CHEN Lin-Tao, CHEN Rui, LAN Ying, LIANG Guo-Jian, MOU Xiang-Wei. RESEARCH AND EXPERIMENTAL STUDY ON THE CLASSIFICATION OF SEAFOOD SNAILS BASED ON MACHINE VISION[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(2): 022514. DOI: 10.7541/2025.2024.0126
Citation: CHEN Lin-Tao, CHEN Rui, LAN Ying, LIANG Guo-Jian, MOU Xiang-Wei. RESEARCH AND EXPERIMENTAL STUDY ON THE CLASSIFICATION OF SEAFOOD SNAILS BASED ON MACHINE VISION[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(2): 022514. DOI: 10.7541/2025.2024.0126

RESEARCH AND EXPERIMENTAL STUDY ON THE CLASSIFICATION OF SEAFOOD SNAILS BASED ON MACHINE VISION

Funds: Supported by Guangxi Key R & D Programme Project (2021AB38023); Guilin Major Special Programme Project (20220102-3)
  • Received Date: July 30, 2024
  • Rev Recd Date: September 05, 2024
  • Available Online: September 25, 2024
  • Issue Publish Date: February 14, 2025
  • Aiming at the current problems of high labour intensity and costs associated with the manual sorting of sea freshwater snails, we proposes a male and female classification model using DPO-SVM. The texture features of the shell intervals were extracted by grey scale covariance matrix analysis, and SVM was used as the classifier to compare the effectiveness of different combinations of texture features. It was concluded that the classification effect of using the energy, entropy, and contrast was the best. To optimize the SVM parameters c and g, the DPO algorithm, based on PSO and WOA algorithms, was introduced. The performance of DPO-SVM was tested and compared with the standard SVM, PSO-SVM, and WOA-SVM models. The results demonstrate that DPO-SVM significantly improves, with overall accuracy rising from 85% to 100%, representing a 15% over the basic SVM model. Additionally, DPO algorithm improves the optimisation seeking performance of the single-species population optimisation algorithm, increasing the best fitness from 95.26 to 98.68 (a 3.47% improvement) and reducing the number of iterations needed to achieve optimal fitness from 14 to 6, a 57.14% decrease ration. The research provides a valuable technical reference for the male and female classification of seafood conchs in automatic sorting device.

  • [1]
    杨富. 进口海鲜抢“鲜”入境 电商货物结群闯世界 [N]. 成都日报, 2023-12-12 (2).]

    Yang F. Imported seafood rush “fresh” into the country e-commerce goods in groups to break into the world [N]. Chengdu Daily, 2023-12-12 (2). [
    [2]
    文怡. 美味花螺煮一下再炒 [J]. 家庭医药. 快乐养生, 2017(10): 14.]

    Wen Y. Delicious snails cooked before frying [J]. Home Medicine, 2017(10): 14. [
    [3]
    黄浩诚, 朱桂莹, 许菁茹, 等. 基于图像的井下人员安全防护检测系统设计 [J]. 现代信息科技, 2023, 7(24): 121-125.]

    Huang H C, Zhu G Y, Xu J R, et al. Design of safety protection detection system for underground personnel based on images [J]. Modern Information Technology, 2023, 7(24): 121-125. [
    [4]
    汪正兴, 夏世法, 杨伟才. 基于数字图像处理的沥青封闭层老化状态识别方法研究 [J]. 水利技术监督, 2023, 31(12): 20-23.] doi: 10.3969/j.issn.1008-1305.2023.12.007

    Wang Z X, Xia S F, Yang W C. Research on aging evaluation method of asphalt sealing layer based on digital image processing [J]. Technical Supervision in Water Resources, 2023, 31(12): 20-23. [ doi: 10.3969/j.issn.1008-1305.2023.12.007
    [5]
    孙星宇, 王平, 吕志华, 等. 基于条形码识别的农产品消毒分类装置 [J]. 南方农机, 2023, 54(18): 34-36+72.] doi: 10.3969/j.issn.1672-3872.2023.18.008

    Sun X Y, Wang P, Lü Z H, et al. Sterilisation sorting device for agricultural products based on barcode identification [J]. China Southern Agricultural Machinery, 2023, 54(18): 34-36+72. [ doi: 10.3969/j.issn.1672-3872.2023.18.008
    [6]
    王倩. 基于深度学习技术的教育大数据挖掘领域运用探究 [J]. 数字通信世界, 2023(11): 112-114.] doi: 10.3969/J.ISSN.1672-7274.2023.11.036

    Wang Q. Research on the application of education big data mining based on deep learning technology [J]. Digital Communication World, 2023(11): 112-114. [ doi: 10.3969/J.ISSN.1672-7274.2023.11.036
    [7]
    杨眉, 魏鸿磊, 华顺刚. 一种基于神经网络的扇贝图像识别方法 [J]. 大连海洋大学学报, 2014, 29(1): 70-74.] doi: 10.3969/J.ISSN.2095-1388.2014.01.015

    Yang M, Wei H L, Hua S G. A scallop image recognition method based on a neural network [J]. Journal of Dalian Ocean University, 2014, 29(1): 70-74. [ doi: 10.3969/J.ISSN.2095-1388.2014.01.015
    [8]
    万鹏, 潘海兵, 龙长江, 等. 基于机器视觉技术淡水鱼品种在线识别装置设计 [J]. 食品与机械, 2012, 28(6): 164-167.] doi: 10.3969/j.issn.1003-5788.2012.06.040

    Wan P, Pan H B, Long C J, et al. Design of the on-line identification device of freshwater fish species based on machine vision technology [J]. Food & Machinery, 2012, 28(6): 164-167. [ doi: 10.3969/j.issn.1003-5788.2012.06.040
    [9]
    雷雨果, 梁楠, 刘春梅. 图像纹理特征分析及提取方法 [J]. 软件工程, 2022, 25(7): 5-8.]

    Lei Y G, Liang N, Liu C M. Image texture feature analysis and extraction method [J]. Software Engineering, 2022, 25(7): 5-8. [
    [10]
    欧利国, 李汶龙, 刘必林, 等. 基于计算机视觉的3种金枪鱼属鱼类表型纹理特征分析 [J]. 中国水产科学, 2022, 29(5): 770-780.] doi: 10.12264/JFSC2021-0506

    Ou L G, Li W L, Liu B L, et al. Analysis of phenotype texture features of three Thunnus species based on computer vision [J]. Journal of Fishery Sciences of China, 2022, 29(5): 770-780. [ doi: 10.12264/JFSC2021-0506
    [11]
    谢忠红, 郭小清, 程碧云, 等. 基于多特征的淡水鱼种类识别研究 [J]. 扬州大学学报(农业与生命科学版), 2016, 37(3): 71-77.]

    Xie Z H, Guo X Q, Cheng B Y, et al. Species recognition of fishes based on multiple features [J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2016, 37(3): 71-77. [
    [12]
    Khotimah W N, Arifin A Z, Yuniarti A, et al. Tuna Fish Classification using Decision Tree Algorithm and Image Processing Method [C]. 2015 International Conference on Computer, Control, Informatics and Its Applications (IC3INA). October 5-7, 2015. Bandung, Indonesia. IEEE, 2015: 126-131.
    [13]
    Fu L, Ouyang H, Zhang C, et al. A constrained cooperative adaptive multi-population differential evolutionary algorithm for economic load dispatch problems [J]. Applied Soft Computing, 2022(121): 108719.
    [14]
    张建伟, 江琦, 刘轩然, 等. 基于PSO-SVM算法的梯级泵站管道振动响应预测 [J]. 农业工程学报, 2017, 33(11): 75-81.] doi: 10.11975/j.issn.1002-6819.2017.11.010

    Zhang J W, Jiang Q, Liu X R, et al. Prediction of vibration response for pipeline of cascade pumping station based on PSO-SVM algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 75-81. [ doi: 10.11975/j.issn.1002-6819.2017.11.010
    [15]
    Xu L, Cao M, Song B. A new approach to smooth path planning of mobile robot based on quartic Bezier transition curve and improved PSO algorithm [J]. Neurocomputing, 2022, 473(2): 98-106.
    [16]
    乔寅威, 贾新春, 关燕鹏, 等. 基于DE-WOA的Elman神经网络的空气质量预测方法及应用 [J/OL]. 控制工程, 1-8 [2023-12-25]

    Qiao Y W, Jia X C, Guan Y P, et al. Air quality prediction method and application of Elman neural network based on DE-WOA [J/OL]. Control Engineering, 1-8 [2023-12-25] [
    [17]
    Kaur G, Arora S. Chaotic whale optimization algorithm [J]. Journal of Computational Design and Engineering, 2018, 5(3): 275-284. doi: 10.1016/j.jcde.2017.12.006
    [18]
    Mostafa Bozorgi S, Yazdani S. IWOA: an improved whale optimization algorithm for optimization problems [J]. Journal of Computational Design and Engineering, 2019, 6(3): 243-259. doi: 10.1016/j.jcde.2019.02.002
    [19]
    刘光宇, 黄懿, 曹禹, 等. 基于灰度共生矩阵的图像纹理特征提取研究 [J]. 科技风, 2021(12): 61-64.]

    Liu G Y, Huang Y, Cao Y, et al. Research on extraction of image texture feature based on gray co-occurrence matrix [J]. Technology Wind, 2021(12): 61-64. [
    [20]
    Yang G G, Bao Y D, Liu Z Y. Localization and recognition of pests in tea plantation based on image saliency analysis and convo- lutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 156-162.
    [21]
    李昕, 陈泽君, 李立君, 等. 基于偏好免疫网络和SVM算法的油茶果多特征识别 [J]. 农业工程学报, 2020, 36(22): 205-213.] doi: 10.11975/j.issn.1002-6819.2020.22.023

    Li X, Chen Z J, Li L J, et al. Recognition of Camellia multi-features based on preference artificial immune network and support vector machine [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22): 205-213. [ doi: 10.11975/j.issn.1002-6819.2020.22.023
    [22]
    单亚峰, 段金凤, 付华, 等. 基于SSA-AdaBoost-SVM的变压器故障诊断 [J]. 控制工程, 2022, 29(2): 280-286.]

    Shan Y F, Duan J F, Fu H, et al. Transformer fault diagnosis based on SSA-AdaBoost-SVM [J]. Control Engineering of China, 2022, 29(2): 280-286. [
    [23]
    周建民, 王发令, 张臣臣, 等. 基于特征优选和GA-SVM的滚动轴承智能评估方法 [J]. 振动与冲击, 2021, 40(4): 227-234.]

    Zhou J M, Wang F L, Zhang C C, et al. An intelligent method for rolling bearing evaluation using feature optimization and GA-SVM [J]. Journal of Vibration and Shock, 2021, 40(4): 227-234. [
    [24]
    杨柳, 孙金华, 冯仲科, 等. 基于PSO-LSSVM的森林地上生物量估测模型 [J]. 农业机械学报, 2016, 47(8): 273-279.] doi: 10.6041/j.issn.1000-1298.2016.08.036

    Yang L, Sun J H, Feng Z K, et al. Estimation model of forest above-ground biomass based on PSO-LSSVM [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 273-279. [ doi: 10.6041/j.issn.1000-1298.2016.08.036
    [25]
    Liu W, Guo G, Chen F, et al. Meteorological pattern analysis assisted daily PM2.5 grades prediction using SVM optimized by PSO algorithm [J]. Atmospheric Pollution Research, 2019, 10(5): 1482-1491. doi: 10.1016/j.apr.2019.04.005
    [26]
    李素, 袁志高, 王聪, 等. 群智能算法优化支持向量机参数综述 [J]. 智能系统学报, 2018, 13(1): 70-84.] doi: 10.11992/tis.201707011

    Li S, Yuan Z G, Wang C, et al. Optimization of support vector machine parameters based on group intelligence algorithm [J]. CAAI Transactions on Intelligent Systems, 2018, 13(1): 70-84. [ doi: 10.11992/tis.201707011
    [27]
    吴志勇, 戴弌, 鞠传香, 等. 基于鲸鱼优化算法的多目标多式联运路径选择 [J]. 重庆交通大学学报(自然科学版), 2022, 41(5): 6-13.]

    Wu Z Y, Dai Y, Ju C X, et al. Multi-objective multimodal transportation route selection based on whale optimization algorithm [J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(5): 6-13. [
    [28]
    Tatsumi K, Ibuki T, Tanino T. A chaotic particle swarm optimization exploiting a virtual quartic objective function based on the personal and global best solutions [J]. Applied Mathematics and Computation, 2013, 219(17): 8991-9011. doi: 10.1016/j.amc.2013.03.029
    [29]
    曹旺. MATLAB智能优化算法: 从写代码到算法思想 [M]. 北京: 北京大学出版社, 2021.]

    Cao W. MATLAB Intelligent Optimization Algorithm: From Writing Code to Algorithm Thought [M]. Beijing: Peking University Press, 2021. [
    [30]
    唐振三, 袁剑龙, 康亮河, 等. 基于图像特征识别的马铃薯薯皮粗糙度分级研究 [J]. 中国农业科学, 2023, 56(22): 4428-4440.] doi: 10.3864/j.issn.0578-1752.2023.22.006

    Tang Z S, Yuan J L, Kang L H, et al. Potato Tuber skin roughness classification analysis based on image characteristics recognition [J]. Scientia Agricultura Sinica, 2023, 56(22): 4428-4440. [ doi: 10.3864/j.issn.0578-1752.2023.22.006
    [31]
    商德勇, 黄云山, 张天佑, 等. Delta煤矸分拣机器人实验平台设计 [J]. 煤炭技术, 2023, 42(7): 136-139.]

    Shang D Y, Huang Y S, Zhang T Y, et al. Design of experimental platform for coal gangue sorting Delta robot [J]. Coal Technology, 2023, 42(7): 136-139. [
    [32]
    高海燕, 高晋阳, 王伟成. 基于改进PSO-SVM的生产线分拣机器人罐装食品识别方法 [J]. 食品与机械, 2023, 39(9): 89-94.]

    Gao H Y, Gao J Y, Wang W C. Identification method of canned food for production line sorting robot based on improved PSO-SVM [J]. Food & Machinery, 2023, 39(9): 89-94. [

Catalog

    Article views (98) PDF downloads (17) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return