Citation: | XIA Jian-rong, GAO Kun-shan. EFFECTS OF HIGH CO2 CONCENTRATION ON GROWTH AND PHOTOSYNTHESIS OF SPIRULINA MAXIMA[J]. ACTA HYDROBIOLOGICA SINICA, 2001, 25(5): 474-480. |
[1] |
Raven JA. Photosynthetic and non-photosynthetic roles of carbonic anhydrase in algae and cyanobacteria [J]. Phycologia, 1995,34(2):93-101[2] Nobutaka H, Toshifumi T, Yoshiharu F et al. Tolerance of microalgae to high CO2 and high temperature [J]. Phytochemistry, 1992, 31(10):3345-3348[3] Gao K, Aruga Y, Asada K, et al. Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations [J]. Journal of Applied Phycology, 1991, 3:355-362[4] Gao, K. Y. Aruga, K. Asada et al. Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp and G. chilensis [J]. Journal of Applied phycology. 1993,5:563-571[5] Raven JA. Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature[J]. Plant Cell Environment. 1991, 14:779-794[6] 林惠民,盐泽螺旋藻与其它螺旋藻的比较研究[J]. 水生生物学报,1991,15(1):27-34[7] Beck EW, Venkataraman LV. Production and utilization of blue-green alga Spirluina in india[M] [8] Orio Ciferri. Spirluina, the edible microorganism[J]. Microbiological Reviews, 1983, 47(4):63-80[9] Vonshak A, Richmond A. Mass production of the blue-green alga Spirulina: an overview[J]. Biomass, 1984, 4:105-125[10] Vonshak A, Boussiba S, Abellovich A, et al. Production of Spirluina biomass: maintenance of monoalgal culture outdoors[J]. Biotechnology and Bioengineering, 1983, 25:341-349[11] 李夜光,胡鸿钧. 螺旋藻培养液吸收CO2特性研究[J]. 武汉植物学研究,1996,14(3):253-260[12] Mackinney G. Absorption of light by chlorophyll solutions [J]. J Biol Chem 1941, 140:315-317[13] Kaplan A. Photoinhibition in Spirulina platensis: Response of photosynthesis and HCO-3 uptake capablility to CO2-depleted condition[J]. J Exp Bot, 1981,32:669-677[14] Pierce J, Omata T. Uptake and utilization of inorganic carbon by cyanobacteria[J]. Photosynthesis Research,1988,16:141-154[15] Volokita M, Zenvirth D, Kaplan A et al. Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaena variabilis[J]. Plant physiol,1984,76:599-602[16] George SE, Anthony GM, David TC. High affinity transport of CO2 in the cyanobacterium Synechococcus UTEX 625[J]. Plant Physiol, 1991, 97:943-953[17] Coleman JR, The molecular and biochemical analyses of CO2 concentrating mechanisms in cyanobacteria and microalgae[J]. Plant Cell Environment, 1991, 14:861-867[18] Raven JA, Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature[J]. Plant Cell Environment 1991,14:779-794
Raven JA. Photosynthetic and non-photosynthetic roles of carbonic anhydrase in algae and cyanobacteria [J]. Phycologia, 1995,34(2):93-101[2] Nobutaka H, Toshifumi T, Yoshiharu F et al. Tolerance of microalgae to high CO2 and high temperature [J]. Phytochemistry, 1992, 31(10):3345-3348[3] Gao K, Aruga Y, Asada K, et al. Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations [J]. Journal of Applied Phycology, 1991, 3:355-362[4] Gao, K. Y. Aruga, K. Asada et al. Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp and G. chilensis [J]. Journal of Applied phycology. 1993,5:563-571[5] Raven JA. Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature[J]. Plant Cell Environment. 1991, 14:779-794[6] 林惠民,盐泽螺旋藻与其它螺旋藻的比较研究[J]. 水生生物学报,1991,15(1):27-34[7] Beck EW, Venkataraman LV. Production and utilization of blue-green alga Spirluina in india[M] [8] Orio Ciferri. Spirluina, the edible microorganism[J]. Microbiological Reviews, 1983, 47(4):63-80[9] Vonshak A, Richmond A. Mass production of the blue-green alga Spirulina: an overview[J]. Biomass, 1984, 4:105-125[10] Vonshak A, Boussiba S, Abellovich A, et al. Production of Spirluina biomass: maintenance of monoalgal culture outdoors[J]. Biotechnology and Bioengineering, 1983, 25:341-349[11] 李夜光,胡鸿钧. 螺旋藻培养液吸收CO2特性研究[J]. 武汉植物学研究,1996,14(3):253-260[12] Mackinney G. Absorption of light by chlorophyll solutions [J]. J Biol Chem 1941, 140:315-317[13] Kaplan A. Photoinhibition in Spirulina platensis: Response of photosynthesis and HCO-3 uptake capablility to CO2-depleted condition[J]. J Exp Bot, 1981,32:669-677[14] Pierce J, Omata T. Uptake and utilization of inorganic carbon by cyanobacteria[J]. Photosynthesis Research,1988,16:141-154[15] Volokita M, Zenvirth D, Kaplan A et al. Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaena variabilis[J]. Plant physiol,1984,76:599-602[16] George SE, Anthony GM, David TC. High affinity transport of CO2 in the cyanobacterium Synechococcus UTEX 625[J]. Plant Physiol, 1991, 97:943-953[17] Coleman JR, The molecular and biochemical analyses of CO2 concentrating mechanisms in cyanobacteria and microalgae[J]. Plant Cell Environment, 1991, 14:861-867[18] Raven JA, Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature[J]. Plant Cell Environment 1991,14:779-794
|
1. |
王纪如,王旋,刘成栋,周慧慧,麦康森,何艮. 饲料中碳水化合物类型对大菱鲆幼鱼生长性能以及糖脂代谢的影响. 中国海洋大学学报(自然科学版). 2025(03): 133-144 .
![]() | |
2. |
常丹萍,刘观忠,杨博文,赵国先,张东远,冯志华,李茜,张海华,王珏. 玉米-杂粕型饲粮中添加复合纤维素酶对蛋鸡生产性能、肝脏糖代谢、内源消化酶活性和肠道中葡萄糖转运载体基因表达的影响. 动物营养学报. 2024(02): 935-945 .
![]() | |
3. |
宋淑青,张月星,马强,徐后国,卫育良,梁萌青. 饲料中淀粉和糊精对红鳍东方鲀生长和低氧耐受性的影响. 渔业科学进展. 2023(05): 21-32 .
![]() | |
4. |
赵楠楠,崔彦婷,王忠凯,王聪,张志豪,邓之通,赵瑞阳,孙金凤,王仁杰,李玉全. 投喂频率对凡纳滨对虾(Litopenaeus vannamei)PI3K信号通路及糖代谢相关酶基因表达的影响. 海洋与湖沼. 2022(05): 1189-1196 .
![]() | |
5. |
瞿子惠,刘丽宅,梁浩,赵晓东,李柏浩,闫晓刚,王丹,吴莉芳. 饲料碳水化合物水平对鱼类生长、免疫及糖代谢酶活性的研究进展. 饲料研究. 2022(20): 137-141 .
![]() | |
6. |
任萍,梁旭方,方刘,何珊,肖倩倩,史登勇. 鳜对葡萄糖和糊精利用差异比较研究. 水生生物学报. 2020(02): 364-371 .
![]() | |
7. |
瞿子惠,吴莉芳,周锴,杨兰,祖岫杰,段晶,王婧瑶. 饲料碳水化合物水平对洛氏鱥消化酶和糖代谢酶活性的影响. 西北农林科技大学学报(自然科学版). 2019(02): 25-32 .
![]() | |
8. |
吴桐强,胡毅,钟蕾,陈团,陈云飞,曹晓莉,戴振炎. 高碳水化合物水平膨化饲料对大规格草鱼糖代谢相关指标的影响. 饲料工业. 2019(06): 44-49 .
![]() | |
9. |
鲁耀鹏,张秀霞,李军涛,王冬梅,郑佩华,汪蕾,冼健安,王安利. 饲料糖源对红螯螯虾幼虾生长、肌肉组成、消化酶活力和免疫力的影响. 饲料研究. 2019(10): 48-52 .
![]() | |
10. |
范泽,王安琪,孙金辉,程镇燕,白东清,乔秀亭,张宝龙,翟胜利. 不同木薯变性淀粉对鲤鱼生长及糖代谢的影响. 水产科学. 2018(01): 1-7 .
![]() | |
11. |
杨品贤,贾高旺,夏辉,齐国山,李雪鹤,路晶晶,张宇,郭冉. 投喂频率和糖源组成对凡纳滨对虾糖代谢的影响. 大连海洋大学学报. 2018(05): 583-588 .
![]() | |
12. |
马红娜,王猛强,陆游,袁野,孙蓬,周歧存. 碳水化合物种类和水平对大黄鱼生长性能、血清生化指标、肝脏糖代谢相关酶活性及肝糖原含量的影响. 动物营养学报. 2017(03): 824-835 .
![]() | |
13. |
郝甜甜,王丽丽,王际英,李宝山,马晶晶,王世信,张燕,谭青,张利民. 维生素C对急性低温胁迫下珍珠龙胆石斑鱼HPI轴及生理生化的调控. 水产学报. 2017(03): 428-437 .
![]() | |
14. |
黄岩,李建,王学习,王琨,叶继丹. 饲料中不同蛋白质和淀粉水平对斜带石斑鱼生长性能和肝脏相关代谢酶活性的影响. 水产学报. 2017(05): 746-756 .
![]() | |
15. |
李弋,邱红,侯迎梅,陆游,申屠基康,周歧存. 腹腔注射葡萄糖对大黄鱼血液生化指标及糖代谢关键酶表达量的影响. 水产学报. 2017(05): 723-733 .
![]() | |
16. |
马红娜,周飘苹,陆游,袁野,侯迎梅,孙蓬,丁立云,周歧存. 不同脂肪和葡萄糖水平对大黄鱼生长性能、肝脏糖酵解和糖异生关键酶活性的影响. 动物营养学报. 2016(10): 3110-3122 .
![]() | |
17. |
董兰芳,张琴,程光平,许明珠,童潼,熊向英. 不同糖源饲料对卵形鲳鲹(Trachinotus ovatus)生长、体组成、血糖水平和肝脏糖酵解酶活力的影响. 渔业科学进展. 2016(05): 22-29 .
![]() | |
18. |
房子恒,田相利,董双林. 低盐驯化对半滑舌鳎幼鱼生长、渗透生理及糖代谢酶活力影响的研究. 中国海洋大学学报(自然科学版). 2016(08): 19-27 .
![]() | |
19. |
高妍,李静辉,方珍珍,程镇燕,乔秀亭,白东清. 饲料中糊精水平对乌克兰鳞鲤生长及糖代谢的影响. 动物营养学报. 2015(05): 1401-1410 .
![]() | |
20. |
王猛强,周飘苹,黄文文,周歧存. 不同蛋白质水平下葡萄糖添加水平对大黄鱼生长性能、糖酵解和糖异生关键酶活性的影响. 动物营养学报. 2015(08): 2431-2442 .
![]() | |
21. |
王猛强,黄文文,周飘苹,金敏,邱红,周歧存. 不同蛋白质和小麦淀粉水平对大黄鱼生长性能、糖酵解和糖异生关键酶活性的影响. 水产学报. 2015(11): 1690-1701 .
![]() | |
22. |
迟淑艳,王学武,谭北平,杨奇慧,董晓慧,刘泓宇,章双. 饲料蛋氨酸对斜带石斑鱼生长性能、抗氧化及糖异生相关酶活性的影响. 水生生物学报. 2015(04): 645-652 .
![]() | |
23. |
杨丽萍,秦超彬,郑文佳,卢荣华,聂国兴. 鱼类的葡萄糖感知与糖代谢调节研究进展. 水产学报. 2014(09): 1639-1649 .
![]() | |
24. |
王际英,李培玉,宋志东,臧元奇,李宝山,乔洪金,柳旭东,马晶晶,张利民. 饲料中添加丝兰提取物对大菱鲆幼鱼生长和生理及水环境的影响. 水生生物学报. 2014(06): 1117-1126 .
![]() | |
25. |
唐小红,樊佳佳,于凌云,白俊杰. 鱼类糖酵解关键酶的研究进展. 中国农学通报. 2014(02): 69-75 .
![]() |