WANG Xuan-Peng, ZHANG Xiao-Feng, LI Wen-Sheng, ZHANG Tian-Qi, LI Chao, SUN Xiao-Wen. MAPPING AND GENETIC EFFECT ANALYSIS ON QUANTITATIVE TRAIT LOCI RELATED TO FEED CONVERSION RATIO OF COMMON CARP (CYPRINUS CARPIO L.)[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(2): 177-196. DOI: 10.3724/SP.J.1035.2012.00177
Citation: WANG Xuan-Peng, ZHANG Xiao-Feng, LI Wen-Sheng, ZHANG Tian-Qi, LI Chao, SUN Xiao-Wen. MAPPING AND GENETIC EFFECT ANALYSIS ON QUANTITATIVE TRAIT LOCI RELATED TO FEED CONVERSION RATIO OF COMMON CARP (CYPRINUS CARPIO L.)[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(2): 177-196. DOI: 10.3724/SP.J.1035.2012.00177

MAPPING AND GENETIC EFFECT ANALYSIS ON QUANTITATIVE TRAIT LOCI RELATED TO FEED CONVERSION RATIO OF COMMON CARP (CYPRINUS CARPIO L.)

  • Received Date: December 21, 2010
  • Rev Recd Date: October 31, 2011
  • Published Date: March 24, 2012
  • The common carp (Cyprinus carpio L.), one of the most important species for aquaculture in China, is a widespread freshwater fish of eutrophic waters in lakes and large rivers. The wild populations are considered vulnerable to extinction, but the species has also been domesticated and introduced into environments worldwide, and is often considered as an invasive species. However, genetic degeneration, such as low growth rate, small body size, weak disease- resistance, etc., emerged in common carp with the rapid development of its farming scale. Quantitative traits (for example, the feed conversion ratio of common carp) refer to phenotypes that vary in degree and can be attributed to polygenic effects, i.e., product of two or more genes, and their environment. Quantitative trait loci (QTLs) are stretches of DNA containing or linked to the genes that underlie a quantitative trait. Mapping regions of the genome that contain genes involved in specifying a quantitative trait is done using molecular tags such as SSR, EST or more commonly SNPs. This is an early step in identifying and sequencing the actual genes underlying trait variation. Researches of genetic diversity, kin discrimination, strain identification, genetic linkage map construction, trait-related marker screening, genetic evaluation and QTL are the effective way to solve these problems of breeding in common carp. In this paper, a group of F2 hybrids German mirror carp including 68 individuals was used to construct a linkage map by using 560 markers (174 SSR markers, 41EST-SSR markers and 345 SNP markers). Quantitative traits loci (QTLs) associated with feed conversion ratio were identified by interval mapping and MQM mapping of the software MapQTL5.0. A linkage group wide permutation test (1000 replicates) determined the significance of the maximum LOD value over the various intervals analyzed for each linkage group. The results indicated that fifteen QTLs were identified for feed conversion ratio on nine linkage groups, which explained 17.70% and 52.20% of the total variation of feed conversion ratio, respectively. Two QTLs were associated with LG25 (HLJE314-SNP0919) and LG39 (HLJ1439-HLJ1438), which covered the lest 0.614 and most 24.922. There were two QTLs (HLJ1439-HLJ1438 and HLJ922-SNP0711), which explained over 50.00% of the total variation of the feed conversion ratio. They were major QTLs associated to the feed conversion of common carp. Three QTLs were negative additive effect with the average value of ?0.027, while the others positive additive effect with the average value of 0.06. The results also suggested that the feed conversion ratio traits should be determined by more than one loci which was conformed to the theory on quantitative genetics. This work investigated the correlation between markers and growth traits in common carp and obtained trait-related QTL and the results would be valuable for marker-assisted breeding in common carp.
  • [1]
    [王洪哲, 张研, 殷倩茜, 等. 两个镜鲤半同胞家系的遗传多样性及经济性状分析. 水生生物学报, 2009, 33(3):522-531]
    [1]
    Sun X W, Liang L Q. A genetic linkage map of common carp(Cyprinus carpio L.) and mapping of a locus associate withcold tolerance [J]. Aquaculture, 2004, 238(1): 165-172
    [2]
    Zhang Y, Liang L Q, Chang Y M, et al. Mapping and geneticeffect lated to body size in common analysis of quantitativetrait loci carp (Cyprinus carpio L.) [J]. Hereditas (Beijing),2007, 29(10): 1243-1248 [张研, 梁利群, 常玉梅, 等. 鲤鱼体长性状的QTL 定位及其遗传效应分析. 遗传, 2007,29(10): 1243-1248]
    [3]
    Hou N, Zhang Y, Lu C Y, et al. Genetic potential analysis ofGermany mirror carp (Cyprinus carpio L.) using microsatellitemarkers [J]. Hereditas (Beijing), 2007, 29(12): 1509-1518 [侯宁, 张研, 鲁翠云, 等. 微卫星 DNA 标记分析德国镜鲤的遗传潜力. 遗传, 2007, 29(12): 1509-1518]
    [4]
    Zhang Y F, Zhang Y, Lu C Y, et al. Correlation analysis ofmicrosatellite DNA markers with body weight, length andheight of common carp (Cyprinus carpio L. ) [J]. Hereditas(Beijing), 2008, 30(5): 613-619 [张义凤, 张研, 鲁翠云,等. 鲤鱼微卫星标记与体重、体长和体高性状的相关分析.遗传, 2008, 30(5): 613-619]
    [5]
    Liang L Q, Sun X W. Mapping cold tolerance strain on geneticlinkage map of common carp [J]. Journal of DalianFisheries University, 2003, 18(4): 278-281 [梁利群, 孙效文. 鲤耐寒性状分子标记在遗传连锁图上的定位. 大连水产学院学报, 2003, 18(4): 278-281]
    [6]
    Yue Z Q, Kong J, Dai J X. Current status and future perspectiveof genetic linkage mapping in aquaculture species [J].Hereditas (Beijing), 2004, 26(1): 97-102 [岳志芹, 孔杰,戴继勋. 水产动物遗传连锁图谱的研究现状及应用展望.遗传, 2004, 26(1): 97-102]
    [7]
    Sun X W. Molecular Breeding of Fish [M]. Beijing: OceanPress. 2010, 27-266 [孙效文. 鱼类分子育种学. 北京: 海洋出版社. 2010, 27-266]
    [8]
    Liu J H, Zhang Y, Liang L Q, et al. Mapping QTLs related tobody weight and full size of common carp (Cyprinus carpio)[J]. Journal of Guangdong Ocean University, 2007, 29(4):19-24 [刘继红, 张研, 梁利群, 等. 鲤鱼体重和体长的QTL 定位. 广东海洋大学学报, 2007, 29(4): 19-24]
    [9]
    Sherman E L, Nkrumah J D, Murdoch B M, et al. Identificationof polymorphisms influencing feed intake and efficiencyin beef cattle [J]. Animal Genetics, 2007, 39: 225-231
    [10]
    Dragos, Wendrich B M, Stratil A, et al. Linkage and QTLmapping for Sus scrofa chromosome 18 [J]. Animal BreedGenetic, 2003, 120(1): 138-143
    [11]
    Ross D H, Chris S H, Alan L A, et al. A QTL affecting dailyfeed intake maps to Chromosome 2 in pigs [J]. MammalianGenome, 2005, 16(6): 464-470
    [12]
    Monika S, Maciej S, Jakub C, et al. SNPs in the porcinePPARGC1a gene: Interbreed differences and their phenotypiceffects [J].Cellular Molecular Biology Letters, 2006,12(2): 231-239
    [13]
    Bergot P, Blanc J, Escaffre A. Relationship between numberof pyloric caeca and growth in rainbow trout [J]. Aquaculture,1981, 22(1): 81-96
    [14]
    Anastasia M, Zimmerman, Paul A, et al. Composite intervalmapping reveals three QTL associated with pyloric caecanumber in rainbow trout, Oncorhynchus mykiss [J]. Aquaculture,2005, 247(30): 85-95
    [15]
    Ozaki A, Khoo S, Yoshiura Y. Identification of additionalquantitative trait loci (QTL) responsible for susceptibility toinfections pancreatic necrosis virus in rainbow trout [J]. FishPathology, 2007, 42(3): 131-140
    [16]
    Wu X W. Cyprinoid Fish of China [M]. Shanghai: ShanghaiScience and Technology Press. 1964, 19-109 [伍献文. 中国鲤科鱼类志. 上海: 上海科学出版社. 1964, 19-109]
    [17]
    Han Z G, Wang C B, Song X L, et al. Characteristics, developmentand mapping of Gossypium hirsutum derivedEST-SSRs in allotetraploid cotton [J]. TAG Theoretical andApplied Genetics, 2005, 112(3): 430-439
    [18]
    Van Ooijen J W, Voorips R E. JoinMap Version 3.0: softwarefor the calculation of genetic linkage maps [Z]. PlantResearch International, Wageningen, the Netherlands, 2001
    [19]
    Van Ooijen J W, Boer M P, Jansen R C, et al. MapQTL5.0:software for the calculation of QTL positions on geneticmaps [Z]. Plant Research International, Wageningen, theNetherlands, 2002
    [20]
    Jansen R C, Stam P. High resolution of quantitative traitsinto multiple loci via interval mapping [J]. Genetics, 1994,136(4): 1447-1454
    [21]
    Chistiakov D A, Hellemans B, Haley C S, et al. A microsatellitelinkage map of the European sea bass Dicentrarchuslabrax L. [J]. Genetics, 2005, 170(4): 1821-1826
    [22]
    Stam. Construction of integrated genetic linkage maps bymeans of a new computer package: JoinMap [J]. The PlantJournal, 1993, 3(5): 739-744
    [23]
    Liu Y G, Liu X D, Gao H. Aquatic Creatures DNA MolecularMarkers [M]. Beijing: Science Publishing Company. 2009,47-106 [刘云国, 刘贤德, 高焕. 水产生物DNA 分子标记技术. 北京: 科学出版社. 2009, 47-106]
    [24]
    Dong C Z, Li H M, Mou Z B. Cold Fresh-Water Fishes inChina [M]. Heilongjiang: Heilongjiang Science andTechnology Press. 2001, 69-87 [董崇智, 李怀名, 牟振波.中国淡水冷水性鱼类. 黑龙江: 黑龙江科学技术出版社.2001, 69-87]
    [25]
    Zou Y P, Ge S. The New Generation of molecular markers-SNPs and its applications [J]. Biological Diversity, 2003,11(5): 370-382 [邹喻苹, 葛颂. 新一代分子标记-SNPs 及其应用.生物多样性, 2003, 11(5): 370-382]
    [26]
    Causse M A, Fulton T M, Cho Y G. Saturated molecular mapof the rice genome based on an interspecific backcrosspopulation [J]. Genetics, 1994, 138(4): 1251-1274
    [27]
    Zhou Y Q. The development of genetic marker [J]. Bulletinof Biology, 2000, 35(5): 17-18 [周延清. 遗传标记的发展.生物学通报, 2000, 35(5): 17-18]
    [28]
    Luo M, Jia J Z. The progress in projects of expressedsequence tags in plant genomes [J]. Agricultural Science ofChina, 2000, 33(6): 110-112 [骆蒙, 贾继增. 国际麦类基因组EST计划研究进展. 中国农业科学, 2000, 33(6): 110-112]
    [29]
    Li H, Lu M Z, Jiang X N. Expressed sequence tags and itsaplication in forest research [J]. Forest Research, 2004, 17(6):804-809 [李虹, 卢孟柱, 蒋湘宁. 表达序列标签(EST)分析及其在林木研究中的应用. 林业科学研究, 2004, 17(6):804-809]
    [30]
    Wang H Z, Zhang Y, Yin Q Q, et al. Analysis of genetic diversityand economic traits in two mirror carp semi-sib families[J]. Acta Hydrobiological Sinica, 2009, 33(3): 522-531
    [31]
    itten crab (Eriocheir Sinensis) [J]. Acta HydrobiologicalSinica, 2011, 35(2), 197-202 [吴滟, 付春鹏, 蒋速飞, 等. 中华绒螯蟹微卫星标记与生长性状相关性的初步分析. 水生生物学报, 2011, 35(2), 197-20.

    Wu Y, Fu C P, Jiang S F, et al. Preliminary studies on thecorrelation between microsatellite markers and growth traitsin Chinese mitten crab (Eriocheir Sinensis) [J]. Acta HydrobiologicalSinica, 2011, 35(2), 197-202 [吴滟, 付春鹏, 蒋速飞, 等. 中华绒螯蟹微卫星标记与生长性状相关性的初步分析. 水生生物学报, 2011, 35(2), 197-202]
    [32]
    Li O, Cao D C, Zhang Y, et al. Studies on feed conversionratio trait of common carp (Cyprinus carpio L.) usingEST-SSR marker [J]. Journal of Fisheries of China, 2009,33(4): 46-51 [李鸥, 曹顶臣, 张妍, 等.利用EST-SSR 分子标记研究鲤的饲料转化率性状. 水产学报, 2009, 33(4):46-51]
    [33]
    Ildiko M, Somorjai L, Danzmann R G, et al. Distribution oftemperature tolerance quantitative tmit loci in Arctic Charr(Salvelinus alpinus) and inferred homologies in rainbowtrout (Oncorhynchus mykiss) [J]. Genetics, 2003, 165(3):1443-1456
    [34]
    Reid D P, Szanto A, Glebe B. QTL for body weight andcondition factor in Atlantic almon (Salmosalar): comparativeanalysis with rainbow trout (Oncorhynchus mykiss) andArctic Charr (Salvelinus alpinus) [J]. Heredi, 2005, 94(2):166-172

Catalog

    Article views (1312) PDF downloads (746) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return