QIU Nian-Wei, GAO Shan, ZHOU Pei-Jun, SHU Feng-Yue, HOU Yuan-Tong, ZHOU Feng. A SIMULATION STUDY ON THE RESPONSES OF POTAMOGETON LUCENS TO HIGH TEMPERATURE IN SUMMER[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(1): 181-188. DOI: 10.7541/2019.022
Citation: QIU Nian-Wei, GAO Shan, ZHOU Pei-Jun, SHU Feng-Yue, HOU Yuan-Tong, ZHOU Feng. A SIMULATION STUDY ON THE RESPONSES OF POTAMOGETON LUCENS TO HIGH TEMPERATURE IN SUMMER[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(1): 181-188. DOI: 10.7541/2019.022

A SIMULATION STUDY ON THE RESPONSES OF POTAMOGETON LUCENS TO HIGH TEMPERATURE IN SUMMER

Funds: Supported by the Open Fund of Yangtze River Scientific Research Institute (CKWV2015238/KY); the National Natural Science Foundation of China (31270233); the Post-doctoral Science Fund of China (2016M592158)
  • Received Date: December 16, 2017
  • Rev Recd Date: April 16, 2018
  • Available Online: October 11, 2018
  • Published Date: December 31, 2018
  • To explore the cause of Potamogeton lucens’s decline, a dominant plant inhabiting the shallow water of Nansi Lake, the physiological and biochemical changes of P. lucens were examined under a group of constant temperatures at 25℃, 30℃, 35℃, and 40℃, respectively, for 3h. The results showed that the contents of protein, soluble sugar and chlorophyll decreased significantly, while the content of malondialdehyde (MDA) increased significantly at a high temperature above 35℃. The results indicated that high temperature above 35℃ had significant damage to P. lucens. The photosystem of P. lucens was more sensitive to heat stress. The characteristics of standardized chlorophyll fluorescence kinetics curves under heat stress were as follows. Peaks at J and K phases were observed, but no L-band was found on the normalized chlorophyll fluorescence kinetics curves. The chlorophyll fluorescence parameters were calculated from the OJIP curves of the heat-treated leaves. The results showed that the initial closing speed of the reaction center (dVG/dto, dV/dto) slowed down with the increase of temperature under heat stress, but it took a shorter time to reach the maximal fluorescence (Tfm). The maximum quantum yield of PSII (Photosystem II) photochemistry (Fv/Fm) decreased. However, the non-photochemical constants (Kn), relative variable fluorescence at the J-step (Vj), and dissipated energy flux (DIo/RC, DIo/CSo, Fo/Fm) increased under heat stress. Although the turn-over number of QA (N), average redox state of QA (Sm/Tfm), and relative variable fluorescence at the I-step (Vi) barely changed, the plastoquinone pool (Sm) decreased significantly at high temperature. Absorption and trapped energy flux per RC (ABS/RC, TRo/RC; reaction center, RC) increased, whereas the electron transport efficiency per RC (ETo/RC) decreased when temperature increased. Heat stress also decreased the trapped energy flux, electron transport flux and density of RCs per CS (TRo/CSo, ETo/CSo, RC/CSo; cross section, CS). These effects of heat stress on photosystem eventually led to a significant reduction in the structure and function index (SFIabs), performance index (PIabs), and drive force for photosynthesis (DF) of the P. lucens leaves. These results demonstrated that heat stress mainly caused inactivation of oxygen-evolving complex of PSII, reduction of the density of RCs, and decrease of photochemical efficiency of RC in P. lucens plants, and these led to the production of reactive oxygen species, and thus caused remarkable damage to cells. Therefore, P. lucens is a sensitive aquatic plant to high temperature in summer.
  • [1]
    赵剑桥. 南水北调东线工程对南四湖生态环境影响研究综述. 南方农业, 2016, 10(36): 108—112 doi: 10.3969/j.issn.1673-890X.2016.36.062

    Zhao J Q. Review: Impact of south-to-north water diversion project on ecological environment in Nansi Lake [J]. Journal of Southern Agriculture, 2016, 10(36): 108—112 doi: 10.3969/j.issn.1673-890X.2016.36.062
    [2]
    王长龙. 南四湖湿地植物群落调查及季节动态分析. 硕士学位论文, 曲阜师范大学, 曲阜. 2014

    Wang C L. Plant community investigation and seasonal dynamic analysis of wetlands in Nansi Lake [D]. Thesis for Master of Science. Qufu Normal University, Qufu. 2014
    [3]
    Wahid A, Gelani S, Ashraf M, et al. Heat tolerance in plants: an overview [J]. Environmental and Experimental Botany, 2007, 61(3): 199—223 doi: 10.1016/j.envexpbot.2007.05.011
    [4]
    Pilon J, Santamaría L. Clonal variation in the thermal response of the submerged aquatic macrophyte Potamogeton pectinatus [J]. Journal of Ecology, 2002, 90(1): 141—152 doi: 10.1046/j.0022-0477.2001.00645.x
    [5]
    Riis T, Olesen B, Clayton J S, et al. Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species [J]. Aquatic Botany, 2012, 102: 56—64 doi: 10.1016/j.aquabot.2012.05.002
    [6]
    文明, 盛哲, 林亲众. 蛋白质新资源植物—黑藻的研究: II. 生态学特性及引种栽培试验. 湖南农学院学报, 1995, 1: 10—16

    Wen M, Sheng Z, Lin Q Z. A Study on new protein plant—Hydrilla verticillata (L.f.) Royle: II. Study on the quality of ecology and the experiment of introduction and cultivation of this plant [J]. Journal of Hunan Agricultural University, 1995, 1: 10—16
    [7]
    Ma J M, Jin T X, He F, et al. Responses of Elodea nuttallii and Ceratophyllum demersum to high temperature [J]. Fresenius Environmental Bulletin, 2009, 18(9): 1592—1600
    [8]
    De Silva H C C, Asaeda T. Effects of heat stress on growth, photosynthetic pigments, oxidative damage and competitive capacity of three submerged macrophytes [J]. Journal of Plant Interactions, 2017, 12(1): 228—236 doi: 10.1080/17429145.2017.1322153
    [9]
    Moss B, McKee D, Atkinson D, et al. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms [J]. Journal of Applied Ecology, 2003, 40(5): 782—792 doi: 10.1046/j.1365-2664.2003.00839.x
    [10]
    Doyle R, Grodowitz M, Smart M, et al. Separate and interactive effects of competition and herbivory on the growth, expansion, and tuber formation of Hydrilla verticillata [J]. Biological Control, 2007, 41(3): 327—338 doi: 10.1016/j.biocontrol.2007.03.004
    [11]
    邱念伟, 王修顺, 杨发斌, 等. 叶绿素的快速提取与精密测定. 植物学报, 2016, 51(5): 667—678

    Qiu N W, Wang X S, Yang F B, et al. Fast extraction and precise determination of chlorophyll [J]. Chinese Bulletin of Botany, 2016, 51(5): 667—678
    [12]
    Bradford M M. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72(s1-2): 248—254
    [13]
    王妍, 胡胜, 付文诚, 等. 一种快速测定可溶性糖含量的新方法:TBA法. 井冈山大学学报, 2013, 34(3): 37—40 doi: 10.3969/j.issn.1674-8085.2013.03.009

    Wang Y, Hu S, Fu W C, et al. A new method for fast determination of soluble sugar content in plant tissue: TBA-method [J]. Journal of Jinggangshan University, 2013, 34(3): 37—40 doi: 10.3969/j.issn.1674-8085.2013.03.009
    [14]
    李鹏民, 高辉远, Strasse R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理学与分子生物学学报, 2005, 31(6): 559—566

    Li P M, Gao H Y, Strasser R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study [J]. Journal of Plant Physiology and Molecular Biology, 2005, 31(6): 559—566
    [15]
    邱念伟, 周峰, 顾祝军, 等. 5种松属树种光合功能及叶绿素快相荧光动力学特征比较. 应用生态学报, 2012, 23(5): 1181—1187

    Qiu N W, Zhou F, Gu Z J, et al. Photosynthetic functions and chlorophyll fast fluorescence characteristics of five Pinus species [J]. Chinese Journal of Applied Ecology, 2012, 23(5): 1181—1187
    [16]
    Kalaji H M, Jajoo A, Oukarroum A, et al. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions [J]. Acta Physiologiae Plantarum, 2016, 38(4): 102 doi: 10.1007/s11738-016-2113-y
    [17]
    Strasser R J, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterise and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (Eds.), Probing Photosynthesis: Mechanism, Regulation and Adaptation [M]. London: Taylor and Francis Press. 2000, 445—483
    [18]
    Tsimilli-Michael M, Strasser R J. Experimental resolution and theoretical complexity determine the amount of information extractable from the chlorophyll fluorescence transient OJIP [J]. Springer Netherlands, 2008, 8(10): e77941—e77941
    [19]
    杨小飞, 郭房庆. 高温逆境下植物叶片衰老机理研究进展. 植物生理学报, 2014, 50(9): 1285—1292

    Yang X F, Guo F Q. Research advances in mechanisms of plant leaf senescence under heat stress [J]. Plant Physiology Journal, 2014, 50(9): 1285—1292
    [20]
    Jespersen D, Zhang J, Huang B R. Chlorophyll loss associated with heat-induced senescence in bentgrass [J]. Plant Science, 2016, 249: 1—12 doi: 10.1016/j.plantsci.2016.04.016
    [21]
    Berry J A, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants [J]. Annual Review of Plant Physiology, 1980, 31(1): 491—543 doi: 10.1146/annurev.pp.31.060180.002423
    [22]
    Oukarroum A, Madidi S E, Strasser R J. Differential heat sensitivity index in barley cultivars (Hordeum vulgare L.) monitored by chlorophyll a fluorescence OKJIP [J]. Plant Physiology and Biochemistry, 2016, 105: 102—108 doi: 10.1016/j.plaphy.2016.04.015
    [23]
    Allakhverdiev S I, Kreslavski V D, Klimov V V, et al. Heat stress: an overview of molecular responses in photosynthesis [J]. Photosynthesis Research, 2008, 98(1-3): 541—550 doi: 10.1007/s11120-008-9331-0
    [24]
    Busheva M, Tzonova I, Stoitchkova K, et al. Heat-induced reorganization of the structure of photosystem II membranes: Role of oxygen evolving complex [J]. Journal of Photochemistry and Photobiology B-Biology, 2012, 117(2): 214—221
    [25]
    Kouril R, Lazar D, Ilik P, et al. High-temperature induced chlorophyll fluorescence rise in plants at 40—50℃: Experimental and theoretical approach [J]. Photosynthesis Research, 2004, 81: 49—66 doi: 10.1023/B:PRES.0000028391.70533.eb
    [26]
    Yan K, Chen P, Shao H, et al. Dissection of photosynthetic electron transport process in sweet sorghum under heat stress [J]. PLoS One, 2013, 8(5): e62100 doi: 10.1371/journal.pone.0062100
    [27]
    Lipova L, Krchnak P, Komenda J, et al. Heat-induced disassembly and degradation of chlorophyll-containing protein complexes in vivo [J]. Biochimica et Biophysica Acta, 2010, 1797(1): 63—70 doi: 10.1016/j.bbabio.2009.08.001
    [28]
    Lu T, Meng Z J, Zhang G X, et al. Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.) [J]. Frontiers in Plant Science, 2017, 8(182): 365
    [29]
    Asada K. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 601—639 doi: 10.1146/annurev.arplant.50.1.601
    [30]
    王曼, 沙伟, 张梅娟, 等. 高温胁迫对毛尖紫萼藓生理生化特性的影响. 基因组学与应用生物学, 2015, 34(6): 1290—1295

    Wang M, Sha W, Zhang M J, et al. Effects of high temperature stress on the physiological and biochemical characteristics in Grimmia pilifera [J]. Genomics and Applied Biology, 2015, 34(6): 1290—1295
    [31]
    Allakhverdiev S I, Feyziev Y M, Ahmed A, et al. Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose [J]. Journal of Photochemistry and Photobiology B: Biology, 1996, 34(2-3): 149—157 doi: 10.1016/1011-1344(95)07276-4
  • Related Articles

    [1]WANG Zi-Rui, WANG Yu-Jie, ZHOU Ze-Bin, QIU Jun-Qiang, LI Wei-Ming, ZHANG Qing-Hua. REGULATION OF HSP70 GENE BY NOTCH1A AND NOTCH1B IN ZEBRAFISH (DANIO RERIO)[J]. ACTA HYDROBIOLOGICA SINICA, 2024, 48(5): 829-838. DOI: 10.7541/2024.2023.0320
    [2]GUO Xiao-Ye, LI Yan-Hua, HAN Dan-Xiang. ANALYSIS OF LIPIDOMES OF THE SYNECHOCYSTIS SP. PCC 6803 CELLS[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(2): 376-386. DOI: 10.7541/2021.2019.254
    [3]LUO Dan, ZHAO Yuan-Li, LIU Xin-Hua, ZHANG Jin-Yong. DEVELOPMENT OF A SYBR GREEN REAL-TIME PCR ASSAY FOR DETECTION OF MYXOBOLUS HONGHUENSIS AND ITS APPLICATION[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(2): 268-274. DOI: 10.7541/2020.032
    [4]LI Hong-Mei, JIANG Xiao, LIU Zhu-Hong, ZHAO Zhe, REN Chun-Hua, HU Chao-Qun, SHI Lei, WANG Guang-Jun. Real-time fluorescence loop mediated isothernal amplification for the rapid detection of white spot syndrome virus[J]. ACTA HYDROBIOLOGICA SINICA, 2015, 39(1): 142-148. DOI: 10.7541/2015.18
    [5]ZHANG Hu, ZHANG Gui-yan, WEN Xiao-bin, GENG Ya-hong, LI Ye-guang. EFFECTS OF PH ON THE PHOTOSYNTHESIS, GROWTH AND LIPID PRODUCTION OF CHLORELLA SP. XQ-200419[J]. ACTA HYDROBIOLOGICA SINICA, 2014, 38(6): 1084-1091. DOI: 10.7541/2014.159
    [6]Shahid Mahboob, Bilal Hussain, Zahid Iqbal, Abdul Shakoor Chaudhry. ESTIMATION OF VOLATILE CONSTITUENTS IN THE FISH FLESH FROM WILD AND FARMED CIRRHINA MRIGALA AND CYPRINUS CARPIO[J]. ACTA HYDROBIOLOGICA SINICA, 2009, 33(3): 484-491.
    [7]LI Jie, YAN Hong-Xia, QU Dong-Jing, LIU Hong-Tao, LU Zhao-Ming, XUE Le-Xun. CONSTRUCTION OF AN EGFP EUKARYOTIC EXPRESSION VECTOR BY SOEING AND ITS TRANSFORMATION TO DUNALIELLA SALINA[J]. ACTA HYDROBIOLOGICA SINICA, 2007, 31(4): 546-551.
    [8]Lü Xiu-Ping, HU Han-Hua, ZHANG Xu, CONG Wei, TAN Tian-Wei. EFFECTS OF Fe3+ON GROWTH AND PHOTOSYNTHESIS OF OSCILLATORIA PLANCTONICA[J]. ACTA HYDROBIOLOGICA SINICA, 2005, 29(3): 318-322.
    [9]HU Han-hua, GAO Kun-shan. EFFECTS OF DOUBLED ATMOSPHERIC, CO2 ON THE GROWTH AND PHOTOSYNTHESIS OF CHAETOCEROS MUELLERI[J]. ACTA HYDROBIOLOGICA SINICA, 2001, 25(6): 636-639.
    [10]Wu Jihua, Liang Yanling, Sun Xida. NEWLY RECORDED SPECIES OF FREE-LIVING NEMATODES FROM CHINA (CHROMADORIDA,ENOPLIDA ARAEOLAIMIDA)[J]. ACTA HYDROBIOLOGICA SINICA, 1997, 21(4): 320-321.
  • Cited by

    Periodical cited type(2)

    1. 王佳,顾永钢,王昊,李兆欣,许多. 沉水植物组合对受污染河水的净化与维护效果. 人民黄河. 2022(01): 100-105 .
    2. 石嘉琦,刘宇庆,王艳玲,杨再强. 施氮对高温胁迫下黄瓜果期荧光特性的影响. 华北农学报. 2022(02): 84-95 .

    Other cited types(5)

Catalog

    Article views (1868) PDF downloads (41) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return