Citation: | LUO Zhong-Hong, ZHANG Xiao-Yan, LIU Jing-Xia. RESEARCH ON THE DISEASE RESISTANCE IN FISH BASED ON GRANULOCYTES AND MACROPHAGES PERSPECTIVES[J]. ACTA HYDROBIOLOGICA SINICA. DOI: 10.7541/2025.2025.0143 |
To enhance the aquaculture efficiency and production output, farming practices have shifted from traditional single-mode pond systems to more intensive, higher density modes. With the increase in density, challenges such as frequent fish diseases have emerged, underscoring the importance of understanding immune mechanisms in aquatic animals. Neutrophils and macrophages serve as primary immune effectors, mediating innate immune response and bridging innate immune and adaptive immunity to combat pathogen invasion through phagocytosis, inflammation regulation, and antigen presentation. This review focuses on the regulatory mechanisms of granulocyte and macrophage development, updating progress on their roles in immune responses and the potential mechanisms. By synthesizing current knowledge of their differentiation and functions in fish immunity, this overview highlights their critical roles in host defense, and unscrambles the underlying genetic regulatory effects, including important economic trait genes and important breeding value genes. This will provide a theoretical basis for enhancing disease resistance in aquatic animal research, promoting the transformation of green and efficient aquaculture.
[1] |
Naylor R L, Hardy R W, Buschmann A H, et al. A 20-year retrospective review of global aquaculture [J]. Nature, 2021, 591(7851): 551-563. doi: 10.1038/s41586-021-03308-6
|
[2] |
Wang J, Cheng Y. Enhancing aquaculture disease resistance: Antimicrobial peptides and gene editing [J]. Reviews in Aquaculture, 2024, 16(1): 433-451. doi: 10.1111/raq.12845
|
[3] |
Huang Y, Li Z, Li M, et al. Fish Genomics and Its Application in Disease-Resistance Breeding [J]. Reviews in Aquaculture, 2025, 17(1): e12973. doi: 10.1111/raq.12973
|
[4] |
Librán-Pérez M, Costa M M, Figueras A, et al. β-glucan administration induces metabolic changes and differential survival rates after bacterial or viral infection in turbot (Scophthalmus maximus) [J]. Fish & Shellfish Immunology, 2018(82): 173-182.
|
[5] |
Waikhom D, Kezhedath J, Krishnan R, et al. Beta-glucan stimulation induces trained immunity markers in common carp, Cyprinus carpio [J]. Fish & Shellfish Immunology, 2022(131): 855-861.
|
[6] |
Cornet V, Douxfils J, Mandiki S N M, et al. Early-life infection with a bacterial pathogen increases expression levels of innate immunity related genes during adulthood in zebrafish [J]. Developmental and Comparative Immunology, 2020(108): 103672.
|
[7] |
刘岑杰, 黄惠芳, 马飞, 等. 无颌类脊椎动物适应性免疫系统的进化 [J]. 遗传, 2008, 30(1): 13-19.]
Liu C J, Huang H F, Ma F, et al. The evolution of adaptive immunity system of Agnathan vertebrates [J]. Hereditas, 2008, 30(1): 13-19. [
|
[8] |
Cabillon N A R, Lazado C C. Mucosal barrier functions of fish under changing environmental conditions [J]. Fishes, 2019, 4(1): 2. doi: 10.3390/fishes4010002
|
[9] |
Dezfuli B S, Bosi G, DePasquale J A, et al. Fish innate immunity against intestinal helminths [J]. Fish & Shellfish Immunology, 2016(50): 274-287.
|
[10] |
Sayyaf Dezfuli B, Lorenzoni M, Carosi A, et al. Teleost innate immunity, an intricate game between immune cells and parasites of fish organs: who wins, who loses [J]. Frontiers in Immunology, 2023(14): 1250835.
|
[11] |
陈慧可, 沈铮, 刘思遥, 等. 鱼类早期红细胞发育与抗逆性状形成的研究进展 [J]. 水生生物学报, 2024, 48(12): 2133-2148.] doi: 10.7541/2024.2024.0156
Chen H K, Shen Z, Liu S Y, et al. Research progress on early stages erythrogenesis and stress resistance traits formation in fish [J]. Acta Hydrobiologica Sinica, 2024, 48(12): 2133-2148. [ doi: 10.7541/2024.2024.0156
|
[12] |
Sfacteria A, Brines M, Blank U. The mast cell plays a central role in the immune system of teleost fish [J]. Molecular Immunology, 2015, 63(1): 3-8. doi: 10.1016/j.molimm.2014.02.007
|
[13] |
Kim S Y, Zhang F, Gong W, et al. Copper regulates the interactions of antimicrobial piscidin peptides from fish mast cells with formyl peptide receptors and heparin [J]. Journal of Biological Chemistry, 2018, 293(40): 15381-15396. doi: 10.1074/jbc.RA118.001904
|
[14] |
Katzenback B A, Belosevic M. Characterization of granulocyte colony stimulating factor receptor of the goldfish (carassius auratus L.) [J]. Developmental & Comparative Immunology, 2012, 36(1): 199-207.
|
[15] |
Harvie E A, Huttenlocher A. Neutrophils in host defense: New insights from zebrafish [J]. Journal of Leukocyte Biology, 2015, 98(4): 523-537. doi: 10.1189/jlb.4MR1114-524R
|
[16] |
Mokhtar D M, Abdelhafez E A. An overview of the structural and functional aspects of immune cells in teleosts [J]. Histology and Histopathology, 2021, 36(4): 399-414.
|
[17] |
Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis [J]. Nature Reviews Immunology, 2014, 14(6): 392-404. doi: 10.1038/nri3671
|
[18] |
Grayfer L, Kerimoglu B, Yaparla A, et al. Mechanisms of fish macrophage antimicrobial immunity [J]. Frontiers in Immunology, 2018(9): 1105.
|
[19] |
Sayyaf Dezfuli B, Pironi F, Maynard B, et al. Rodlet cells, fish immune cells and a sentinel of parasitic harm in teleost organs [J]. Fish & Shellfish Immunology, 2022(121): 516-534.
|
[20] |
Schraml B, Baker M A, Reilly B D. A complement receptor for opsonized immune complexes on erythrocytes from Oncorhynchus mykiss but not Ictalarus punctatus [J]. Molecular Immunology, 2006, 43(10): 1595-1603. doi: 10.1016/j.molimm.2005.09.014
|
[21] |
Majstorović J, Kyslík J, Klak K, et al. Erythrocytes of the common carp are immune sentinels that sense pathogen molecular patterns, engulf particles and secrete pro-inflammatory cytokines against bacterial infection [J]. Frontiers in Immunology, 2024(15): 1407237.
|
[22] |
Magnadóttir B. Innate immunity of fish (overview) [J]. Fish & Shellfish Immunology, 2006, 20(2): 137-151.
|
[23] |
McHeyzer-Williams L J, McHeyzer-Williams M G. Antigen-specific memory B cell development [J]. Annual Review of Immunology, 2005(23): 487-513.
|
[24] |
Wik J A, Skålhegg B S. T cell metabolism in infection [J]. Frontiers in Immunology, 2022(13): 840610.
|
[25] |
Muñoz-Atienza E, Díaz-Rosales P, Tafalla C. Systemic and mucosal B and T cell responses upon mucosal vaccination of teleost fish [J]. Frontiers in Immunology, 2020(11): 622377.
|
[26] |
Yu Y, Wang Q, Huang Z, et al. Immunoglobulins, mucosal immunity and vaccination in teleost fish [J]. Frontiers in Immunology, 2020(11): 567941.
|
[27] |
Zhang Z, Chi H, Dalmo R A. Trained innate immunity of fish is a viable approach in larval aquaculture [J]. Frontiers in Immunology, 2019(10): 42.
|
[28] |
Wang Z, Liu Y, Hu J, et al. Tissue-resident trained immunity in hepatocytes protects against septic liver injury in zebrafish [J]. Cell Reports, 2024, 43(6): 114324. doi: 10.1016/j.celrep.2024.114324
|
[29] |
Krishnan R, Jang Y S, Kim J O, et al. Temperature dependent cellular, and epigenetic regulatory mechanisms underlying the antiviral immunity in sevenband grouper to nervous necrosis virus infection [J]. Fish & Shellfish Immunology, 2022(131): 898-907.
|
[30] |
Bela-Ong D B, Thompson K D, Kim H J, et al. CD4+ T lymphocyte responses to viruses and virus-relevant stimuli in teleost fish [J]. Fish & Shellfish Immunology, 2023(142): 109007.
|
[31] |
de Jong J L O, Zon L I. Use of the zebrafish system to study primitive and definitive hematopoiesis [J]. Annual Review of Genetics, 2005(39): 481-501.
|
[32] |
Xu J, Du L, Wen Z. Myelopoiesis during zebrafish early development [J]. Journal of genetics and genomics, 2012, 39(9): 435-442. doi: 10.1016/j.jgg.2012.06.005
|
[33] |
Gore A V, Pillay L M, Venero Galanternik M, et al. The zebrafish: A fintastic model for hematopoietic development and disease [J]. WIREs Developmental Biology, 2018, 7(3): e312. doi: 10.1002/wdev.312
|
[34] |
Kanther M, Rawls J F. Host–microbe interactions in the developing zebrafish [J]. Current Opinion in Immunology, 2010, 22(1): 10-19. doi: 10.1016/j.coi.2010.01.006
|
[35] |
Orkin S H, Zon L I. Hematopoiesis: An evolving paradigm for stem cell biology [J]. Cell, 2008, 132(4): 631-644. doi: 10.1016/j.cell.2008.01.025
|
[36] |
Stachura D L, Svoboda O, Campbell C A, et al. The zebrafish granulocyte colony-stimulating factors (Gcsfs): 2 paralogous cytokines and their roles in hematopoietic development and maintenance [J]. Blood, 2013, 122(24): 3918-3928. doi: 10.1182/blood-2012-12-475392
|
[37] |
Ellett F, Lieschke G J. Zebrafish as a model for vertebrate hematopoiesis [J]. Current Opinion in Pharmacology, 2010, 10(5): 563-570. doi: 10.1016/j.coph.2010.05.004
|
[38] |
Peri F, Nüsslein-Volhard C. Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo [J]. Cell, 2008, 133(5): 916-927. doi: 10.1016/j.cell.2008.04.037
|
[39] |
Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: Enabling diversity with identity [J]. Nature Reviews Immunology, 2011, 11(11): 750-761. doi: 10.1038/nri3088
|
[40] |
Ferrero G, Mahony C B, Dupuis E, et al. Embryonic microglia derive from primitive macrophages and are replaced by cmyb-dependent definitive microglia in zebrafish [J]. Cell Reports, 2018, 24(1): 130-141. doi: 10.1016/j.celrep.2018.05.066
|
[41] |
Hanington P C, Tam J, Katzenback B A, et al. Development of macrophages of cyprinid fish [J]. Developmental & Comparative Immunology, 2009, 33(4): 411-429.
|
[42] |
Fingerhut L, Dolz G, De Buhr N. What is the evolutionary fingerprint in neutrophil granulocytes? [J]. International Journal of Molecular Sciences, 2020, 21(12): 4523. doi: 10.3390/ijms21124523
|
[43] |
Le Guyader D, Redd M J, Colucci-Guyon E, et al. Origins and unconventional behavior of neutrophils in developing zebrafish [J]. Blood, 2008, 111(1): 132-141. doi: 10.1182/blood-2007-06-095398
|
[44] |
Liu X, Zhu R, Luo Y, et al. Distinct human Langerhans cell subsets orchestrate reciprocal functions and require different developmental regulation [J]. Immunity, 2021, 54(10): 2305-2320 e11.
|
[45] |
Fu W, Zhu G, Xu L, et al. G-CSF upregulates the expression of aquaporin-9 through CEBPB to enhance the cytotoxic activity of arsenic trioxide to acute myeloid leukemia cells [J]. Cancer Cell International, 2022, 22(1): 195. doi: 10.1186/s12935-022-02613-y
|
[46] |
Klinge U, Dievernich A, Stegmaier J. Quantitative characterization of macrophage, lymphocyte, and neutrophil subtypes within the foreign body granuloma of human mesh explants by 5-marker multiplex fluorescence microscopy [J]. Frontiers in Medicine, 2022(9): 777439.
|
[47] |
孙飘, 李颖, 刘帆, 等. TPI缺乏症斑马鱼模型的构建及分析 [J]. 遗传, 2024, 46(3): 232-241.]
Sun P, Li Y, Liu F, et al. Generation and analysis of TPI deficiency zebrafish model [J]. Hereditas (Beijing), 2024, 46(3): 232-241. [
|
[48] |
Sun J, Liu W, Li L, et al. Suppression of pu. 1 function results in expanded myelopoiesis in zebrafish [J]. Leukemia, 2013, 27(9): 1913-1917. doi: 10.1038/leu.2013.67
|
[49] |
Dai Y, Zhu L, Huang Z, et al. Cebpα is essential for the embryonic myeloid progenitor and neutrophil maintenance in zebrafish [J]. Journal of Genetics and Genomics, 2016, 43(10): 593-600. doi: 10.1016/j.jgg.2016.09.001
|
[50] |
Jin H, Huang Z, Chi Y, et al. c-Myb acts in parallel and cooperatively with Cebp1 to regulate neutrophil maturation in zebrafish [J]. Blood, 2016, 128(3): 415-426. doi: 10.1182/blood-2015-12-686147
|
[51] |
Wu M, Xu Y, Li J, et al. Genetic and epigenetic orchestration of Gfi1aa-Lsd1- cebpa in zebrafish neutrophil development [J]. Development, 2021, 148(17): dev199516. doi: 10.1242/dev.199516
|
[52] |
Skokowa J, Klimiankou M, Klimenkova O, et al. Interactions among HCLS1, HAX1 and LEF-1 proteins are essential for G-CSF-triggered granulopoiesis [J]. Nature Medicine, 2012, 18(10): 1550-1559. doi: 10.1038/nm.2958
|
[53] |
Wei Z, Li C, Zhang Y, et al. Macrophage-derived IL-1β regulates emergency myelopoiesis via the NF-κB and C/ebpβ in zebrafish [J]. The Journal of Immunology, 2020, 205(10): 2694-2706. doi: 10.4049/jimmunol.2000473
|
[54] |
Li G, Sun Y, Kwok I, et al. Cebp1 and cebpβ transcriptional axis controls eosinophilopoiesis in zebrafish [J]. Nature Communications, 2024, 15(1): 811. doi: 10.1038/s41467-024-45029-0
|
[55] |
Yu T, Guo W, Tian Y, et al. Distinct regulatory networks control the development of macrophages of different origins in zebrafish [J]. Blood, 2017, 129(4): 509-519. doi: 10.1182/blood-2016-07-727651
|
[56] |
Li L, Jin H, Xu J, et al. Irf8 regulates macrophage versus neutrophil fate during zebrafish primitive myelopoiesis [J]. Blood, 2011, 117(4): 1359-1369. doi: 10.1182/blood-2010-06-290700
|
[57] |
Zhang A, Lu J, Feng S, et al. Fli1 acts in parallel with pu. 1 to control macrophage and neutrophil fate in zebrafish [J]. Journal of Genetics and Genomics, 2024, 51(3): 359-362. doi: 10.1016/j.jgg.2023.11.001
|
[58] |
Lian J, Chen J, Wang K, et al. Alas1 is essential for neutrophil maturation in zebrafish [J]. Haematologica, 2018, 103(11): 1785-1795. doi: 10.3324/haematol.2018.194316
|
[59] |
Ogawa A, Konno S, Ansai S, et al. Structural diversity and function of the granulocyte colony-stimulating factor in medaka fish [J]. Experimental Hematology, 2025(141): 104672.
|
[60] |
Locksley R M, Killeen N, Lenardo M J. The TNF and TNF receptor superfamilies: integrating mammalian biology [J]. Cell, 2001, 104(4): 487-501. doi: 10.1016/S0092-8674(01)00237-9
|
[61] |
Liao Z, Su J. Progresses on three pattern recognition receptor families (TLRs, RLRs and NLRs) in teleost [J]. Developmental & comparative immunology, 2021(122): 104131.
|
[62] |
Havixbeck J J, Rieger A M, Wong M E, et al. Neutrophil contributions to the induction and regulation of the acute inflammatory response in teleost fish [J]. Journal of Leukocyte Biology, 2016, 99(2): 241-252. doi: 10.1189/jlb.3HI0215-064R
|
[63] |
Odaka T, Suetake H, Maeda T, et al. Teleost basophils have IgM-dependent and dual Ig-independent degranulation systems [J]. The Journal of Immunology, 2018, 200(8): 2767-2776. doi: 10.4049/jimmunol.1701051
|
[64] |
Wang K, Fang X, Ma N, et al. Myeloperoxidase-deficient zebrafish show an augmented inflammatory response to challenge with Candida albicans [J]. Fish & Shellfish Immunology, 2015, 44(1): 109-116.
|
[65] |
Huo Y, Hu X, Lü J, et al. Single-cell transcriptome, phagocytic activity and immunohistochemical analysis of crucian carp (Carassius auratus) in response to Rahnella aquatilis infection [J]. Fish & Shellfish Immunology, 2023(140): 108970.
|
[66] |
Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation [J]. Microbes and Infection, 2003, 5(14): 1317-1327. doi: 10.1016/j.micinf.2003.09.008
|
[67] |
Palić D, Andreasen C B, Ostojić J, et al. Zebrafish (Danio rerio) whole kidney assays to measure neutrophil extracellular trap release and degranulation of primary granules [J]. Journal of immunological methods, 2007, 319(1-2): 87-97. doi: 10.1016/j.jim.2006.11.003
|
[68] |
Biller J D, Takahashi L S. Oxidative stress and fish immune system: phagocytosis and leukocyte respiratory burst activity [J]. Anais da Academia Brasileira de Ciências, 2018, 90(4): 3403-3414.
|
[69] |
Mi X, Song Y, Deng C, et al. Stimulation of liver fibrosis by N2 neutrophils in wilson’s disease [J]. Cellular and Molecular Gastroenterology and Hepatology, 2023, 16(5): 657-684. doi: 10.1016/j.jcmgh.2023.06.012
|
[70] |
张永安, 孙宝剑, 聂品. 鱼类免疫组织和细胞的研究概况 [J]. 水生生物学报, 2000, 24(6): 648-654.]
Zhang Y A Sun B J, Nie P. Immune tissues and cells of fish: A review [J]. Acta Hydrobiologica Sinica, 2000, 24(6): 648-654. [
|
[71] |
Steinberg B E, Grinstein S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death [J]. Science's STKE, 2007, 2007(379): pe11.
|
[72] |
Remijsen Q, Vanden Berghe T, Wirawan E, et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation [J]. Cell Research, 2011, 21(2): 290-304. doi: 10.1038/cr.2010.150
|
[73] |
Zhao M L, Chi H, Sun L. Neutrophil extracellular traps of cynoglossus semilaevis: Production characteristics and antibacterial effect [J]. Frontiers in Immunology, 2017(8): 290.
|
[74] |
Van A P, Álvarez de Haro N, Bron J E, et al. Chromatin extracellular trap release in rainbow trout, Oncorhynchus mykiss (Walbaum, 1792) [J]. Fish & Shellfish Immunology, 2020(99): 227-238.
|
[75] |
Mu D, Yang J, Jiang Y, et al. Single-cell transcriptomic analysis reveals neutrophil as orchestrator during β-glucan-induced trained immunity in a teleost fish [J]. Journal of Immunology, 2022, 209(4): 783-795. doi: 10.4049/jimmunol.2200225
|
[76] |
Gomes M C, Brokatzky D, Bielecka M K, et al. Shigella induces epigenetic reprogramming of zebrafish neutrophils [J]. Science Advances, 2023, 9(36): eadf9706. doi: 10.1126/sciadv.adf9706
|
[77] |
Darroch H, Keerthisinghe P, Sung Y J, et al. Infection-experienced HSPCs protect against infections by generating neutrophils with enhanced mitochondrial bactericidal activity [J]. Science Advances, 2023, 9(36): eadf9904. doi: 10.1126/sciadv.adf9904
|
[78] |
Arango Duque G, Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases [J]. Frontiers in Immunology, 2014(5): 491.
|
[79] |
Mu L, Yin X, Yang Y, et al. Functional characterization of a mannose-binding lectin (MBL) from Nile tilapia (Oreochromis niloticus) in non-specific cell immunity and apoptosis in monocytes/macrophages [J]. Fish & Shellfish Immunology, 2019(87): 265-274.
|
[80] |
Mu L, Yin X, Wu H, et al. MAp34 regulates the non-specific cell immunity of monocytes/macrophages and inhibits the lectin pathway of complement activation in a teleost fish [J]. Frontiers in Immunology, 2020(11): 1706.
|
[81] |
van Lookeren Campagne M, Wiesmann C, Brown E J. Macrophage complement receptors and pathogen clearance [J]. Cellular Microbiology, 2007, 9(9): 2095-2102. doi: 10.1111/j.1462-5822.2007.00981.x
|
[82] |
Wei H, Lv M, Wen C, et al. Identification of an intercellular cell adhesion molecule-1homologue from grass carp: Evidence for its involvement in the immune cell adhesion in teleost [J]. Fish & Shellfish Immunology, 2018(81): 67-72.
|
[83] |
Huang M, Mu P, Li X, et al. Functions of TNF-α1 and TNF-α2 in large yellow croaker (Larimichthys crocea) in monocyte/macrophage activation [J]. Developmental and Comparative Immunology, 2020(105): 103576.
|
[84] |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease [J]. Journal of Cellular Physiology, 2018, 233(9): 6425-6440. doi: 10.1002/jcp.26429
|
[85] |
Juhas U, Ryba-Stanisławowska M, Szargiej P, et al. Different pathways of macrophage activation and polarization [J]. Postepy Higieny i Medycyny Doswiadczalnej, 2015(69): 496-502.
|
[86] |
Stein M, Keshav S, Harris N, et al. Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation [J]. The Journal of Experimental Medicine, 1992, 176(1): 287-292. doi: 10.1084/jem.176.1.287
|
[87] |
Navegantes K C, De Souza Gomes R, Pereira P A T, et al. Immune modulation of some autoimmune diseases: The critical role of macrophages and neutrophils in the innate and adaptive immunity [J]. Journal of Translational Medicine, 2017, 15(1): 36. doi: 10.1186/s12967-017-1141-8
|
[88] |
Ivanova E A, Orekhov A N. Monocyte activation in immunopathology: Cellular test for development of diagnostics and therapy [J]. Journal of Immunology Research, 2016, 2016(1): 4789279.
|
[89] |
Fuentes L, Roszer T, Ricote M. Inflammatory mediators and insulin resistance in obesity: Role of nuclear receptor signaling in macrophages [J]. Mediators of Inflammation, 2010(2010): 219583.
|
[90] |
Bohlson S S, O’Conner S D, Hulsebus H J, et al. Complement, c1q, and c1q-related molecules regulate macrophage polarization [J]. Frontiers in Immunology, 2014(5): 402.
|
[91] |
Porta C, Riboldi E, Ippolito A, et al. Molecular and epigenetic basis of macrophage polarized activation [J]. Seminars in Immunology, 2015, 27(4): 237-248. doi: 10.1016/j.smim.2015.10.003
|
[92] |
Rieger A M, Hall B E, Barreda D R. Macrophage activation differentially modulates particle binding, phagocytosis and downstream antimicrobial mechanisms [J]. Developmental & Comparative Immunology, 2010, 34(11): 1144-1159.
|
[93] |
Grayfer L, Hodgkinson J W, Belosevic M. Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria [J]. Developmental & Comparative Immunology, 2014, 43(2): 223-242.
|
[94] |
O’Farrell A, Niu Z, Li J, et al. Innate immune memory is stimulus specific [J]. bioRxiv, 2025: 2025.01. 22.634275.
|
[95] |
Cai B, Lin D, Li Y, et al. N2‐polarized neutrophils guide bone mesenchymal stem cell recruitment and initiate bone regeneration: A missing piece of the bone regeneration puzzle [J]. Advanced Science, 2021, 8(19): e2100584. doi: 10.1002/advs.202100584
|
[96] |
Morales R A, Allende M L. Peripheral macrophages promote tissue regeneration in zebrafish by fine-tuning the inflammatory response [J]. Frontiers in Immunology, 2019(10): 253.
|
[97] |
Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation [J]. Nature Reviews Immunology, 2013, 13(3): 159-175. doi: 10.1038/nri3399
|
[98] |
Krishnan J, Selvarajoo K, Tsuchiya M, et al. Toll-like receptor signal transduction [J]. Experimental & Molecular Medicine, 2007, 39(4): 421-438.
|
[99] |
Ribeiro C M S, Hermsen T, Taverne-Thiele A J, et al. Evolution of recognition of ligands from gram-positive bacteria: Similarities and differences in the TLR2-mediated response between mammalian vertebrates and teleost fish [J]. Journal of Immunology, 2010, 184(5): 2355-2368. doi: 10.4049/jimmunol.0900990
|
[100] |
Wang W, Shen Y, Pandit N P, et al. Molecular cloning, characterization and immunological response analysis of toll-like receptor 21 (TLR21) gene in grass carp, ctenopharyngodon idella [J]. Developmental and Comparative Immunology, 2013, 40(3-4): 227-231. doi: 10.1016/j.dci.2013.03.003
|
[101] |
Zhang J, Liu S, Rajendran K V, et al. Pathogen recognition receptors in channel catfish: III phylogeny and expression analysis of toll-like receptors [J]. Developmental & Comparative Immunology, 2013, 40(2): 185-194.
|
[102] |
Wang K L, Ji W, Zhang G R, et al. Molecular characterization and expression analysis of three TLR genes in yellow catfish (pelteobagrus fulvidraco): Responses to stimulation of aeromonas hydrophila and TLR ligands [J]. Fish & Shellfish Immunology, 2017(66): 466-479.
|
[103] |
Wang C, Zhao C, Fu M, et al. Molecular cloning, characterization and expression analysis of toll-like receptor 5M gene in japanese sea perch (lateolabrax japonicas) after bacterial infection [J]. Fish & Shellfish Immunology, 2016(56): 199-207.
|
[104] |
Chang M, Wang T, Nie P, et al. Cloning of two rainbow trout nucleotide-binding oligomerization domain containing 2 (NOD2) splice variants and functional characterization of the NOD2 effector domains [J]. Fish & Shellfish Immunology, 2011, 30(1): 118-127.
|
[105] |
Maekawa S, Byadgi O, Chen Y C, et al. Transcriptome analysis of immune response against vibrio harveyi infection in orange-spotted grouper (epinephelus coioides) [J]. Fish & Shellfish Immunology, 2017(70): 628-637.
|
[106] |
Dash S P, Gupta S, Sarangi P P. Monocytes and macrophages: Origin, homing, differentiation, and functionality during inflammation [J]. Heliyon, 2024, 10(8): e29686. doi: 10.1016/j.heliyon.2024.e29686
|
[107] |
Perdiguero E G, Klapproth K, Schulz C, et al. The origin of tissue-resident macrophages: When an erythro-myeloid progenitor is an erythro-myeloid progenitor [J]. Immunity, 2015, 43(6): 1023-1024. doi: 10.1016/j.immuni.2015.11.022
|
[108] |
Soliman A M, Yoon T, Wang J, et al. Isolation of skin leukocytes uncovers phagocyte inflammatory responses during induction and resolution of cutaneous inflammation in fish [J]. Frontiers in Immunology, 2021(12): 725063.
|
[109] |
Muller W A. Getting leukocytes to the site of inflammation [J]. Veterinary pathology, 2013, 50(1): 7-22. doi: 10.1177/0300985812469883
|
[110] |
Vestweber D. How leukocytes cross the vascular endothelium [J]. Nature Reviews Immunology, 2015, 15(11): 692-704. doi: 10.1038/nri3908
|
[111] |
Filippi M D. Neutrophil transendothelial migration: updates and new perspectives [J]. Blood, 2019, 133(20): 2149-2158. doi: 10.1182/blood-2018-12-844605
|
[112] |
Zou D, Hu W, Qin J, et al. Rapid orderly migration of neutrophils after traumatic brain injury depends on MMP9/13 [J]. Biochemical and biophysical research communications, 2021(579): 161-167.
|
[113] |
Mócsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond [J]. The Journal of Experimental Medicine, 2013, 210(7): 1283-1299. doi: 10.1084/jem.20122220
|
[114] |
Su M, Lu C, Tang R, et al. Downregulation of NF-кB signaling is involved in berberine-mediated protection of crucian carp (carassius auratus gibelio) from cyprinid herpesvirus 2 infection [J]. Aquaculture, 2022(548): 737713.
|
[115] |
Ouyang P, Tao Y, Wei W, et al. Spring viremia of carp virus infection induces carp IL-10 expression, both in vitro and in vivo [J]. Microorganisms, 2023, 11(11): 2812. doi: 10.3390/microorganisms11112812
|
[116] |
Boettcher S, Manz M G. Sensing and translation of pathogen signals into demand-adapted myelopoiesis [J]. Current Opinion in Hematology, 2016, 23(1): 5-10. doi: 10.1097/MOH.0000000000000201
|
[117] |
Zhao J L, Ma C, O’Connell R M, et al. Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis [J]. Cell Stem Cell, 2014, 14(4): 445-459. doi: 10.1016/j.stem.2014.01.007
|
[118] |
Shao C, Niu Y, Rastas P, et al. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis [J]. DNA research, 2015, 22(2): 161-170. doi: 10.1093/dnares/dsv001
|
[119] |
Ma J, Fan Y, Zhou Y, et al. Efficient resistance to grass carp reovirus infection in JAM-A knockout cells using CRISPR/Cas9 [J]. Fish & Shellfish Immunology, 2018(76): 206-215.
|
[120] |
Simora R M C, Xing D, Bangs M R, et al. CRISPR/Cas9-mediated knock-in of alligator cathelicidin gene in a non-coding region of channel catfish genome [J]. Scientific reports, 2020, 10(1): 22271. doi: 10.1038/s41598-020-79409-5
|
[121] |
Robinson N A, Robledo D, Sveen L, et al. Applying genetic technologies to combat infectious diseases in aquaculture [J]. Reviews in Aquaculture, 2023, 15(2): 491-535. doi: 10.1111/raq.12733
|
[122] |
Zuo S, Karami A M, Ødegård J, et al. Immune gene expression and genome-wide association analysis in rainbow trout with different resistance to Yersinia ruckeri infection [J]. Fish & Shellfish Immunology, 2020(106): 441-450.
|
[123] |
Pak B, Schmitt C E, Oh S, et al. Pax9 is essential for granulopoiesis but dispensable for erythropoiesis in zebrafish [J]. Biochemical and biophysical research communications, 2021(534): 359-366.
|
[124] |
Tan Q, Wang J, Hao Y, et al. Elf1 deficiency impairs macrophage development in zebrafish model organism [J]. International Journal of Molecular Sciences, 2025, 26(6): 2537. doi: 10.3390/ijms26062537
|
[125] |
Bader A, Gao J, Rivière T, et al. Molecular insights into neutrophil biology from the zebrafish perspective: lessons from CD18 deficiency [J]. Frontiers in Immunology, 2021(12): 677994.
|
[126] |
Linehan J B, Lucas Zepeda J, Mitchell T A, et al. Follow that cell: Leukocyte migration in L-plastin mutant zebrafish [J]. Cytoskeleton, 2022, 79(4-5): 26-37. doi: 10.1002/cm.21717
|
[127] |
Bian W P, Xie S L, Wang C, et al. Mitfa deficiency promotes immune vigor and potentiates antitumor effects in zebrafish [J]. Fish & Shellfish Immunology, 2023(142): 109130.
|
[128] |
Jing Y Y, Shi J H, Xie Z J, et al. ATP7A maintains bactericidal function of neutrophils and macrophages via regulating the formation and activation of phagolysosomes [J]. FASEB Journal, 2025, 39(11): e70661. doi: 10.1096/fj.202500056R
|
[129] |
Chen M, Luo Y, Xu J, et al. Copper regulates the susceptibility of zebrafish larvae to inflammatory stimuli by controlling neutrophil/macrophage survival [J]. Frontiers in Immunology, 2019(10): 2599.
|
[130] |
Katzenback B A, Foroutanpay B V, Belosevic M. Expressions of transcription factors in goldfish (Carassius auratus L.) macrophages and their progenitors [J]. Developmental & comparative immunology, 2013, 41(2): 230-239.
|
[131] |
Zhang M, Xiao Z Z, Sun L. Suppressor of cytokine signaling 3 inhibits head kidney macrophage activation and cytokine expression in Scophthalmus maximus [J]. Developmental & comparative immunology, 2011, 35(2): 174-181.
|
[132] |
Sobah M L, Scott A C, Laird M, et al. Socs3b regulates the development and function of innate immune cells in zebrafish [J]. Frontiers in Immunology, 2023(14): 1119727.
|
[133] |
Di Q, Lin Q, Huang Z, et al. Zebrafish nephrosin helps host defence against Escherichia coli infection [J]. Open biology, 2017, 7(8): 170040. doi: 10.1098/rsob.170040
|
[134] |
Hortle E, Oehlers S H. Host-directed therapies targeting the tuberculosis granuloma stroma [J]. Pathogens and disease, 2020, 78(2): ftaa015. doi: 10.1093/femspd/ftaa015
|
[135] |
Wright K, de Silva K, Plain K M, et al. Mycobacterial infection-induced miR-206 inhibits protective neutrophil recruitment via the CXCL12/CXCR4signalling axis [J]. PLoS Pathogens, 2021, 17(4): e1009186. doi: 10.1371/journal.ppat.1009186
|
[136] |
Peng K C, Pan C Y, Chou H N, et al. Using an improved Tol2 transposon system to produce transgenic zebrafish with epinecidin-1 which enhanced resistance to bacterial infection [J]. Fish & Shellfish Immunology, 2010, 28(5-6): 905-917.
|
[137] |
Cervera L, Arizcun M, Mercado L, et al. Synthetic antimicrobial Nkl and Dic peptides are immunomodulatory but only Dic peptide can be therapeutic against nodavirus infection [J]. Fish & Shellfish Immunology, 2024(152): 109772.
|
[138] |
Qu Z L, Gong X Y, An L L, et al. Genome editing of FTR42 improves zebrafish survival against virus infection by enhancing IFN immunity [J]. iScience, 2024, 27(4): 109497. doi: 10.1016/j.isci.2024.109497
|
[139] |
Zhu J, Liu X, Cai X, et al. Zebrafish prmt7 negatively regulates antiviral responses by suppressing the retinoic acid-inducible gene-I-like receptor signaling [J]. FASEB Journal, 2020, 34(1): 988-1000. doi: 10.1096/fj.201902219R
|
[140] |
Chen X, Cai C, Li S, et al. pIgR-like4.2 enhances the antiviral immune response of zebrafish against spring viremia of carp virus [J]. Fish & Shellfish Immunology, 2025(162): 110350.
|
[141] |
Karpurapu M, Wang X, Deng J, et al. Functional PU. 1 in macrophages has a pivotal role in NF-κB activation and neutrophilic lung inflammation during endotoxemia [J]. Blood, 2011, 118(19): 5255-5266. doi: 10.1182/blood-2011-03-341123
|
[142] |
Capucetti A, Albano F, Bonecchi R. Multiple roles for chemokines in neutrophil biology [J]. Frontiers in Immunology, 2020(11): 1259.
|
[143] |
Zhang X Y, Zhuo X Y, Cheng J, et al. PU. 1 Regulates Cathepsin S Expression in Large Yellow Croaker (Larimichthys crocea) Macrophages [J]. Frontiers in Immunology, 2022(12): 819029.
|
[144] |
Chang M X. Emerging mechanisms and functions of inflammasome complexes in teleost fish [J]. Frontiers in Immunology, 2023(14): 1065181.
|
[145] |
Wang S, Cai Y, Bu R, et al. PPARγ regulates macrophage polarization by inhibiting the JAK/STAT pathway and attenuates myocardial ischemia/reperfusion injury in vivo [J]. Cell Biochemistry and Biophysics, 2023, 81(2): 349-358. doi: 10.1007/s12013-023-01137-0
|
[146] |
Zhang Z, Hu X, Diao Q, et al. Macrophage migration inhibitory factor (MIF) of golden pompano (Trachinotus ovatus) is involved in the antibacterial immune response [J]. Developmental & comparative immunology, 2022(133): 104445.
|
[147] |
Wan Q, Su J, Wang L, et al. A 15 nucleotide deletion mutation in coding region of the RIG-I lowers grass carp (Ctenopharyngodon idella) resistance to grass carp reovirus [J]. Fish & Shellfish Immunology, 2012, 33(2): 442-447.
|
[148] |
Yang Z, Yu Y, Wang L, et al. Silencing Asian Seabass gab3 Inhibits Nervous Necrosis Virus Replication [J]. Marine Biotechnology, 2022, 24(6): 1084-1093. doi: 10.1007/s10126-022-10169-1
|
[149] |
Powder K E. Quantitative Trait Loci (QTL) Mapping [J]. Methods in molecular biology, 2020(2082): 211-229.
|
[150] |
Karami A M, Marana M H, Mathiessen H, et al. Validation of a QTL associated with resistance to Vibrio anguillarum in rainbow trout (Oncorhynchus mykiss) [J]. Acta veterinaria Scandinavica, 2023, 65(1): 28. doi: 10.1186/s13028-023-00692-z
|
[151] |
Orlova S Y, Ruzina M N, Emelianova O R, et al. In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species [J]. Genes, 2024, 15(6): 726. doi: 10.3390/genes15060726
|
[152] |
Suttles J, Stout R D. Macrophage CD40signaling: a pivotal regulator of disease protection and pathogenesis [J]. Seminars in Immunology, 2009, 21(5): 257-264. doi: 10.1016/j.smim.2009.05.011
|
[153] |
Hanalioglu D, Ayvaz D C, Ozgur T T, et al. A novel mutation in TAP1 gene leading to MHC class I deficiency: Report of two cases and review of the literature [J]. Clinical immunology, 2017(178): 74-78.
|
[154] |
Yang F, Akhtar M N, Zhang D, et al. An immunosuppressive vascular niche drives macrophage polarization and immunotherapy resistance in glioblastoma [J]. Science Advances, 2024, 10(9): eadj4678. doi: 10.1126/sciadv.adj4678
|
[155] |
Taylor R S, Carvalheiro R, Patchett A L, et al. Genetic and genomic analyses of resistance to yersiniosis in Atlantic salmon(Salmo salar) assessed by tank challenge [J]. Aquaculture, 2023(564): 739088.
|
[156] |
Hossain A, Habibullah-Al-Mamun M, Nagano I, et al. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking [J]. Environmental Science and Pollution Research, 2022, 29(8): 11054-11075. doi: 10.1007/s11356-021-17825-4
|
[157] |
Verdegem M, Buschmann A H, Latt U W, et al. The contribution of aquaculture systems to global aquaculture production [J]. Journal of the World Aquaculture Society, 2023, 54(2): 206-250. doi: 10.1111/jwas.12963
|
[158] |
Tadmor-Levi R, Doron-Faigenboim A, Marcos-Hadad E, et al. Different transcriptional response between susceptible and resistant common carp (Cyprinus carpio) fish hints on the mechanism of CyHV-3 disease resistance [J]. BMC Genomics, 2019, 20(1): 1019. doi: 10.1186/s12864-019-6391-9
|
[159] |
Li X Y, Chi H, Dalmo R A, et al. Anti-microbial activity and immunomodulation of recombinant hepcidin 2 and NK-lysin from flounder (Paralichthys olivaceus) [J]. International Journal of Biological Macromolecules, 2023, 253(8): 127590.
|
[160] |
Xu T, Chu Q, Cui J. Rhabdovirus-inducible microRNA-210 modulates antiviral innate immune response via targeting STING/MITA in fish [J]. The Journal of Immunology, 2018, 201(3): 982-994. doi: 10.4049/jimmunol.1800377
|
[161] |
Guzman J P M D, Nozaki R, Aoki M, et al. Transcriptome analyses of mRNA and circular RNA reveal dietary supplementation with freeze-dried Lactiplantibacillus plantarum primes immune memory of Whiteleg shrimp (Penaeus vannamei) against pathogens [J]. Fish & Shellfish Immunology, 2025(157): 110091.
|
[162] |
Parker J, Marten S M, Ó Corcora T C, et al. The effects of primary and secondary bacterial exposure on the seahorse (Hippocampus erectus) immune response [J]. Developmental & Comparative Immunology, 2024(153): 105136.
|
[163] |
Beemelmanns A, Roth O. Biparental immune priming in the pipefish Syngnathus typhle [J]. Zoology, 2016, 119(4): 262-272. doi: 10.1016/j.zool.2016.06.002
|
[164] |
Beemelmanns A, Roth O. Grandparental immune priming in the pipefish Syngnathus typhle [J]. BMC Evolutionary Biology, 2017, 17(1): 44. doi: 10.1186/s12862-017-0885-3
|