Citation: | LIANG Si-Xuan, ZHANG Chen, LI Shen-Ao, LI Xi-Xi, XU Xue-Feng, ZHAO Zhe. NEGATIVE REGULATORY EFFECT OF SCVL ON BIOFILM FORMATION OF VIBRIO PARAHAEMOLYTICUS[J]. ACTA HYDROBIOLOGICA SINICA. DOI: 10.7541/2025.2024.0474 |
Vibrio parahaemolyticus is considered to be one of the threatening pathogens for marine animals, which caused huge annual economic losses to the aquaculture. Biofilm formation, a bacterial defense strategy against environmental threats, contribute to the colonization and survival of V. parahaemolyticus during infection of host. Recent study reported that a gene cluster called scv (syp-like locus in V. parahaemolyticus) was found to be involved into V. parahaemolyticus biofilm production, however, the role of most genes in scv gene cluster, including scvL remains to be elucidated. In this study, V. parahaemolyticus strain SHY1833 was isolated from diseased Pacific white leg shrimp (Litopenaeus vannamei) that exhibited acute hepatopancreatic necrosis disease (AHPND). In order to explore the function of scvL in biofilm formation, the in-frame deletion mutant (ΔscvL) was constructed using the allelic exchange method. Additionally, a complemented strain (ΔscvL: pscvL) and an over-expressed strain (WT: pscvL) were generated by introducing pBBR-scvL into the ΔscvL mutant and the wild-type SHY1833 (WT), respectively. Meanwhile, the cpsA deleted mutant (ΔcpsA) was also made as a control for affecting biofilm formation. Crystal violet staining and SYTO-9 fluorescence assays showed that the scvL deletion significantly increased biofilm formation, while scvL overexpression decreased it. As expected, cpsA deletion resulted in decreased biofilm formation. Therefore, it can be concluded that scvL negatively affected the biofilm formation in strain SHY1833 of V. parahaemolyticus. Additionally, the colony morphology was also examined on Congo red plate, revealing that the colonies of ΔscvL were more opaque and rugose compared with that of WT strain. qPCR analysis showed that the transcriptional level of a number of cps genes was considerably elevated in the scvL deletion strain and downregulated in the scvL-overexpressed strain when compared to the WT strain. Consistently, phenol-sulfuric acid methods for determination of expolysaccharide showed that the deletion of scvL caused the significant increase in extracellular insoluble polysaccharides. In summary, these results offer a basis for clarifying how the scv gene cluster contributes to V. parahaemolyticus biofilm development.
[1] |
Baker-Austin C, Oliver J D, Alam M, et al. Vibrio spp. infections [J]. Nature Reviews Disease Primers, 2018, 4(1): 1-19.
|
[2] |
Letchumanan V, Chan K G, Lee L H. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques [J]. Frontiers in Microbiology, 2014(5): 705.
|
[3] |
唐小千, 徐洪森, 战文斌. 对虾急性肝胰腺坏死综合症研究进展 [J]. 海洋湖沼通报, 2016, 38(2): 90-93.]
Tang X Q, Xu H S, Zhan W B. Advances in study of shrimp acute hepatopancreas necrosis syndrome [J]. Transactions of Oceanology and Limnology, 2016, 38(2): 90-93. [
|
[4] |
Soto-Rodriguez S A, Gomez-Gil B, Lozano-Olvera R, et al. Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in Northwestern Mexico [J]. Applied and Environmental Microbiology, 2015, 81(5): 1689-1699. doi: 10.1128/AEM.03610-14
|
[5] |
Lee C T, Chen I T, Yang Y T, et al. The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(34): 10798-10803.
|
[6] |
Dong X, Li Z, Wang X, et al. Characteristics of Vibrio parahaemolyticus isolates obtained from crayfish (Procambarus clarkii) in freshwater [J]. International Journal of Food Microbiology, 2016(238): 132-138.
|
[7] |
Chen H, Dong S, Yan Y, et al. Prevalence and population analysis of Vibrio parahaemolyticus isolated from freshwater fish in Zhejiang Province, China [J]. Foodborne Pathogens and Disease, 2021, 18(2): 139-146. doi: 10.1089/fpd.2020.2798
|
[8] |
Ruhal R, Kataria R. Biofilm patterns in gram-positive and gram-negative bacteria [J]. Microbiological Research, 2021(251): 126829.
|
[9] |
De Silva L A D S, Heo G J. Biofilm formation of pathogenic bacteria isolated from aquatic animals [J]. Archives of Microbiology, 2022, 205(1): 36.
|
[10] |
蔡雪, 黄雷, 郑阿钦, 等. 大蒜E素对副溶血弧菌的抑菌活性及机制 [J]. 水生生物学报, 2025, 49(2): 022511.] doi: 10.7541/2025.2024.0248
Cai X, Huang L, Zheng A Q, et al. Antibacterial activity and mechanism of Allicin E against Vibrio parahaemolyticus [J]. Acta Hydrobiologica Sinica, 2025, 49(2): 022511. [ doi: 10.7541/2025.2024.0248
|
[11] |
Yildiz F H, Visick K L. Vibrio biofilms: so much the same yet so different [J]. Trends in Microbiology, 2009, 17(3): 109-118. doi: 10.1016/j.tim.2008.12.004
|
[12] |
Liu M, Nie H L, Luo X S, et al. A polysaccharide biosynthesis locus in Vibrio parahaemolyticus important for biofilm formation has homologs widely distributed in aquatic bacteria mainly from gammaproteobacteria [J]. mSystems, 2022, 7(2): e0122621. doi: 10.1128/msystems.01226-21
|
[13] |
李吉云, 沈辉, 孟庆国, 等. 急性肝胰腺坏死病病原菌毒力的初步研究 [J]. 水产科学, 2022, 41(5): 868-875.]
Li J Y, Shen H, Meng Q G, et al. Virulence of pathogenic bacteria causing acute hepatopancreas necrosis disease (AHPND) [J]. Fisheries Science, 2022, 41(5): 868-875. [
|
[14] |
Milton D L, Norqvist A, Wolf-Watz H. Cloning of a metalloprotease gene involved in the virulence mechanism of Vibrio anguillarum [J]. Journal of Bacteriology, 1992, 174(22): 7235-7244. doi: 10.1128/jb.174.22.7235-7244.1992
|
[15] |
Milton D L, O’Toole R, Horstedt P, et al. Flagellin A is essential for the virulence of Vibrio anguillarum [J]. Journal of Bacteriology, 1996, 178(5): 1310-1319. doi: 10.1128/jb.178.5.1310-1319.1996
|
[16] |
Obranić S, Babić F, Maravić-Vlahoviček G. Improvement of pBBR1MCS plasmids, a very useful series of broad-host-range cloning vectors [J]. Plasmid, 2013, 70(2): 263-267. doi: 10.1016/j.plasmid.2013.04.001
|
[17] |
Zhao Z, Liu J, Deng Y, et al. The Vibrio alginolyticus T3SS effectors, Val1686 and Val1680, induce cell rounding, apoptosis and lysis of fish epithelial cells [J]. Virulence, 2018, 9(1): 318-330. doi: 10.1080/21505594.2017.1414134
|
[18] |
Liu M, Zhu X, Zhang C, et al. LuxQ-LuxU-LuxO pathway regulates biofilm formation by Vibrio parahaemolyticus [J]. Microbiological Research, 2021, 250: 126791. doi: 10.1016/j.micres.2021.126791
|
[19] |
蒋富凤. vp0610对副溶血性弧菌生物被膜形成调控机制的初步研究 [D]. 西安: 陕西科技大学, 2021: 34.]
Jiang F F. The regulation of vp0610 on Vibrio parahaemolyticus biofilm formation [D]. Xi’an: Shaanxi University of Science & Technology, 2021: 34. [
|
[20] |
Limoli D H, Jones C J, Wozniak D J. Bacterial extracellular polysaccharides in biofilm formation and function [J]. Microbiology Spectrum, 2015, 3(3). DOI: 10.1128/microbiolspec.MB-0011-2014.
|
[21] |
Fung B L, Esin J J, Visick K L. Vibrio fischeri: a model for host-associated biofilm formation [J]. Journal of Bacteriology, 2024, 206(2): e0037023. doi: 10.1128/jb.00370-23
|
[22] |
Guo L X, Wang J J, Gou Y, et al. Comparative proteomics reveals stress responses of Vibrio parahaemolyticus biofilm on different surfaces: Internal adaptation and external adjustment [J]. Science of the Total Environment, 2020, 731: 138386. doi: 10.1016/j.scitotenv.2020.138386
|
[23] |
Yan J, Bassler B L. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms [J]. Cell Host & Microbe, 2019, 26(1): 15-21.
|
[24] |
Almagro-Moreno S, Pruss K, Taylor R K. Intestinal Colonization Dynamics of Vibrio cholerae [J]. PLoS Pathogens, 2015, 11(5): e1004787. doi: 10.1371/journal.ppat.1004787
|
[25] |
Vidakovic L, Mikhaleva S, Jeckel H, et al. Biofilm formation on human immune cells is a multicellular predation strategy of Vibrio cholerae [J]. Cell, 2023, 186(12): 2690-2704. e20.
|
[26] |
Park K S, Ono T, Rokuda M, et al. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus [J]. Infection and Immunity, 2004, 72(11): 6659-6665. doi: 10.1128/IAI.72.11.6659-6665.2004
|
[27] |
Venkatesan N, Perumal G, Doble M. Bacterial resistance in biofilm-associated bacteria [J]. Future Microbiology, 2015, 10(11): 1743-1750. doi: 10.2217/fmb.15.69
|
[28] |
Nesper J, Schild S, Lauriano C M, et al. Role of Vibrio cholerae O139surface polysaccharides in intestinal colonization [J]. Infection and Immunity, 2002, 70(11): 5990-5996. doi: 10.1128/IAI.70.11.5990-5996.2002
|
[29] |
Toska J, Ho B T, Mekalanos J J. Exopolysaccharide protects Vibrio cholerae from exogenous attacks by the type 6secretion system [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(31): 7997-8002.
|
[30] |
Chen Y, Dai J, Morris J G Jr, et al. Genetic analysis of the capsule polysaccharide (K antigen) and exopolysaccharide genes in pandemic Vibrio parahaemolyticus O3: K6 [J]. BMC Microbiology, 2010, 10: 274. doi: 10.1186/1471-2180-10-274
|
[31] |
Enos-Berlage J L, Guvener Z T, Keenan C E, et al. Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus [J]. Molecular Microbiology, 2005, 55(4): 1160-1182. doi: 10.1111/j.1365-2958.2004.04453.x
|
[32] |
Zhang L, Weng Y, Wu Y, et al. H-NS is an activator of exopolysaccharide biosynthesis genes transcription in Vibrio parahaemolyticus [J]. Microbial Pathogenesis, 2018, 116: 164-167. doi: 10.1016/j.micpath.2018.01.025
|
[33] |
Hajredini F, Alphonse S, Ghose R. BY-kinases: protein tyrosine kinases like no other [J]. The Journal of Biological Chemistry, 2023, 299(1): 102737. doi: 10.1016/j.jbc.2022.102737
|
[34] |
Güvener Z T, McCarter L L. Multiple regulators control capsular polysaccharide production in Vibrio parahaemolyticus [J]. Journal of Bacteriology, 2003, 185(18): 5431-5441. doi: 10.1128/JB.185.18.5431-5441.2003
|
[35] |
Ferreira R B R, Chodur D M, Antunes L C M, et al. Output targets and transcriptional regulation by a cyclic dimeric GMP-responsive circuit in the Vibrio parahaemolyticus Scr network [J]. Journal of Bacteriology, 2012, 194(5): 914-924. doi: 10.1128/JB.05807-11
|
[1] | WANG Zi-Rui, WANG Yu-Jie, ZHOU Ze-Bin, QIU Jun-Qiang, LI Wei-Ming, ZHANG Qing-Hua. REGULATION OF HSP70 GENE BY NOTCH1A AND NOTCH1B IN ZEBRAFISH (DANIO RERIO)[J]. ACTA HYDROBIOLOGICA SINICA, 2024, 48(5): 829-838. DOI: 10.7541/2024.2023.0320 |
[2] | PENG Jing-Xia, LÜ Li-Hong, WEI Ping-Yuan, HE Ping-Ping, CHEN Xiao-Han. CLONING, CHARACTERIZATION AND EXPRESSION ANALYSIS OF A COLDINDUCIBLE DEAD-BOX RNA HELICASE GENE IN LITOPENAEUS VANNAMEI[J]. ACTA HYDROBIOLOGICA SINICA, 2016, 40(3): 474-480. DOI: 10.7541/2016.63 |
[3] | ZHENG Kai-Di, FENG Bo, LI Yun, LI Ying-Wen. MOLECULAR CLONING OF TRYPSIN AND THE EFFECT OF DIETARY PROTEIN LEVELS AND STARVATION ON TRYPSIN mRNA EXPRESSION AND ENZYME ACTIVITY IN JUVENILE CHINESE SUCKER (MYXOCYPRINUS ASIATICUS BLEEKER)[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(1): 9-17. DOI: 10.3724/SP.J.1035.2012.00009 |
[4] | Shahid Mahboob, Bilal Hussain, Zahid Iqbal, Abdul Shakoor Chaudhry. ESTIMATION OF VOLATILE CONSTITUENTS IN THE FISH FLESH FROM WILD AND FARMED CIRRHINA MRIGALA AND CYPRINUS CARPIO[J]. ACTA HYDROBIOLOGICA SINICA, 2009, 33(3): 484-491. |
[5] | YANG Wei-Dong, ZHANG Xin-Lian, LIU Jie-Sheng, GAO Jie, ZHANG Ping. INHIBITORY EFFECT AND SINKING BEHAVIOUR OF WOOD MEALS FROM CHINA FIR ON ALEXANDRIUM TAMARENSE IN CULTURES[J]. ACTA HYDROBIOLOGICA SINICA, 2005, 29(2): 215-219. |
[6] | FU Wen-Yu, WANG Mi-Mi, XU Li-Hong. EFFECT OF MICROCYSTIN-LR ON CASPASE-3 IN RAT HEPATOCYTES[J]. ACTA HYDROBIOLOGICA SINICA, 2004, 28(4): 452-453. |
[7] | LU Jian-min, LU Ling, LIN Yu-hua, XIA Zhong-zhi, ZHAN Pei-rong. THE EFFECT OF LOW pH ON Na+-K+-ATPase ACTIVITY OF GILL TISSUES OF THE COMMON CARP[J]. ACTA HYDROBIOLOGICA SINICA, 2001, 25(1): 102-104. |
[8] | Wu Tianfu, Song Lirong, Liu Yongding. CHARACTERIZATION OF CARBOXYSOMAL CARBONIC ANHYDRASE IN CYANOBACTERIUM ANABAENA SP. PCC7120[J]. ACTA HYDROBIOLOGICA SINICA, 1999, 23(5): 409-413. |
[9] | Wu Jihua, Liang Yanling, Sun Xida. NEWLY RECORDED SPECIES OF FREE-LIVING NEMATODES FROM CHINA (CHROMADORIDA,ENOPLIDA ARAEOLAIMIDA)[J]. ACTA HYDROBIOLOGICA SINICA, 1997, 21(4): 320-321. |
[10] | Zhou Dinggang, Wang kangning. EFFECTS OF RESERPINE AND DOMPERIDONE ON LHRH-A INDUCED OVULATION IN MONOPTERUS ALBUS[J]. ACTA HYDROBIOLOGICA SINICA, 1993, 17(1): 98-100. |