FANG Tao, XU Xiao-qing. THE ADVANCES OF THE STUDY ON ACID-VOLATILE SULFIDES IN SEDIMENTS[J]. ACTA HYDROBIOLOGICA SINICA, 2001, 25(5): 508-515.
Citation: FANG Tao, XU Xiao-qing. THE ADVANCES OF THE STUDY ON ACID-VOLATILE SULFIDES IN SEDIMENTS[J]. ACTA HYDROBIOLOGICA SINICA, 2001, 25(5): 508-515.

THE ADVANCES OF THE STUDY ON ACID-VOLATILE SULFIDES IN SEDIMENTS

  • Received Date: January 12, 2000
  • Rev Recd Date: May 09, 2001
  • Published Date: September 24, 2001
  • [1]
    Di Toro D M, Mahony J D, Hansen D J. Toxicity of cadmium in sediments: the role of acid volatile sulfide [J]. Environ Toxicol Chem, 1990. 9: 1487-1502[2] Merian E. Metals and aquatic contamination workshop [J]. Environ Sci Technol, 1994, 28(3):144-146(A).[3] 胡炜,周永欣. 铜污染沉积物对大型蚤的毒性研究[J]. 水生生物学报,1995,19(2):82-86[4] 马德毅,王菊英,闫启仑,等. 酸溶硫化物对沉积物-孔隙水系统中二价有毒金属化学活动性的影响[J]. 海洋学报,1997,19(5):83-90[5] 陈淑梅,王菊英,马德毅,等. 酸溶硫化物与沉积物中重金属化学活性的关系[J]. 海洋环境科学,1999,18(3)[6] 文湘华,Herbert E Allen. 乐安江沉积物酸可挥发硫化物含量及溶解氧对重金属释放特性的影响[J]. 环境科学,1997,18(4):32-34[7] 梁涛,陶澍,林健枝,等. 沉积物中酸挥发硫对上覆水中重金属含量的影响[J]. 环境化学,1998, 17(3):211-217[8] Stumm W. Morgan. J J. Aquatic Chemistry [M]. New York: Wiley-Interscience, 1970[9] Matisoff G. Fisher J B, McCall P L. Kinetics of nutrient and metal release from decomposing lake sediments [J]. Geochim Cosmochim Acta,1981,45:2333-2347[10] Altschuler Z S, Schnepfe M M, Silber C C, et al. Sulfur diagenesis in Everglades peat and origin of pyrite in coal [J]. Science, 1983, 221:221-227[11] Nedwell D D, Abram J W. Bacterial sulfatereduction in relation to sulfur geochemistry in two contrasting areas of saltmarsh sediment [J]. Estuar Coast Mar Sci, 1978, 6:341-351[12] Leonard E N, Mattson V R, Benoit D A, et al. Seasonal variation of acid volatile sulfide concentration in sediment cores from three northeastern Minnesota lakes [J]. Hydrobiologia, 1993, 271:87-95[13] Davison W Lishman J P, Hilton J. Formation of pyrite in freshwater sediments: Implications for C/S raios [J]. Geochim Cosmochim Acta, 1985,49:1615-1620[14] Nedwell D D. Benthic microbial activity in Antarctic coastal sediment at Signey Island, South Orkney Islands [J]. Estuar. Coast Shelf Sci, 1989, 28: 507-516[15] Berner R A. A new geochemical classfication of sedimentary environments [J]. J Sediment Petrol. 1981. 51:359-365[16] Ankley G T, Liber K. A field investigation of the relationship between zinc and acid volatile sulfide concentrations in freshwater sediments [J]. J Aquat Ecosyst Health, 1996, 5(4):255-264.[17] Madureira M J, Vale C, Simoes Goncalves M L. Effect of plants on sulphur geochemistry in the Tagus salt-marshes sediments [J]. Marine Chemistry, 1997,58(1-2):27-37,15 Sep[18] Viaroli P, Bartoli M. The Interactions Between Sediments and Water [C]. Baveno(Italy). 1996, 7. Int. Symp. 22-25[19] Lasorsa B. Comparison of sample handling and analytical methods for determination of acid volatile sulfides in sediment [J]. Marine Chemistry, 1996, 52(3-4):211-220[20] Calmano W. Chemical mobility and bioavailability of sediment-bound heavy metals influenced by salinity [J]. Hydrobiologia, 1992, 235/236:650-610[21] Allen H E. Analysis of acid-volatile sulfide(AVS)and simultaneously extracted metals(SEM)for the estimation of potential toxicity in aquatic sediments [J]. Environ Toxicol Chem, 1993, 12:1441-1448[22] Casas A M, Crecelius E A. Relationship between acid volatile sulfide and the toxicity of zinc、lead and copper in marine sediments [J]. Environ Toxicol Chem, 1994, 13:529-536[23] Di Toro D M., Dmahony J, Hansen D J, et al. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments [J]. Environ Sci Technol, 1992, 26: 91-101[24] Carlson A R. The role of acid-volatile sulfide in determining cadmium bioavailability and toxicity in freshwater sediments [J]. Environ Toxicol Chem, 1991, 10:1309-1316[25] Ankley G T. Predication the acute toxicity of copper in freshwater sediments: evalution of the role acid-volatile sulfide [J]. Environ Toxicol Chem, 1993, 12:315-323[26] Hansen D J, Berry W J, Mahony J D, et al. Acid volatile sulfide controls divalent metal toxicity in sediments normalizations [C]. Page 88 in Abstracts of the 11th Annual Meeting of the Society of Environmental Toxicology and Chemistry. 1990, Washington, DC.[27] Berry W J, Hansen D J, Mahmony J D, et al. The role of acid volatile ssulfide and controlling the toxicity of a metals mixture in sediment [C]. Page 91 in Abstract of the 21th Annual Meeting of the Society of Environmental Toxicology and Chemistry. November1991. Seattle, Washington.[28] Ankley G T, Phipps G L, Leonard E L, et al. Acid volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments [J]. Environ Toxicol Chem, 1991, 10: 1299-1307[29] Hansen D J, Berry W J, Mahony J D, et al. Predicting the toxicity of metal-contaminated field sediments using interstitial concentrations of metals and acid-volatile sulfide normalizations [J]. Environ Toxicol Chem, 1996, 15:2080-2094[30] Berry W J, Hansen D J, Mahony J D, et al. Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations [J]. Environ Toxicol Chem. 1996, 15: 2067-2079[31] Ankley G T. Evaluation of metal/acid volatile sulfide relationships in the prediction of metal bioaccumulation by benthic macroinvertebrates [J]. Environ Toxicol Chem, 1996, 15:2138-2146[32] Thomas P O, Daskalakis K D, Hyland J L, et al. Comparisons of sediment toxicity with predictions based on chemical guidelines [J]. Environ Toxicol Chem, 1998, 17:468-471[33] Chen Zheng, Lawrence M M. Assessment of sedimentary Cu availability: a comparison of biomimetic and AVS approaches [J]. Environ Sci Tech, 1998, 33:650-652[34] Chapman P M, Wang F, Janssen C, et al. Ecotoxicology of metals in aquatic sediments: Binding and release, bioavailability, risk assessment, and remediation [J]. Can J Fish Aquat Sci,/J. Can. Sci. Halieut. Aquat. 1998, 55(10):2221-2243[35] Gerard A, VAN DEN Berg, Gustav Loch J P, et al. Vertical distribution of acid-volatile sulfide and simultaneously extracted metals in a recent sedimentation area of the River Meuse in the Netherlands [J]. Environ Toxicol Chem, 1998, 17:758-763[36] Copper D C, Morse J W. Biogeochemical controls on trace metal cycling in anoxic marine sediments [J]. Environ Sci Tech, 1998, 32:327-330[37] Ankley G T, Di Toro D M, Hansen D J, et. al. Technical basis and proposal for deriving sediment quality criteria for metals [J]. Environ. Toxicol. Chem. 1996, 15(12):2056-2066[38] Jenne E A. In: Proceedings of the International Conference on Chemical in the Enviroment [M], ed. by Lester J. N. 1987, Lisbon.[39] U. S. Environmental Protection Agency. An SAB report: Review of the agencies approach for developing sediment criteria for five metals [M]. 1995. EPA-SAB-EPEC-95-020, Office of Water, Washington, DC.[40] Feiyue Wang, Peter M Chapman. Biological implications of sulfide in sediment-A review focusing on sediment toxicity [J]. Environ Toxicol Chem, 1999, 18(11): 2526-2532

    Di Toro D M, Mahony J D, Hansen D J. Toxicity of cadmium in sediments: the role of acid volatile sulfide [J]. Environ Toxicol Chem, 1990. 9: 1487-1502[2] Merian E. Metals and aquatic contamination workshop [J]. Environ Sci Technol, 1994, 28(3):144-146(A).[3] 胡炜,周永欣. 铜污染沉积物对大型蚤的毒性研究[J]. 水生生物学报,1995,19(2):82-86[4] 马德毅,王菊英,闫启仑,等. 酸溶硫化物对沉积物-孔隙水系统中二价有毒金属化学活动性的影响[J]. 海洋学报,1997,19(5):83-90[5] 陈淑梅,王菊英,马德毅,等. 酸溶硫化物与沉积物中重金属化学活性的关系[J]. 海洋环境科学,1999,18(3)[6] 文湘华,Herbert E Allen. 乐安江沉积物酸可挥发硫化物含量及溶解氧对重金属释放特性的影响[J]. 环境科学,1997,18(4):32-34[7] 梁涛,陶澍,林健枝,等. 沉积物中酸挥发硫对上覆水中重金属含量的影响[J]. 环境化学,1998, 17(3):211-217[8] Stumm W. Morgan. J J. Aquatic Chemistry [M]. New York: Wiley-Interscience, 1970[9] Matisoff G. Fisher J B, McCall P L. Kinetics of nutrient and metal release from decomposing lake sediments [J]. Geochim Cosmochim Acta,1981,45:2333-2347[10] Altschuler Z S, Schnepfe M M, Silber C C, et al. Sulfur diagenesis in Everglades peat and origin of pyrite in coal [J]. Science, 1983, 221:221-227[11] Nedwell D D, Abram J W. Bacterial sulfatereduction in relation to sulfur geochemistry in two contrasting areas of saltmarsh sediment [J]. Estuar Coast Mar Sci, 1978, 6:341-351[12] Leonard E N, Mattson V R, Benoit D A, et al. Seasonal variation of acid volatile sulfide concentration in sediment cores from three northeastern Minnesota lakes [J]. Hydrobiologia, 1993, 271:87-95[13] Davison W Lishman J P, Hilton J. Formation of pyrite in freshwater sediments: Implications for C/S raios [J]. Geochim Cosmochim Acta, 1985,49:1615-1620[14] Nedwell D D. Benthic microbial activity in Antarctic coastal sediment at Signey Island, South Orkney Islands [J]. Estuar. Coast Shelf Sci, 1989, 28: 507-516[15] Berner R A. A new geochemical classfication of sedimentary environments [J]. J Sediment Petrol. 1981. 51:359-365[16] Ankley G T, Liber K. A field investigation of the relationship between zinc and acid volatile sulfide concentrations in freshwater sediments [J]. J Aquat Ecosyst Health, 1996, 5(4):255-264.[17] Madureira M J, Vale C, Simoes Goncalves M L. Effect of plants on sulphur geochemistry in the Tagus salt-marshes sediments [J]. Marine Chemistry, 1997,58(1-2):27-37,15 Sep[18] Viaroli P, Bartoli M. The Interactions Between Sediments and Water [C]. Baveno(Italy). 1996, 7. Int. Symp. 22-25[19] Lasorsa B. Comparison of sample handling and analytical methods for determination of acid volatile sulfides in sediment [J]. Marine Chemistry, 1996, 52(3-4):211-220[20] Calmano W. Chemical mobility and bioavailability of sediment-bound heavy metals influenced by salinity [J]. Hydrobiologia, 1992, 235/236:650-610[21] Allen H E. Analysis of acid-volatile sulfide(AVS)and simultaneously extracted metals(SEM)for the estimation of potential toxicity in aquatic sediments [J]. Environ Toxicol Chem, 1993, 12:1441-1448[22] Casas A M, Crecelius E A. Relationship between acid volatile sulfide and the toxicity of zinc、lead and copper in marine sediments [J]. Environ Toxicol Chem, 1994, 13:529-536[23] Di Toro D M., Dmahony J, Hansen D J, et al. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments [J]. Environ Sci Technol, 1992, 26: 91-101[24] Carlson A R. The role of acid-volatile sulfide in determining cadmium bioavailability and toxicity in freshwater sediments [J]. Environ Toxicol Chem, 1991, 10:1309-1316[25] Ankley G T. Predication the acute toxicity of copper in freshwater sediments: evalution of the role acid-volatile sulfide [J]. Environ Toxicol Chem, 1993, 12:315-323[26] Hansen D J, Berry W J, Mahony J D, et al. Acid volatile sulfide controls divalent metal toxicity in sediments normalizations [C]. Page 88 in Abstracts of the 11th Annual Meeting of the Society of Environmental Toxicology and Chemistry. 1990, Washington, DC.[27] Berry W J, Hansen D J, Mahmony J D, et al. The role of acid volatile ssulfide and controlling the toxicity of a metals mixture in sediment [C]. Page 91 in Abstract of the 21th Annual Meeting of the Society of Environmental Toxicology and Chemistry. November1991. Seattle, Washington.[28] Ankley G T, Phipps G L, Leonard E L, et al. Acid volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments [J]. Environ Toxicol Chem, 1991, 10: 1299-1307[29] Hansen D J, Berry W J, Mahony J D, et al. Predicting the toxicity of metal-contaminated field sediments using interstitial concentrations of metals and acid-volatile sulfide normalizations [J]. Environ Toxicol Chem, 1996, 15:2080-2094[30] Berry W J, Hansen D J, Mahony J D, et al. Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations [J]. Environ Toxicol Chem. 1996, 15: 2067-2079[31] Ankley G T. Evaluation of metal/acid volatile sulfide relationships in the prediction of metal bioaccumulation by benthic macroinvertebrates [J]. Environ Toxicol Chem, 1996, 15:2138-2146[32] Thomas P O, Daskalakis K D, Hyland J L, et al. Comparisons of sediment toxicity with predictions based on chemical guidelines [J]. Environ Toxicol Chem, 1998, 17:468-471[33] Chen Zheng, Lawrence M M. Assessment of sedimentary Cu availability: a comparison of biomimetic and AVS approaches [J]. Environ Sci Tech, 1998, 33:650-652[34] Chapman P M, Wang F, Janssen C, et al. Ecotoxicology of metals in aquatic sediments: Binding and release, bioavailability, risk assessment, and remediation [J]. Can J Fish Aquat Sci,/J. Can. Sci. Halieut. Aquat. 1998, 55(10):2221-2243[35] Gerard A, VAN DEN Berg, Gustav Loch J P, et al. Vertical distribution of acid-volatile sulfide and simultaneously extracted metals in a recent sedimentation area of the River Meuse in the Netherlands [J]. Environ Toxicol Chem, 1998, 17:758-763[36] Copper D C, Morse J W. Biogeochemical controls on trace metal cycling in anoxic marine sediments [J]. Environ Sci Tech, 1998, 32:327-330[37] Ankley G T, Di Toro D M, Hansen D J, et. al. Technical basis and proposal for deriving sediment quality criteria for metals [J]. Environ. Toxicol. Chem. 1996, 15(12):2056-2066[38] Jenne E A. In: Proceedings of the International Conference on Chemical in the Enviroment [M], ed. by Lester J. N. 1987, Lisbon.[39] U. S. Environmental Protection Agency. An SAB report: Review of the agencies approach for developing sediment criteria for five metals [M]. 1995. EPA-SAB-EPEC-95-020, Office of Water, Washington, DC.[40] Feiyue Wang, Peter M Chapman. Biological implications of sulfide in sediment-A review focusing on sediment toxicity [J]. Environ Toxicol Chem, 1999, 18(11): 2526-2532
  • Related Articles

    [1]TANG Ni, TIAN Zheng-Zhi, LI Ya, WANG Bin, XU Shao-Qi, WANG Mei, CHEN Hu, QI Jin-Wen, WANG Shu-Yao, ZHAO Liu-Lan, CHEN De-Fang, LI Zhi-Qiong. CLONING AND TISSUE DISTRIBUTION OF ADIPONECTIN RECEPTOR AND IT’S RESPONSE ON FASTING/REFEEDING IN SIBERIAN STURGEON (ACIPENSER BAERI)[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(3): 523-529. DOI: 10.7541/2021.2020.057
    [4]Zhang Fuying, Johnson R. D. EFFECT OF SEDIMENT CONTAMINATION ON FISH IN LOWER FOX RIVER AND LOWER GREEN BAY, WISCONSIN, U.S.A[J]. ACTA HYDROBIOLOGICA SINICA, 1997, 21(3): 248-253.
    [5]Gui Jianfang, Zhou Tun. FURTHER IMPROVEMENT OF THE BRDU-HOECHST-GIEMSA METHOD AND STUDIES OF BRDU-REPLICATION BAND KARYOTYPES OF MYLOPHARYNGODON PICEUS AND CTENOPHARYNGODON IDELLUS[J]. ACTA HYDROBIOLOGICA SINICA, 1986, 10(2): 157-161.
    [6]Wu Weixin, Lin Linan, Xu Dayi. A TETRAPLOIDY HYBRID CROSSING RED CARP CYPRINUS CARPIO L. WITH GRASS CARP CTENOPHARYNGODEN IDELLA CUV. ET VAL.[J]. ACTA HYDROBIOLOGICA SINICA, 1981, 7(3): 433-436.
    [7]Liu Yun, Chen Shuqun, Wang Yixian. CYTOLOGICAL STUDY ON THE FERTILIZATION OF THE EGG OF MYLOPHARYNGODON PICEUS WITH THE SPERM OF MEGALOBRAMA TERMINALIS[J]. ACTA HYDROBIOLOGICA SINICA, 1981, 7(3): 329-340.
    [8]Lin Ding, Mao Yongqing, Cai Fasheng. EXPERIMENTS ON THE PROTEIN REQUIREMENTS OF GRASS CARP(CTENOPHARYNGODON IDELLUS (C. V.))JUVENILES[J]. ACTA HYDROBIOLOGICA SINICA, 1980, 4(2): 207-212.
    [9]STUDIES ON THE GILL DISEASES OF THE GRASS CARP (CTENOPHARYNGODON IDELLULS) Ⅰ.ISOLATION OF A MYXOBACTERIAL PATHOGEN[J]. ACTA HYDROBIOLOGICA SINICA, 1975, 0(3): 315-334.
    [10]LIAO HSIANG-HUA, SHIH LEU-CHANG. CONTRIBUTION TO THE BIOLOGY AND CONTROL OF BOTHRIOCEPHALUS GOWKONGENSIS YEH,A TAPEWORM PARASITIC IN THE YOUNG GRASS CARP(CTENOPHAPYNGODON IDELLUS C.AND V.)[J]. ACTA HYDROBIOLOGICA SINICA, 1956, 0(2): 129-185.

Catalog

    Article views (908) PDF downloads (615) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return