated in alginate microspheres induces dose-dependent immune responses and significant protection in rainbow trout (Oncorrhynchus mykiss) [J]. Fish & Shellfish Immunology, 2015, 45(2): 877-888.
|
[41] |
李琦. 尼罗罗非鱼体液免疫应答过程中淋巴细胞表征解析 [D]. 湛江: 广东海洋大学, 2022: 13-21.]
Li Q. Analysis of lymphocyte characterization during humoral immune response of nile tilapia [D]. Zhanjiang: Guangdong Ocean University, 2022: 13-21. [
|
[42] |
Abdelkhalek N K, Komiya A, Kato-Unoki Y, et al. Molecular evidence for the existence of two distinct IL-8 lineages of teleost CXC-chemokines [J]. Fish & Shellfish Immunology, 2009, 27(6): 763-767.
|
[43] |
Vyas J M, Van der Veen A G, Ploegh H L. The known unknowns of antigen processing and presentation [J]. Nature Reviews Immunology, 2008, 8(8): 607-618. doi: 10.1038/nri2368
|
[44] |
Uribe C, Folch H, Enriquez R, et al. Innate and adaptive immunity in teleost fish: a review [J]. Veterinární Medicína, 2011, 56(10): 486-503.
|
[45] |
Somamoto T, Yoshiura Y, Nakanishi T, et al. Molecular cloning and characterization of two types of CD8alpha from ginbuna crucian carp, Carassius auratus langsdorfii [J]. Developmental and Comparative Immunology, 2005, 29(8): 693-702. doi: 10.1016/j.dci.2004.11.006
|
[46] |
Vallejos-Vidal E, Reyes-López F E, Sandino A M, et al. Sleeping with the enemy? The current knowledge of piscine orthoreovirus (PRV) immune response elicited to counteract infection [J]. Frontiers in Immunology, 2022(13): 768621. doi: 10.3389/fimmu.2022.768621
|
[47] |
Hanley K A. The double-edged sword: how evolution can make or break a live-attenuated virus vaccine [J]. Evolution, 2011, 4(4): 635-643.
|
[48] |
Lee E, Lobigs M. Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus [J]. Journal of Virology, 2002, 76(10): 4901-4911. doi: 10.1128/JVI.76.10.4901-4911.2002
|
[49] |
Enjuanes L, Zuñiga S, Castaño-Rodriguez C, et al. Molecular basis of coronavirus virulence and vaccine development [J]. Advances in Virus Research, 2016(96): 245-286.
|
[50] |
王启要. 中国鱼类疫苗技术研发及应用研究进展 [J]. 大连海洋大学学报, 2022, 37(1): 1-9.]
Wang Q Y. Fish vaccine technology development and application in China: a review [J]. Journal of Dalian Ocean University, 2022, 37(1): 1-9. [
|