LIN Dong-Xiao, TANG Zhe, CAI Ming-Lang, XIE Kai, HU Yi. ADDING METHIONINE TO PERFORMANCE ON THE GROWTH PERFORMANCE, LIVER HEALTH, AND INTESTINAL FLORA OF MONOPTERUS ALBUS PERFORMANCE[J]. ACTA HYDROBIOLOGICA SINICA. DOI: 10.7541/2025.2024.0457
Citation: LIN Dong-Xiao, TANG Zhe, CAI Ming-Lang, XIE Kai, HU Yi. ADDING METHIONINE TO PERFORMANCE ON THE GROWTH PERFORMANCE, LIVER HEALTH, AND INTESTINAL FLORA OF MONOPTERUS ALBUS PERFORMANCE[J]. ACTA HYDROBIOLOGICA SINICA. DOI: 10.7541/2025.2024.0457

ADDING METHIONINE TO PERFORMANCE ON THE GROWTH PERFORMANCE, LIVER HEALTH, AND INTESTINAL FLORA OF MONOPTERUS ALBUS PERFORMANCE

Funds: Supported by the National Natural Science Foundation of China (32172986)
  • Received Date: November 22, 2024
  • Rev Recd Date: December 11, 2024
  • Available Online: January 06, 2025
  • This study was designed to investigate the effects of adding methionine to low-protein diet on the growth performance, liver health, and intestinal flora of Monopterus albus. A total of 600 eels weighing around 25.00 g were randomly assigned to four treatments with three replications each: FM (42% protein), LP (36% protein), Met1 (LP with 0.25% methionine), and Met2 (LP with 0.50% methionine) and fed for eight weeks. The results showed that: (1) Compared with the FM group, the weight gain rate, crude protein, and crude fat content of M. albus in the LP group decreased significantly (P<0.05), together with a significantly increased feed coefficient (P<0.05). However, dietary supplementation with 0.50% methionine improved the growth performance relative to the LP group, coupled with the increases in the intestinal amylase, lipase, and protease activities (P<0.05), as well as lowered the feed coefficient (P<0.05). (2) Compared with the FM group, the serum levels of blood ammonia, urea nitrogen, alanine aminotransferase, alkaline phosphatase, acid phosphatase, and aspartate aminotransferase increased significantly in the LP group (P<0.05), which were lower in the Met2 group (P<0.05). (3) Compared with the FM group, eel fed low-protein diets exhibited lower catalase, reduced glutathione, and total antioxidant capacity in the liver (P<0.05), while malondialdehyde content significantly increased (P<0.05), indicating oxidative stress and structural liver damage. In contrast, the Met2 group demonstrated improved liver antioxidant capacity, intact hepatocyte morphology, and reduced vacuolation ratio compared to the LP group. (4) The LP group exhibited a significant increase in the relative abundance of Staphylococcus, Mycobacterium, and Methylosinus, alongside a significant decrease in Acinetobacter compared to the FM group (P<0.05). In the Met2 group, the relative abundance of Staphylococcus and Methylocystis significantly decreased (P<0.05), while Mycobacterium significantly increased compared to the LP group (P<0.05). In summary, low-protein diet contributed to growth decline, liver damage, and intestinal microecological imbalance of M. albus. Supplementation with 0.5% methionine effectively maintained liver histomorphology, enhanced growth performance, and improved intestinal health of M. albus.

  • [1]
    Wilson R P. Amino Acids and Proteins [M]. Fish Nutrition. Amsterdam: Elsevier, 2003: 143-179.
    [2]
    钱雪桥, 崔奕波, 解绶启, 等. 养殖鱼类饲料蛋白需要量的研究进展 [J]. 水生生物学报, 2002, 26(4): 410-416.] doi: 10.3724/issn1000-3207-2002-4-410-k

    Qian X Q, Cui Y B, Xie S Q, et al. A review on dietary protein requirement for aquaculture fishes [J]. Acta Hydrobiologica Sinica, 2002, 26(4): 410-416. [ doi: 10.3724/issn1000-3207-2002-4-410-k
    [3]
    Yadata G W, Ji K, Liang H, et al. Effects of dietary protein levels with various stocking density on growth performance, whole body composition, plasma parameters, nitrogen emission and gene expression related to TOR signaling of juvenile blunt snout bream (Megalobrama ambylcephala) [J]. Aquaculture, 2020(519): 734730. doi: 10.1016/j.aquaculture.2019.734730
    [4]
    Yu H, Liang H, Ren M, et al. A study to explore the effects of low dietary protein levels on the growth performance and nutritional metabolism of grass carp (Ctenopharyngodon idella) fry [J]. Aquaculture, 2022(546): 737324. doi: 10.1016/j.aquaculture.2021.737324
    [5]
    Ji M, Wang B, Xie J, et al. Effects of low protein feed on hepato-intestinal health and muscle quality of grass carp (Ctenopharyngodon idellus) [J]. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology, 2024(273): 110989.
    [6]
    桂聪, 邓琦琦, 杨慧君, 等. 低蛋白饲料添加蛋氨酸和赖氨酸对大口黑鲈生长性能和抗氧化能力的影响 [J]. 华中农业大学学报, 2022, 41(6): 184-191.]

    Gui C, Deng Q Q, Yang H J, et al. Effects of methionine and lysine supplementation in low protein diets on growth performance, body composition, antioxidant capacity and immune enzymes of largemouth bass (Micropterus salmoides) [J]. Journal of Huazhong Agricultural University, 2022, 41(6): 184-191. [
    [7]
    何林岳, 刘昊昆, 韩冬, 等. 低蛋白饲料补充必需氨基酸对异育银鲫生长、氨基酸转运和mTOR信号通路相关基因的影响 [J]. 水生生物学报, 2024, 48(1): 1-9.]

    He L Y, Liu H K, Han D, et al. Low-protein diets supplemented with essential amino acids on growth, amino acid transporters and gene expression of the mtor signaling pathway in gibel carp (Carassius gibelio) [J]. Acta Hydrobiologica Sinica, 2024, 48(1): 1-9. [
    [8]
    Ebeneezar S, Vijayagopal P, Srivastava P P, et al. Optimum dietary levels of lysine and methionine reduces the crude protein requirement and improves growth in Snubnose pompano (Trachinotus blochii) [J]. Animal Feed Science and Technology, 2022(290): 115370. doi: 10.1016/j.anifeedsci.2022.115370
    [9]
    刘梦梅. 低蛋白饲料中添加赖氨酸和蛋氨酸对草鱼幼鱼生长及氮排泄的影响 [D]. 武汉: 华中农业大学, 2016: 26-27.]

    Liu M M. Effects of adding lysine and methionine to low-protein feed on growth and nitrogen excretion of juvenile grass carp [D]. Wuhan: Huazhong Agricultural University, 2016: 26-27. [
    [10]
    Zhao Y, Yang C, Zhu X X, et al. Dietary methionine hydroxy analogue supplementation benefits on growth, intestinal antioxidant status and microbiota in juvenile largemouth bass Micropterus salmoides [J]. Aquaculture, 2022(556): 738279. doi: 10.1016/j.aquaculture.2022.738279
    [11]
    杨之明, 王旋, 刘成栋, 等. 包膜蛋氨酸对凡纳滨对虾幼虾生长性能、饲料利用和代谢的影响 [J]. 中国海洋大学学报(自然科学版), 2023, 53(7): 20-30.]

    Yang Z M, Wang X, Liu C D, et al. Effects of coated methionine on growth performance, feed utilization and metabolism of Litopenaeus vannamei [J]. Periodical of Ocean University of China, 2023, 53(7): 20-30. [
    [12]
    赵静怡, 杨欣, 徐奇友. 包膜蛋氨酸对松浦镜鲤生长性能、肠道消化酶和肌肉氨基酸组成的影响 [J]. 饲料工业, 2022, 43(20): 40-46.]

    Zhao J Y, Yang X, Xu Q Y. Effects of coated methionine on growth performance, intestinal digestive enzymes and muscle amino acids content of songpu mirror carp (Cyprinus carpio Songpu) [J]. Feed Industry, 2022, 43(20): 40-46. [
    [13]
    毛华东, 王娜, 隋超, 等. 饲料蛋氨酸水平对绿鳍马面鲀幼鱼生长性能的影响 [J]. 饲料工业, 2024, 45(6): 81-89.]

    Mao H D, Wang N, Sui C, et al. Effects of dietary methionine on growth performance of juvenile green-finned filefish (Thamnaconus septentrionalis) [J]. Feed Industry, 2024, 45(6): 81-89. [
    [14]
    胡亚军, 胡毅, 石勇, 等. 不同形式蛋氨酸对黄鳝生长、血清生化、血清游离氨基酸含量及肌肉品质的影响 [J]. 水生生物学报, 2019, 43(6): 1155-1163.]

    Hu Y J, Hu Y, Shi Y, et al. Effects of dietary methionine on growth, serum biochemical indexes, serum free amino acid and muscle texture of rice field eel (Monopterus albus) [J]. Acta Hydrobiologica Sinica, 2019, 43(6): 1155-1163. [
    [15]
    姜文灏, 杨鑫, 周秋白, 等. 黄鳝饲料蛋白质需求量的研究 [J]. 水生生物学报, 2022, 46(8): 1205-1214.]

    Jiang W H, Yang X, Zhou Q B, et al. Requirement level of dietary protein for Monopterus albus [J]. Acta Hydrobiologica Sinica, 2022, 46(8): 1205-1214. [
    [16]
    Ma X, Hu Y, Wang X Q, et al. Effects of practical dietary protein to lipid levels on growth, digestive enzyme activities and body composition of juvenile rice field eel (Monopterus albus) [J]. Aquaculture International, 2014, 22(2): 749-760. doi: 10.1007/s10499-013-9703-0
    [17]
    汤哲, 林东晓, 蔡明浪, 等. 低鱼粉高脂饲料添加大豆卵磷脂对黄鳝生长、血清生化指标及肠道菌群的影响 [J]. 水生生物学报, 2024, 48(3): 361-371.]

    Tang Z, Lin D X, Cai M L, et al. Low-fishmeal and high-fat diet supplement with soybean lecithin on growth, serum biochemical indexes and intestinal flora of rice field eel (Monopterus albus) [J]. Acta Hydrobiologica Sinica, 2024, 48(3): 361-371. [
    [18]
    郭鑫伟, 谭北平, 迟淑艳, 等. 摄食不同蛋白质水平饲料的珍珠龙胆石斑鱼幼鱼生长与血清激素和消化酶活性的相关性分析 [J]. 水产学报, 2019, 43(8): 1808-1820.]

    Guo X W, Tan B P, Chi S Y, et al. Correlation analysis of fish growth performance and serum hormone and digestive enzyme activities of juvenile pearl gentian grouper (Epinephelus lanceolatus ♂ × E. fuscoguttatus ♀) fed with different protein levels diets [J]. Journal of Fisheries of China, 2019, 43(8): 1808-1820. [
    [19]
    帅柯. 蛋氨酸对幼建鲤消化功能和免疫功能的影响 [D]. 雅安: 四川农业大学, 2006: 55-61.]

    Shuai K. Effect of methionine on digestion and immune function of juvenile jian carp [D]. Ya’an: Sichuan Agricultural University, 2006: 55-61. [
    [20]
    何远法, 郭勇, 迟淑艳, 等. 低鱼粉饲料中补充蛋氨酸对军曹鱼生长性能、体成分及肌肉氨基酸组成的影响 [J]. 动物营养学报, 2018, 30(2): 624-634.] doi: 10.3969/j.issn.1006-267x.2018.02.027

    He Y F, Guo Y, Chi S Y, et al. Effects of methionine supplementation in low fish meal diet on growth performance, body composition and muscle amino acid composition of cobia (Rachycentron canadum) [J]. Chinese Journal of Animal Nutrition, 2018, 30(2): 624-634. [ doi: 10.3969/j.issn.1006-267x.2018.02.027
    [21]
    Drabkin H J, RajBhandary U L. Initiation of protein synthesis in mammalian cells with codons other than AUG and amino acids other than methionine [J]. Molecular and Cellular Biology, 1998, 18(9): 5140-5147. doi: 10.1128/MCB.18.9.5140
    [22]
    Wang L S, Fan Z, Wu D, et al. Research progress of methionine nutrition in aquatic animals [J]. Chinese Journal of Animal Nutrition, 2020, 32(11): 4981-4991.
    [23]
    Li C, Anna K. Post-translational modifications of the protein termini [J]. Frontiers in Cell and Developmental Biology, 2021(9): 719590. doi: 10.3389/fcell.2021.719590
    [24]
    Brosnan J T, Brosnan M E. The sulfur-containing amino acids: an overview [J]. The Journal of Nutrition, 2006, 136(6): 1636S-1640S. doi: 10.1093/jn/136.6.1636S
    [25]
    Zhan X A, Li J X, Xu Z R, et al. Effects of methionine and betaine supplementation on growth performance, carcase composition and metabolism of lipids in male broilers [J]. British Poultry Science, 2006, 47(5): 576-580. doi: 10.1080/00071660600963438
    [26]
    Litwack G. Metabolism of Amino Acids [M]. Human Biochemistry. Amsterdam: Elsevier, 2022: 403-440.
    [27]
    Anadón A, Castellano V, Martínez-Larrañaga M R. Biomarkers in Drug Safety Evaluation [M]. Biomarkers in Toxicology. Amsterdam: Elsevier, 2014: 923-945.
    [28]
    康鹏. 菜粕替代鱼粉及缩合单宁对大口黑鲈生长生理机能的效应研究 [D]. 上海: 上海海洋大学, 2023: 21.]

    Kang P. Research on the effects of replacing fishmeal with rapeseed meal and dietary condensed tannins on growth performance and physiological function of largemouth bass (Micropterus salmoides) [D]. Shanghai: Shanghai Ocean University, 2023: 21. [
    [29]
    Coma J, Carrion D, Zimmerman D R. Use of plasma urea nitrogen as a rapid response criterion to determine the lysine requirement of pigs [J]. Journal of Animal Science, 1998, 73 (2): 472-481.
    [30]
    Ip Y K, Chew S F. Ammonia production, excretion, toxicity, and defense in fish: a review [J]. Frontiers in Physiology, 2010(1): 134.
    [31]
    Ren M, Liang H, He J, et al. Effects of DL-methionine supplementation on the success of fish meal replacement by plant proteins in practical diets for juvenile gibel carp (Carassius auratus gibelio) [J]. Aquaculture Nutrition, 2017, 23(5): 934-941. doi: 10.1111/anu.12461
    [32]
    Martínez-Álvarez R M, Morales A E, Sanz A. Antioxidant defenses in fish: biotic and abiotic factors [J]. Reviews in Fish Biology and Fisheries, 2005, 15(1): 75-88.
    [33]
    亢玉静, 郎明远, 赵文. 水生生物体内抗氧化酶及其影响因素研究进展 [J]. 微生物学杂志, 2013, 33(3): 75-80.]

    Kang Y J, Lang M Y, Zhao W. Advance in antioxidant enzymes and its effect factors in aquatic organisms [J]. Journal of Microbiology, 2013, 33(3): 75-80. [
    [34]
    Mourente G, Dı́az-Salvago E, Bell J G, et al. Increased activities of hepatic antioxidant defence enzymes in juvenile gilthead sea bream (Sparus aurata L.) fed dietary oxidised oil: attenuation by dietary vitamin E [J]. Aquaculture, 2002, 214(1/2/3/4): 343-361.
    [35]
    Surapaneni K M, Venkataramana G. Status of lipid peroxidation, glutathione, ascorbic acid, vitamin E and antioxidant enzymes in patients with osteoarthritis [J]. Indian Journal of Medical Sciences, 2007, 61(1): 9-14. doi: 10.4103/0019-5359.29592
    [36]
    Parihar M S, Javeri T, Hemnani T, et al. Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature [J]. Journal of Thermal Biology, 1997, 22(2): 151-156. doi: 10.1016/S0306-4565(97)00006-5
    [37]
    Scirè A, Cianfruglia L, Minnelli C, et al. Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways [J]. BioFactors, 2019, 45(2): 152-168. doi: 10.1002/biof.1476
    [38]
    杨贺舒, 孙俊霄, 杨慧君, 等. 低蛋白饲料对杂交黄颡鱼幼鱼生长性能、体组成、转氨酶活性和抗氧化能力的影响 [J]. 水生生物学报, 2022, 46(1): 79-87.] doi: 10.7541/2021.2020.197

    Yang H S, Sun J X, Yang H J, et al. Effects of low-protein diet on growth performance, body composition, transaminase activity and antioxidant capacity of yellow catfish hybrid [J]. Acta Hydrobiologica Sinica, 2022, 46(1): 79-87. [ doi: 10.7541/2021.2020.197
    [39]
    Feng L, Xiao W W, Liu Y, et al. Methionine hydroxy analogue prevents oxidative damage and improves antioxidant status of intestine and hepatopancreas for juvenile Jian carp (Cyprinus carpio var. Jian) [J]. Aquaculture Nutrition, 2011, 17(6): 595-604. doi: 10.1111/j.1365-2095.2011.00853.x
    [40]
    Aggrey S E, González-Cerón F, Rekaya R, et al. Gene expression differences in the methionine remethylation and transsulphuration pathways under methionine restriction and recovery with D, L-methionine or D, L-HMTBA in meat-type chickens [J]. Journal of Animal Physiology and Animal Nutrition, 2018, 102(1): e468-e475.
    [41]
    Kimura H, Shibuya N, Kimura Y. Hydrogen sulfide is a signaling molecule and a cytoprotectant [J]. Antioxidants & Redox Signaling, 2012, 17(1): 45-57.
    [42]
    Kimura Y, Goto Y I, Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria [J]. Antioxidants & Redox Signaling, 2010, 12(1): 1-13.
    [43]
    Hoseini S M, Yousefi M, Abbasi M, Improvement of growth performance, hepatic and erythrocyte antioxidant capacity, innate immunity, and biochemical parameters of persian sturgeon, Acipenser persicus, by sulfur amino acids’ supplementation [J]. Aquaculture Nutrition, 2022(2022): 2025855.
    [44]
    Campbell K, Vowinckel J, Keller M A, et al. Methionine metabolism alters oxidative stress resistance via the pentose phosphate pathway [J]. Antioxidants & Redox Signaling, 2016, 24(10): 543-547.
    [45]
    Zhang Z, Yang Q, Liu H, et al. Potential functions of the gut microbiome and modulation strategies for improving aquatic animal growth [J]. Reviews in Aquaculture, 2025, 17 (1): e12959.
    [46]
    Perry W B, Lindsay E, Payne C J, et al. The role of the gut microbiome in sustainable teleost aquaculture [J]. Proceedings Biological Sciences, 2020, 287(1926): 20200184.
    [47]
    Zhao Y, Yang C, Zhu X X, et al. Dietary methionine hydroxy analogue supplementation benefits on growth, intestinal antioxidant status and microbiota in juvenile largemouth bass Micropterus salmoides [J]. Aquaculture, 2022(556): 738279. doi: 10.1016/j.aquaculture.2022.738279
    [48]
    Ma Y, Su Z, Chen F, et al. Terrestrial compound protein replacing dietary fishmeal improved digestive enzyme activity, immune response, intestinal microflora composition, and protein metabolism of golden pompano (Trachinotus ovatus) [J]. Aquaculture Nutrition, 2023(2023): 2716724.
    [49]
    Zhou Y L, He G L, Jin T, et al. High dietary starch impairs intestinal health and microbiota of largemouth bass, Micropterus salmoides [J]. Aquaculture, 2021(534): 736261. doi: 10.1016/j.aquaculture.2020.736261
    [50]
    Yamazaki Y, Meirelles P M, Mino S, et al. Individual Apostichopus japonicus fecal microbiome reveals a link with polyhydroxybutyrate producers in host growth gaps [J]. Scientific Reports, 2016(6): 21631. doi: 10.1038/srep21631
    [51]
    Hamer H M, Jonkers D, Venema K, et al. Review article: the role of butyrate on colonic function [J]. Alimentary Pharmacology & Therapeutics, 2008, 27(2): 104-119.
    [52]
    Brulc J M, Antonopoulos D A, Miller M E, et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1948-53.
    [53]
    Brauge T, Bourdonnais E, Trigueros S, et al. Antimicrobial resistance and geographical distribution of Staphylococcus sp. isolated from whiting (Merlangius merlangus) and seawater in the English Channel and the North sea [J]. Environmental Pollution (Barking, Essex: 1987), 2024(345): 123434.
    [54]
    Liaqat R, Fatima S, Komal W, et al. Dietary supplementation of methionine, lysine, and tryptophan as possible modulators of growth, immune response, and disease resistance in striped catfish (Pangasius hypophthalmus) [J]. PLoS One, 2024, 19(4): e0301205. doi: 10.1371/journal.pone.0301205
    [55]
    Zhang M J, Dou Y Q, Xiao Z D, et al. Identification of an Acinetobacter lwoffii strain isolated from diseased hybrid sturgeon (Acipenser baerii ♀ × Acipenser schrenckii ♂) [J]. Aquaculture, 2023(574): 739649. doi: 10.1016/j.aquaculture.2023.739649
    [56]
    Dinh-Hung N, Dong H T, Senapin S, et al. Infection and histopathological consequences in Siamese fighting fish (Betta splendens) due to exposure to a pathogenic Mycobacterium chelonae via different routes [J]. Aquaculture, 2024(579): 740191. doi: 10.1016/j.aquaculture.2023.740191
    [57]
    Pandey A K, Sassetti C M. Mycobacterial persistence requires the utilization of host cholesterol [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(11): 4376-4380.

Catalog

    Article views (19) PDF downloads (2) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return