LI Jun-Qi, FAN Jia-Xin, ZHONG Song-Huan, SHEN Zhou-Yang, GAO Tian-Xiang, QU Yin-Quan, ZHANG Xiu-Mei. EXPLORATION OF SALT TOLERANCE GENES AND FUNCTIONAL VALIDATION OF CANDIDATE GENES IN SUAEDA AUSTRALIS[J]. ACTA HYDROBIOLOGICA SINICA. DOI: 10.7541/2025.2024.0485
Citation: LI Jun-Qi, FAN Jia-Xin, ZHONG Song-Huan, SHEN Zhou-Yang, GAO Tian-Xiang, QU Yin-Quan, ZHANG Xiu-Mei. EXPLORATION OF SALT TOLERANCE GENES AND FUNCTIONAL VALIDATION OF CANDIDATE GENES IN SUAEDA AUSTRALIS[J]. ACTA HYDROBIOLOGICA SINICA. DOI: 10.7541/2025.2024.0485

EXPLORATION OF SALT TOLERANCE GENES AND FUNCTIONAL VALIDATION OF CANDIDATE GENES IN SUAEDA AUSTRALIS

Funds: Supported by the National Key Research and Development Program of China (2023YFD2401903); theYouth Project of Zhejiang Natural Sciences Foundation (LQ24D060004); the Program of “Xinmiao”(Potential) Talents in Zhejiang Province (2024R411A006)
  • Received Date: December 25, 2024
  • Rev Recd Date: March 06, 2025
  • Available Online: April 09, 2025
  • Suaeda australis, a key halophytic species in southern China’s coastal ecosystems, plays a vital role in stabilizing fragile ecosystems due to its remarkable salt tolerance. Addressing escalating coastal soil salinization, this study systematically investigated the molecular mechanisms underlying its salt adaptation through integrated physiological, transcriptomic, and functional validation approaches. Under different salt concentration treatments (ST1 and ST2), S. australis exhibited significantly enhanced activities of antioxidant enzymes (CAT, SOD, POD) alongside elevated malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels, indicating activation of antioxidant defenses to mitigate oxidative damage under high-salinity stress. Transcriptome profiling identified 2434 differentially expressed genes (1568 upregulated and 866 downregulated). Gene Ontology (GO) and KEGG enrichment analyses revealed these genes to be predominantly associated with antioxidant responses, osmotic regulation, signal transduction, and carbon metabolism. Additionally, a total of 146 transcription factors related to salt stress response were identified. The RTq-PCR validation results were consistent with transcriptome data, further confirming the critical role of these genes in the salt stress response. Notably, the MYB family gene Sau00119 was significantly upregulated in ST2, highlighting its crucial role in the salt tolerance mechanism of S. australis. These findings provide new insights into the salt tolerance mechanism of S. australis and offers potential gene targets for the genetic improvement of salt tolerant plants.

  • [1]
    庄亚润, 孙真, 周凯, 等. 中国西北地区次生盐碱水无机氮转化与环境因子的相关关系 [J]. 中国水产科学, 2020, 27(12): 1438-1447.]

    Zhuang Y R, Sun Z, Zhou K, et al. Correlation between inorganic nitrogen transformation and environmental factors in secondary saline-alkali water in northwest China [J]. Journal of Fishery Sciences of China, 2020, 27(12): 1438-1447. [
    [2]
    齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展 [J]. 分子植物育种, 2020, 18(8): 2741-2746.]

    Qi Q, Ma S R, Xu W D. Advances in the effects of salt stress on plant growth and the physiological mechanisms of salt tolerance [J]. Molecular Plant Breeding, 2020, 18(8): 2741-2746. [
    [3]
    Li L, Xu H, Zhang Q, et al. Estimation methods of wetland carbon sink and factors influencing wetland carbon cycle: a review [J]. Carbon Research, 2024, 3(1): 50. doi: 10.1007/s44246-024-00135-y
    [4]
    Sapkota Y, White J R. Carbon offset market methodologies applicable for coastal wetland restoration and conservation in the United States: A review [J]. Science of the Total Environment, 2020, 701: 134497. doi: 10.1016/j.scitotenv.2019.134497
    [5]
    Xi Y, Peng S, Ciais P, et al. Future impacts of climate change on inland Ramsar wetlands [J]. Nature Climate Change, 2021, 11(1): 45-51. doi: 10.1038/s41558-020-00942-2
    [6]
    董乃勇, 刁琪, 王艳伟, 等. 滴灌水盐调控滨海盐碱地夏季造林土壤盐分与植物生长变化的研究 [J]. 现代园艺, 2024, 47(12): 21-25.] doi: 10.3969/j.issn.1006-4958.2024.12.007

    Dong N Y, Diao Q, Wang Y W, et al. Study on the regulation of soil salinity and plant growth in summer afforestation in coastal saline-alkali land by drip irrigation salt [J]. Modern Horticulture, 2024, 47(12): 21-25. [ doi: 10.3969/j.issn.1006-4958.2024.12.007
    [7]
    张蛟, 崔士友, 冯芝祥. 种植碱蓬和秸秆覆盖对沿海滩涂极重度盐土盐分动态与脱盐效果的影响 [J]. 应用生态学报, 2018, 29(5): 1686-1694.]

    Zhang J, Cui S Y, Feng Z X. Effects of Suaeda glauca planting and straw mulching on soil salinity dynamics and desalination in extremely heavy saline soil of coastal areas [J]. Chinese Journal of Applied Ecology, 2018, 29(5): 1686-1694. [
    [8]
    Alam M R, Tran T K A, Stein T J, et al. Accumulation and distribution of metal(loid)s in the halophytic saltmarsh shrub, Austral seablite, Suaeda australis in New South Wales, Australia [J]. Marine Pollution Bulletin, 2021, 169: 112475. doi: 10.1016/j.marpolbul.2021.112475
    [9]
    于胜祥, 郝刚, 金孝锋. 中国生物物种名录 (第一卷) [M]. 北京: 科学出版社, 2016: 205.]

    Yu S X, Hao G, Jin X F. List of Biological Species in China (Volume 1) [M]. Beijing: Science Press, 2016: 205. [
    [10]
    Ou Y, Sheng Y, Hu X, et al. Nonomuraea nitratireducens sp. nov., a new actinobacterium isolated from Suaeda australis Moq. Rhizosphere [J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70 (9): 5026-5031.
    [11]
    Kim H R, Park G N, Jung B K, et al. Antibacterial activity of Suaeda australis in halophyte [J]. Journal of the Korean Oil Chemists’ Society, 2016, 33(2): 278-285. doi: 10.12925/jkocs.2016.33.2.278
    [12]
    黄晓昆, 黄晓冬, 卞美君. 南方碱蓬叶黄酮类化合物含量及其体外抗氧化活性研究 [J]. 安徽农业科学, 2010, 38(3): 1432-1434.] doi: 10.3969/j.issn.0517-6611.2010.03.130

    Huang X K, Huang X D, Bian M J. Study on the flavonoids compounds of Suaeda australis contents and its antioxidation activity in vitro [J]. Journal of Anhui Agricultural Sciences, 2010, 38(3): 1432-1434. [ doi: 10.3969/j.issn.0517-6611.2010.03.130
    [13]
    Zhang X, Yao Y, Li X, et al. Transcriptomic analysis identifies novel genes and pathways for salt stress responses in Suaeda salsa leaves [J]. Scientific Reports, 2020, 10(1): 4236. doi: 10.1038/s41598-020-61204-x
    [14]
    Voronin P Y, Myasoedov N A, Khalilova L A, et al. Water potential of the apoplast in substomatal cavity of the Suaeda altissima (L.) Pall. leaf under salt stress [J]. Russian Journal of Plant Physiology, 2021, 68(3): 519-525. doi: 10.1134/S1021443721030171
    [15]
    Rahman M M, Mostofa M G, Keya S S, et al. Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants [J]. International journal of molecular sciences, 2021, 22(19): 10733. doi: 10.3390/ijms221910733
    [16]
    臧威. 角果碱蓬盐碱胁迫响应及ScHSFA1d功能初探 [D]. 哈尔滨: 东北林业大学, 2021: 5.]

    Zang W. Response of Suaeda salsa to salt alkali stress and preliminary study on ScHSFA1d function [D]. Harbin: Northeast Forestry University, 2021: 5. [
    [17]
    叶小齐, 吴明, 王琦, 等. 杭州湾4种植物盐胁迫下种子萌发能力与分布的关系 [J]. 浙江农林大学学报, 2012, 29(5): 739-743.] doi: 10.11833/j.issn.2095-0756.2012.05.017

    Ye X Q, Wu M, Wang Q, et al. Correlation of seed germination capacities under salt stress with four plant species distribution in the Hangzhou Bay Wetlands [J]. Journal of Zhejiang A& F University, 2012, 29(5): 739-743. [ doi: 10.11833/j.issn.2095-0756.2012.05.017
    [18]
    穆亚南, 丁丽霞, 李楠, 等. 基于面向对象和随机森林模型的杭州湾滨海湿地植被信息提取 [J]. 浙江农林大学学报, 2018, 35(6): 1088-1097.] doi: 10.11833/j.issn.2095-0756.2018.06.012

    Mu Y N, Ding L X, Li N, et al. Classification of coastal wetland vegetation in Hangzhou Bay with an object-oriented, random forest model [J]. Journal of Zhejiang A& F University, 2018, 35(6): 1088-1097. [ doi: 10.11833/j.issn.2095-0756.2018.06.012
    [19]
    Li J, Hussain T, Feng X, et al. Comparative study on the resistance of Suaeda glauca and Suaeda salsa to drought, salt, and alkali stresses [J]. Ecological Engineering, 2019(140): 105593.
    [20]
    Li H, Wang H, Wen W, et al. The antioxidant system in Suaeda salsa under salt stress [J]. Plant Signaling & Behavior, 2020, 15(7): 1771939.
    [21]
    贾林, 刘璐瑶, 王鹏山, 等. 盐地碱蓬的耐盐机理及改良土壤机理研究进展 [J]. 中国农学通报, 2021, 37(3): 73-80.] doi: 10.11924/j.issn.1000-6850.casb20191200947

    Jia L, Liu L Y, Wang P S, et al. Salt-tolerance and soil improvement mechanism of Suaeda salsa: research progress [J]. Chinese Agricultural Bulletin, 2021, 37(3): 73-80. [ doi: 10.11924/j.issn.1000-6850.casb20191200947
    [22]
    Zhang P, Wang R, Yang X, et al. The R2R-3MYB transcription factor AtMYB49 modulates salt tolerance in Arabidopsis by modulating the cuticle formation and antioxidant defence [J]. Plant, Cell & Environment, 2020, 43 (8): 1925-1943.
    [23]
    Yang B, Li Q, Cheng K, et al. Proteomics and metabolomics reveal the mechanism underlying differential antioxidant activity among the organs of two base plants of Shiliang tea (Chimonanthus salicifolius and Chimonanthus zhejiangensis) [J]. Food Chemistry, 2022, 385: 132698.
    [24]
    Cholich L A, Pistán M E, Torres A M, et al. Characterization and cytotoxic activity on glial cells of alkaloid-enriched extracts from pods of the plants Prosopis flexuosa and Prosopis nigra (Fabaceae) [J]. Revista de Biología Tropical, 2021, 69(1): 197-206.
    [25]
    Teoh E Y, Teo C H, Baharum N A, et al. Waterlogging stress induces antioxidant defense responses, aerenchyma formation and alters metabolisms of banana plants [J]. Plants, 2022, 11(15): 2052.
    [26]
    Fiala R, Fialová I, Vaculík M, et al. Effect of silicon on the young maize plants exposed to nickel stress [J]. Plant Physiology and Biochemistry, 2021, 166: 645-656. doi: 10.1016/j.plaphy.2021.06.026
    [27]
    Sharova E I, Smolikova G N, Medvedev S S. Determining hydrogen peroxide content in plant tissue extracts [J]. Russian Journal of Plant Physiology, 2024, 70(9): 216.
    [28]
    李艳肖, 张春兰, 徐兴源, 等. 基于转录组学的蓖麻耐盐基因的挖掘 [J]. 植物遗传资源学报, 2023, 24(6): 1778-1794.]

    Li Y X, Zhang C L, Xu X Y, et al. Transcriptomics-assisted mining of salt-tolerant genes in Ricinus communis [J]. Journal of Plant Genetic Resources, 2023, 24(6): 1778-1794. [
    [29]
    李卫锦, 钟才荣, 张颖, 等. 海马齿根系响应盐胁迫的转录组分析 [J]. 南方农业学报, 2022, 53(3): 693-703.] doi: 10.3969/j.issn.2095-1191.2022.03.011

    Li W J, Zhong C R, Zhang Y, et al. Analysis of the root transcriptomes in Sesuvium portulacastrum respond to salt stress [J]. Journal of Southern Agriculture, 2022, 53(3): 693-703. [ doi: 10.3969/j.issn.2095-1191.2022.03.011
    [30]
    Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements [J]. Nature Methods, 2015, 12(4): 357-360. doi: 10.1038/nmeth.3317
    [31]
    Pertea M, Kim D, Pertrea G M, et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown [J]. Nature Protocols, 2016, 11(9): 1650-1667. doi: 10.1038/nprot.2016.095
    [32]
    Liu S, Wang Z, Zhu R, et al. Three differential expression analysis methods for RNA sequencing: limma, EdgeR, DESeq2 [J]. Journal of Visualized Experiments, 2021(175): e62528.
    [33]
    Xu S, Hu E, Cai Y, et al. Using clusterProfiler to characterize multiomics data [J]. Nature protocols, 2024, 19(11): 3292-3320. doi: 10.1038/s41596-024-01020-z
    [34]
    Qu Y, Chen X, Mao X, et al. Transcriptome analysis reveals the role of GA(3) in regulating the asynchronism of floral bud differentiation and development in heterodichogamous Cyclocarya paliurus (Batal. ) Iljinskaja [J]. International Journal of Molecular Sciences, 2022, 23(12): 6763. doi: 10.3390/ijms23126763
    [35]
    Song W, Gao X, LI H, et al. Transcriptome analysis and physiological changes in the leaves of two Bromus inermis L. genotypes in response to salt stress [J]. Frontiers in Plant Science, 2023(14): 1313113.
    [36]
    Abebe H, Tu Y. Impact of salt and alkali stress on forage biomass yield, nutritive value, and animal growth performance: A comprehensive review [J]. Grasses, 2024, 3(4): 355-368. doi: 10.3390/grasses3040026
    [37]
    El-Shazoly R M, Hamed H M A, El-Sayed M M. Individual or successiveseed priming with nitric oxide and calcium toward enhancing salt tolerance of wheat crop through early ROS detoxification and activation of antioxidant defense [J]. BMC Plant Biology, 2024, 24(1): 730. doi: 10.1186/s12870-024-05390-0
    [38]
    Aydm A. The growth, leaf antioxidant enzymes and amino acid content of tomato as affected by grafting on wild tomato rootstocks 1 (S. pimpinellifolium and S. habrochaites) under salt stress [J]. Scientia Horticulturae, 2024, 325: 112679. doi: 10.1016/j.scienta.2023.112679
    [39]
    Chen L, Meng Y, Bai Y, et al. Starch and sucrose metabolism and plant hormone signaling pathways play crucial roles in aquilegia salt stress adaption [J]. International Journal of Molecular Sciences, 2023, 24(4): 3948. doi: 10.3390/ijms24043948
    [40]
    Zhang X, Chen L, Shi Q, et al. SlMYB102, an R2R3-type MYB gene, confers salt tolerance in transgenic tomato [J]. Plant Science, 2020, 291: 110356. doi: 10.1016/j.plantsci.2019.110356
    [41]
    Zhu N, Cheng S, Liu X, et al. The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice [J]. Plant Science, 2015, 236: 146-156. doi: 10.1016/j.plantsci.2015.03.023
    [42]
    Liu X, Zhou G, Chen S, et al. Genome-wide analysis of the AP2/ERF gene family in Tritipyrum and the response of TtERF_B2-50 in salt-tolerance [J]. BMC genomics, 2023, 24(1): 541. doi: 10.1186/s12864-023-09585-x
    [43]
    Peng Z, Rehman A, Li X, et al. Comprehensive evaluation and transcriptome analysis reveal the salt tolerance mechanism in semi-wild cotton (Gossypium purpurascens) [J]. International Journal of Molecular Sciences, 2023, 24(16): 12853. doi: 10.3390/ijms241612853
    [44]
    Wang C, Lei J, Jin X, et al. A sweet potato MYB transcription factor IbMYB330 enhances tolerance to drought and salt stress in transgenic tobacco [J]. Genes, 2024, 15(6): 693. doi: 10.3390/genes15060693
    [45]
    Wang S, Shi M, Zhang Y, et al. FvMYB24, a strawberry R2R3-MYB transcription factor, improved salt stress tolerance in transgenic Arabidopsis [J]. Biochemical and Biophysical Research Communications, 2021, 569: 93-99. doi: 10.1016/j.bbrc.2021.06.085

Catalog

    Article views (11) PDF downloads (2) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return