Citation: | ZHU Wen-Gen, LI Xing-Hao, RAO Liu-Yu, HUANG Jie, YU Yu-He, XIAO Fan-Shu, YAN Qing-Yun. EFFECTS OF REOVIRUS INFECTION ON THE INTESTINAL MICROBIOTA DIVERSITY OF GRASS CARP (CTENOPHARYNGODON IDELLA)[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(1): 109-116. DOI: 10.7541/2019.014 |
[1] |
Björkstén B. The gut microbiota: a complex ecosystem [J]. Clinical & Experimental Allergy, 2006, 36(10): 1215—1217
|
[2] |
Han S, Liu Y, Zhou Z, et al. Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences [J]. Aquaculture Research, 2010, 42(1): 47—56
|
[3] |
Verner-Jeffreys D W, Shields R J, Bricknell I R, et al. Changes in the gut-associated microflora during the development of Atlantic halibut (Hippoglossus hippoglossus L.) larvae in three British hatcheries [J]. Aquaculture, 2003, 219(1-4): 21—42
|
[4] |
Ley R E, Lozupone C A, Hamady M, et al. Worlds within worlds: evolution of the vertebrate gut microbiota [J]. Nature Reviews Microbiology, 2008, 6(10): 776
|
[5] |
Nayak S K. Role of gastrointestinal microbiota in fish [J]. Aquaculture Research, 2010, 41(11): 1553—1573
|
[6] |
Sullam K E, Essinger S D, Lozupone C A, et al. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta‐analysis [J]. Molecular Ecology, 2012, 21(13): 3363—3378
|
[7] |
Li J J, Ni J J, Wang C, et al. Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits [J]. Journal of Applied Microbiology, 2014, 117(6): 1750—1760
|
[8] |
Li T T, Long M, Gatesoupe F-J, et al. Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing [J]. Microbial Ecology, 2015, 69(1): 25—36
|
[9] |
Wu S G, Wang G T, Angert E R, et al. Composition, diversity, and origin of the bacterial community in grass carp intestine [J]. PloS One, 2012, 7(2): e30440
|
[10] |
Yan Q Y, Li J J, Yu Y H, et al. Environmental filtering decreases with fish development for the assembly of gut microbiota [J]. Environmental Microbiology, 2016, 18(12): 4739—4754
|
[11] |
Li T T, Long M, Ji C, et al. Alterations of the gut microbiome of largemouth bronze gudgeon (Coreius guichenoti) suffering from furunculosis [J]. Scientific Reports, 2016, 6: 30606
|
[12] |
Li T T, LI H, Gatesoupe F-J, et al. Bacterial signatures of " Red-Operculum” disease in the gut of crucian carp (Carassius auratus) [J]. Microbial Ecology, 2017, 74(3): 510—521
|
[13] |
杨映, 于辉, 古勇明. 草鱼呼肠孤病毒研究进展. 广东农业科学, 2015, 42(15): 92—97
Yang Y, Yu H, Gu Y M. Research progress on grass carp reovirus [J]. Guangdong Agricultural Sciences, 2015, 42(15): 92—97
|
[14] |
湖北省水生生物研究所鱼病研究室, 草鱼出血病研究小组. 草鱼出血病的研究简报. 淡水渔业, 1977, (6): 25—27
|
[15] |
战文斌. 水产动物病害学. 北京: 中国农业出版社. 2004, 135—136
Zhan W B. Aquatic Animal Diseases [M]. Beijing: China Agriculture Press. 2004, 135—136
|
[16] |
丰文雯, 吴山功, 郝耀彤, 等. 草鱼肠道黏膜厌氧细菌的分离与鉴定. 水生生物学报, 2018, 42(1): 11—16
Feng W W, Wu S G, Hao Y T, et al. Isolation and identification of anaerobes in the intestinal mucosa of grass carp Ctenopharyngodon idellus [J]. Acta Hydrobiologica Sinica, 2018, 42(1): 11—16
|
[17] |
Jiang Y, Xie C X, Yang G M, et al. Cellulase-producing bacteria of Aeromonas are dominant and indigenous in the gut of Ctenopharyngodon idellus (Valenciennes) [J]. Aquaculture Research, 2011, 42(4): 499—505
|
[18] |
Ni J J, Yu Y H, Zhang T, et al. Comparison of intestinal bacterial communities in grass carp, Ctenopharyngodon idellus, from two different habitats [J]. Chinese Journal of Oceanology and Limnology, 2012, 30(5): 757—765
|
[19] |
王纯, 倪加加, 颜庆云, 等. 草鱼与团头鲂肠道菌群结构比较分析. 水生生物学报, 2014, 38(5): 868—875
Wang C, Ni J J, Yan Q Y, et al. Comparision of the intestitinal bacterical communities between grass carp (Ctenopharyngodon idellus) and bluntnose black bream (Megalobrama amblycephala) [J]. Acta Hydrobiologica Sinica, 2014, 38(5): 868—875
|
[20] |
Wu L Y, Wen C Q, Qin Y J, et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis [J]. BMC Microbiology, 2015, 15(1): 125
|
[21] |
李星浩. 杂食性鱼类消化道微生物研究. 博士学位论文, 中国科学院水生生物研究所, 武汉. 2017
Li X H. Study of the gut microbiota of omnivorous fish [D]. Thesis for P.H.D of Science, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan. 2017
|
[22] |
Roeselers G, Mittge E K, Stephens W Z, et al. Evidence for a core gut microbiota in the zebrafish [J]. The ISME Journal, 2011, 5(10): 1595—1608
|
[23] |
Ringø E, Gatesoupe F-J. Lactic acid bacteria in fish: a review [J]. Aquaculture, 1998, 160(3-4): 177—203
|
[24] |
孙云章, 杨红玲. 浅谈鱼类消化道微生物的分布及调控. 水产科学, 2008, 27(5): 257—261
Sun Y Z, Yang H L. A review: distribution and manipulation of fish gut microflore [J]. Fisheries Science, 2008, 27(5): 257—261
|
[25] |
Zhang D F, Li A H, Xie J, et al. In vitro antibacterial effect of berberine hydrochloride and enrofloxacin to fish pathogenic bacteria [J]. Aquaculture Research, 2010, 41(7): 1095—1100
|
[26] |
Vasemägi A, Visse M, Kisand V. Effect of environmental factors and an emerging parasitic disease on gut microbiome of wild salmonid fish [J]. mSphere, 2017, 2(6): e00418—17
|
[27] |
李东亮. 感染嗜水气单胞菌草鱼肠道菌群结构研究. 硕士学位论文, 西北农林科技大学, 杨凌. 2016
Li D L. Study of the intestinal flora structure of grass carp infenction with aeromonas hydrophila [D]. Thesis for master of Science. North West Agriculture and Forestry University, Yangling. 2016
|
[28] |
Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the human intestinal microbial flora [J]. Science, 2005, 308(5728): 1635—1638
|
[29] |
Ptacnik R, Solimini A G, Andersen T, et al. Diversity predicts stability and resource use efficiency in natural phytoplankton communities [J]. Proceedings of the National Academy of Sciences, 2008, 105(13): 5134—5138
|
[30] |
Hughes E R, Winter M G, Duerkop B A, et al. Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis [J]. Cell Host & Microbe, 2017, 21(2): 208—219
|
[31] |
Ni J J, Yan Q Y, Yu Y H, et al. Factors influencing the grass carp gut microbiome and its effect on metabolism [J]. Fems Microbiology Ecology, 2014, 87(3): 704—714
|
[32] |
Wu S G, Ren Y, Peng C, et al. Metatranscriptomic discovery of plant biomass-degrading capacity from grass carp intestinal microbiomes [J]. FEMS Microbiology Ecology, 2015, 91(10): 4811—4825
|
[33] |
Li X H, Zhou L, Yu Y H, et al. Composition of gut microbiota in the gibel carp (Carassius auratus gibelio) varies with host development [J]. Microbial Ecology, 2017, 74(1): 239—249
|
[34] |
Duchmann R, Schmitt E, Knolle P, et al. Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12 [J]. European Journal of Immunology, 1996, 26(4): 934—938
|
[35] |
Stagaman K, Burns A R, Guillemin K, et al. The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish [J]. The ISME Journal, 2017, 11(7): 1630—1639
|
[36] |
Tsuchiya C, Sakata T, Sugita H. Novel ecological niche of Cetobacterium somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish [J]. Letters in Applied Microbiology, 2008, 46(1): 43—48
|
[37] |
Frape D. The Vitamins: fundamental aspects in nutrition and health [J]. Equine Veterinary Journal
, 1992, 24(3): 164
|
[38] |
Xia J H, Lin G, Fu G H, et al. The intestinal microbiome of fish under starvation [J]. BMC Genomics, 2014, 15(1): 266
|
[39] |
Tran N T, Xiong F, Hao Y T, et al. Starvation influences the microbiota assembly and expression of immunity-related genes in the intestine of grass carp (Ctenopharyngodon idellus) [J]. Aquaculture, 2018, 489: 121—129
|
[40] |
Kohl K D, Amaya J, Passement C A, et al. Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts [J]. FEMS Microbiology Ecology, 2014, 90(3): 883—894
|
[41] |
Penders J, Stobberingh E E, Van den brandt P A, et al. The role of the intestinal microbiota in the development of atopic disorders [J]. Allergy, 2007, 62(11): 1223—1236
|