ZHU Wen-Gen, LI Xing-Hao, RAO Liu-Yu, HUANG Jie, YU Yu-He, XIAO Fan-Shu, YAN Qing-Yun. EFFECTS OF REOVIRUS INFECTION ON THE INTESTINAL MICROBIOTA DIVERSITY OF GRASS CARP (CTENOPHARYNGODON IDELLA)[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(1): 109-116. DOI: 10.7541/2019.014
Citation: ZHU Wen-Gen, LI Xing-Hao, RAO Liu-Yu, HUANG Jie, YU Yu-He, XIAO Fan-Shu, YAN Qing-Yun. EFFECTS OF REOVIRUS INFECTION ON THE INTESTINAL MICROBIOTA DIVERSITY OF GRASS CARP (CTENOPHARYNGODON IDELLA)[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(1): 109-116. DOI: 10.7541/2019.014

EFFECTS OF REOVIRUS INFECTION ON THE INTESTINAL MICROBIOTA DIVERSITY OF GRASS CARP (CTENOPHARYNGODON IDELLA)

Funds: Supported by the National Natural Science Foundation of China (31672262, 31400109)
  • Received Date: February 25, 2018
  • Rev Recd Date: April 16, 2018
  • Available Online: September 16, 2018
  • Published Date: December 31, 2018
  • The grass carp (Ctenopharyngodon idellus) infected with the hemorrhage virus was used to analyze the intestinal microbiota by using high-throughput sequencing. The results showed that microbiota significantly differed between grass carp reovirus (GCRV)-infected and control grass carp (multiple response permutation procedure (MRPP), analysis of similarity (Anosim), and Adonis; P<0.01). When we compared alpha diversity, we found that Shannon-Wiener index, inverse of Simpson's original index and Pielou’s evenness index of intestinal microbiota were all significantly decreased after infecting with GCRV (independent samplest-test, P<0.05). Besides, we found that the individual difference within GCRV-infected group was significantly greater than those in the controls (Wilcoxon signed-rank test,P<0.05), suggesting that the intestinal microbiota in GCRV-infected grass carps became disorganized and lost their original balance. Proteobacteria, Firmicutes, Fusobacteriaceae, and Bacteroidetes were dominant phylum in both GCRV-infected group and controls. However, the relative abundance of operational taxonomic units (OTUs) between the two groups was different. For example, OTU_69 (Pasteurellaceae), OTU_504 (Comamonadaceae), and OTU_1898 (Cetobacterium) were all significantly lower than that of controls (t-test, P<0.05), confirming that GCRV could make intestinal microbiota of grass carps disorganized. The stability of intestinal microbiota is important for health of host. By detecting changes in the intestinal microbiota of GCRV-infected grass carp, we will be able to provide theoretical basis and data reference for the prevention and treatment of common disease of farmed fish, as well as providing a reference for healthy breeding.
  • [1]
    Björkstén B. The gut microbiota: a complex ecosystem [J]. Clinical & Experimental Allergy, 2006, 36(10): 1215—1217
    [2]
    Han S, Liu Y, Zhou Z, et al. Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences [J]. Aquaculture Research, 2010, 42(1): 47—56
    [3]
    Verner-Jeffreys D W, Shields R J, Bricknell I R, et al. Changes in the gut-associated microflora during the development of Atlantic halibut (Hippoglossus hippoglossus L.) larvae in three British hatcheries [J]. Aquaculture, 2003, 219(1-4): 21—42
    [4]
    Ley R E, Lozupone C A, Hamady M, et al. Worlds within worlds: evolution of the vertebrate gut microbiota [J]. Nature Reviews Microbiology, 2008, 6(10): 776
    [5]
    Nayak S K. Role of gastrointestinal microbiota in fish [J]. Aquaculture Research, 2010, 41(11): 1553—1573
    [6]
    Sullam K E, Essinger S D, Lozupone C A, et al. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta‐analysis [J]. Molecular Ecology, 2012, 21(13): 3363—3378
    [7]
    Li J J, Ni J J, Wang C, et al. Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits [J]. Journal of Applied Microbiology, 2014, 117(6): 1750—1760
    [8]
    Li T T, Long M, Gatesoupe F-J, et al. Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing [J]. Microbial Ecology, 2015, 69(1): 25—36
    [9]
    Wu S G, Wang G T, Angert E R, et al. Composition, diversity, and origin of the bacterial community in grass carp intestine [J]. PloS One, 2012, 7(2): e30440
    [10]
    Yan Q Y, Li J J, Yu Y H, et al. Environmental filtering decreases with fish development for the assembly of gut microbiota [J]. Environmental Microbiology, 2016, 18(12): 4739—4754
    [11]
    Li T T, Long M, Ji C, et al. Alterations of the gut microbiome of largemouth bronze gudgeon (Coreius guichenoti) suffering from furunculosis [J]. Scientific Reports, 2016, 6: 30606
    [12]
    Li T T, LI H, Gatesoupe F-J, et al. Bacterial signatures of " Red-Operculum” disease in the gut of crucian carp (Carassius auratus) [J]. Microbial Ecology, 2017, 74(3): 510—521
    [13]
    杨映, 于辉, 古勇明. 草鱼呼肠孤病毒研究进展. 广东农业科学, 2015, 42(15): 92—97

    Yang Y, Yu H, Gu Y M. Research progress on grass carp reovirus [J]. Guangdong Agricultural Sciences, 2015, 42(15): 92—97
    [14]
    湖北省水生生物研究所鱼病研究室, 草鱼出血病研究小组. 草鱼出血病的研究简报. 淡水渔业, 1977, (6): 25—27
    [15]
    战文斌. 水产动物病害学. 北京: 中国农业出版社. 2004, 135—136

    Zhan W B. Aquatic Animal Diseases [M]. Beijing: China Agriculture Press. 2004, 135—136
    [16]
    丰文雯, 吴山功, 郝耀彤, 等. 草鱼肠道黏膜厌氧细菌的分离与鉴定. 水生生物学报, 2018, 42(1): 11—16

    Feng W W, Wu S G, Hao Y T, et al. Isolation and identification of anaerobes in the intestinal mucosa of grass carp Ctenopharyngodon idellus [J]. Acta Hydrobiologica Sinica, 2018, 42(1): 11—16
    [17]
    Jiang Y, Xie C X, Yang G M, et al. Cellulase-producing bacteria of Aeromonas are dominant and indigenous in the gut of Ctenopharyngodon idellus (Valenciennes) [J]. Aquaculture Research, 2011, 42(4): 499—505
    [18]
    Ni J J, Yu Y H, Zhang T, et al. Comparison of intestinal bacterial communities in grass carp, Ctenopharyngodon idellus, from two different habitats [J]. Chinese Journal of Oceanology and Limnology, 2012, 30(5): 757—765
    [19]
    王纯, 倪加加, 颜庆云, 等. 草鱼与团头鲂肠道菌群结构比较分析. 水生生物学报, 2014, 38(5): 868—875

    Wang C, Ni J J, Yan Q Y, et al. Comparision of the intestitinal bacterical communities between grass carp (Ctenopharyngodon idellus) and bluntnose black bream (Megalobrama amblycephala) [J]. Acta Hydrobiologica Sinica, 2014, 38(5): 868—875
    [20]
    Wu L Y, Wen C Q, Qin Y J, et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis [J]. BMC Microbiology, 2015, 15(1): 125
    [21]
    李星浩. 杂食性鱼类消化道微生物研究. 博士学位论文, 中国科学院水生生物研究所, 武汉. 2017

    Li X H. Study of the gut microbiota of omnivorous fish [D]. Thesis for P.H.D of Science, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan. 2017
    [22]
    Roeselers G, Mittge E K, Stephens W Z, et al. Evidence for a core gut microbiota in the zebrafish [J]. The ISME Journal, 2011, 5(10): 1595—1608
    [23]
    Ringø E, Gatesoupe F-J. Lactic acid bacteria in fish: a review [J]. Aquaculture, 1998, 160(3-4): 177—203
    [24]
    孙云章, 杨红玲. 浅谈鱼类消化道微生物的分布及调控. 水产科学, 2008, 27(5): 257—261

    Sun Y Z, Yang H L. A review: distribution and manipulation of fish gut microflore [J]. Fisheries Science, 2008, 27(5): 257—261
    [25]
    Zhang D F, Li A H, Xie J, et al. In vitro antibacterial effect of berberine hydrochloride and enrofloxacin to fish pathogenic bacteria [J]. Aquaculture Research, 2010, 41(7): 1095—1100
    [26]
    Vasemägi A, Visse M, Kisand V. Effect of environmental factors and an emerging parasitic disease on gut microbiome of wild salmonid fish [J]. mSphere, 2017, 2(6): e00418—17
    [27]
    李东亮. 感染嗜水气单胞菌草鱼肠道菌群结构研究. 硕士学位论文, 西北农林科技大学, 杨凌. 2016

    Li D L. Study of the intestinal flora structure of grass carp infenction with aeromonas hydrophila [D]. Thesis for master of Science. North West Agriculture and Forestry University, Yangling. 2016
    [28]
    Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the human intestinal microbial flora [J]. Science, 2005, 308(5728): 1635—1638
    [29]
    Ptacnik R, Solimini A G, Andersen T, et al. Diversity predicts stability and resource use efficiency in natural phytoplankton communities [J]. Proceedings of the National Academy of Sciences, 2008, 105(13): 5134—5138
    [30]
    Hughes E R, Winter M G, Duerkop B A, et al. Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis [J]. Cell Host & Microbe, 2017, 21(2): 208—219
    [31]
    Ni J J, Yan Q Y, Yu Y H, et al. Factors influencing the grass carp gut microbiome and its effect on metabolism [J]. Fems Microbiology Ecology, 2014, 87(3): 704—714
    [32]
    Wu S G, Ren Y, Peng C, et al. Metatranscriptomic discovery of plant biomass-degrading capacity from grass carp intestinal microbiomes [J]. FEMS Microbiology Ecology, 2015, 91(10): 4811—4825
    [33]
    Li X H, Zhou L, Yu Y H, et al. Composition of gut microbiota in the gibel carp (Carassius auratus gibelio) varies with host development [J]. Microbial Ecology, 2017, 74(1): 239—249
    [34]
    Duchmann R, Schmitt E, Knolle P, et al. Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12 [J]. European Journal of Immunology, 1996, 26(4): 934—938
    [35]
    Stagaman K, Burns A R, Guillemin K, et al. The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish [J]. The ISME Journal, 2017, 11(7): 1630—1639
    [36]
    Tsuchiya C, Sakata T, Sugita H. Novel ecological niche of Cetobacterium somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish [J]. Letters in Applied Microbiology, 2008, 46(1): 43—48
    [37]
    Frape D. The Vitamins: fundamental aspects in nutrition and health [J]. Equine Veterinary Journal , 1992, 24(3): 164
    [38]
    Xia J H, Lin G, Fu G H, et al. The intestinal microbiome of fish under starvation [J]. BMC Genomics, 2014, 15(1): 266
    [39]
    Tran N T, Xiong F, Hao Y T, et al. Starvation influences the microbiota assembly and expression of immunity-related genes in the intestine of grass carp (Ctenopharyngodon idellus) [J]. Aquaculture, 2018, 489: 121—129
    [40]
    Kohl K D, Amaya J, Passement C A, et al. Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts [J]. FEMS Microbiology Ecology, 2014, 90(3): 883—894
    [41]
    Penders J, Stobberingh E E, Van den brandt P A, et al. The role of the intestinal microbiota in the development of atopic disorders [J]. Allergy, 2007, 62(11): 1223—1236

Catalog

    Article views (2438) PDF downloads (110) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return