Citation: | KONG Ren-qiu, XU Xu-dong, WANG Ye-qin. MOLECULAR GENETICS OF CYANOBACTERIA;THE DECADE AFTER LAST REVIEW[J]. ACTA HYDROBIOLOGICA SINICA, 2001, 25(6): 620-630. |
[1] |
王业勤,徐旭东,黎尚豪. 蓝藻分子遗传学十年研究进展[J]. 水生生物学报,1991,15:356-367[2] Bryant DA. Molecular biology of cyanobacteria [C]. Dordrecht/Boston/London:Kluwer Academic Publishers.1994[3] Kaneko T,Sato S,Kotani H,et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. Ⅱ. Sequence determination of the entire genome and assignment of potential protein-coding regions [J]. DNA Res,1996,3:109-136[4] Brahamsha B. A genetic manipulation system for oceanic cyanobacteria of the genus Synechococcus [J]. Appl Environ Microbiol,1996,62:1747-1751[5] Wolk C P. Heterocyst formation in Anabaena [C].Brun Y V and Shimkets L J. Prokaryotic Development. Washington,DC:American Society for Microbiology,2000.83-104[6] Meeks J C. Symbiosis between nitrogen-fixing cyanobacteria and plants [J]. BioScience,1998,48:266-276[7] Cohen M F,Wallis J G,Campbell E L,et al.Transposon mutagensis of Nostoc sp.strain ATCC 29133,a cyanobacterium with multiple cellular differentiation alternatives. Microbiology,1994,140(Pt12):7324-7329[8] Carrasco C,Buettner JA,Golden JW. Programed DNA rearrangement of a cyanobacterial hupL gene in heterocysts [J]. Proc. Natl. Acad. Sci. USA,1995,92:791-5[9] Xu MQ,Kathe SD,Goodrich-Blair H,et al. Bacterial origin of a chloroplast intron:conserved self-splicing group I introns in cyanobacteria [J]. Science,1990,250:1566-70[10] Rudi K,Jakobsen KS.Complex evolutionary patterns of tRNAleuUAA group I introns in cyanobacterial radiation[J].J Bacteriol,1999,181:3445-51[11] Ikawa Y,Naito D,Aono N,et al. A conserved motif in group IC3 introns is a new class of GNRA receptor [J].Nucleic Acids Res,1999,27:1859-65[12] Zaug AJ,MaEvoy MM,Cech TR. Self-splicing of the group I intron from Anabaena pre-tRNA:requirement for base-pair of the exons in the anticodon stem [J]. Biochemistry,1993,32:7946-53[13] Paquin B,Kathe SD,Nierzwicki-Bauer SA and Shub DA. Origin and evolution of group I introns in cyanobacterial tRNA genes [J].J Bacteriol,1997,179:6798-6806[14] Paquin B,Heinfling A,Shub DA.Sporadic distribution of tRNAArgCCUintrons among α-purple bacteria:evidence for horizontal transmission and transposition of a group I intron [J]. J Bacteriol,1999,181:1049-53[15] Ferat J.-L.,Michel F.Group Ⅱ self-splicing introns in bacteria [J].Nature,1993,364:358-61[16] Gorbalenya AE. Non-canonical inteins [J]. Nucleic Acids Res,1998,26:1741-8[17] Liu XQ,Hu Z.A DnaB intein in Rhodothermus marinus:indication of recent intein homing across remotely related organisms [J].Proc Natl Acad Sci USA,1997,94:7851-6[18] Mathys S,Evans Jr TC,Chute IC,et al.Characterization of a self-splicing miniintein and its conversion into autocatalytic N-and C-terminal cleavage elements:facile production of protein building blocks for protein ligation [J]. Gene,1999,231:1-13[19] Wu H,Hu Z,Liu XQ. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803 [J]. Proc Natl Acad Sci USA,1998,95:9226-31[20] Brahamsha B,Haselkorn R.Identification of multiple RNA polymerase sigma factor homologs in the cyanobacterium Anabaena sp. Strain 7120:Cloning,expression,and inactivation of the sigB and sigC genes [J].J Bacteriol,1991,174:7273-7282[21] Gruber T M,Bryant D A. Characterization of the alternative σ-factors SigD and SigE in Synechococcus sp. Strain PCC 7002. SigE is implicated in transcription of post-exponential-phase-specific genes [J]. Arch Microbiol,1998,169:211-219[22] Tsinoremas N F,Ishiura M,Kondo T, et al. A sigma factor that modifies the circadian expression of a subset of genes in cyanobacteria [J]. EMBO J,1996,15:2488-2495[23] Bhaya D,Watanabe N,Ogawa T,et al. The role of an alternative sigma factor in motility and pilus formation in the cyanobacterium Synechocystis sp. strain PCC6803 [J]. Proc Natl Acad Sci USA,1999,96:3188-3193[24] Campbell E L,Brahamsha B,Meeks J C.Mutation of an alternative sigma factor in the cyanobacterium Nostoc punctiforme results in increased infection of its symbiotic plant partner,Anthoceros punctatus [J].J Bacteriol,1998,180:4938-4941[25] Goto-Seki A,Shirokane M,Masuda S,et al. Specificity crosstalk among group 1 and group 2 sigma factors in the cyanobacterium Synechococcus sp. PCC7942:in vitro specificity and a phylogenetic analysis [J]. Mol Microbiol,1999,34:473-484[26] Muro-Pastor A M,Valladares A,Flores E,et al. The hetC gene is a direct target of the NtcA transcriptional regulator in cyanobacteial heterocyst development [J]. J Bacteriol,1999,181:6664-6669[27] Frias J E,Flores E,Herrero A.Activation of the Anabaena nir operon promoter requires both NtcA(CAP family)and NtcB(LysR family)transcription factors [J]. Mol Microbiol,2000,38:613-625[28] Zhang C C. Bacterial signaling involving eukaryotic-type protein kinases [J]. Mol Microbiol,1996,20:9-15[29] Kehoe D M,Grossman A R. Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors [J]. Science,1996,273:1409-1412[30] Kehoe D M,Grossman A R. New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system [J]. J Bacteriol,1997,179:3914-3921[31] Yeh K C,Wu S H,Murphy J T,et al. A cyanobacterial phytochrome two-component light sensory system [J]. Science,1997,277:1505-1508[32] Yoshihara S,Suzuki F,Fujita H,et al. Novel putative photoreceptor and regulatory genes required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC6803 [J]. Plant Cell Physiol,2000,41:1299-1304[33] Kondo T and Ishiura M. Circadian rhythms of cyanobacteria:monitoring the biological clocks of individual colonies by bioluminescense [J]. J Bacteriol,1994,176:1881-5[34] Ishiura M,Kutsuna S,Aoki S,et al. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria [J]. Science,1998,281:1519-23[35] Iwasaki H,Taniguchi Y,Ishiura M,et al. Physical interactions among circadian clock proteins,KaiA,KaiB,KaiC,in cyanobacteria [J].EMBO J,1999,18:1137-45[36] Iwasaki H,William SB,Kitayama Y,et al. A KaiC-interacting sensory histidine kinase,SasA,necessary to sustain robust circadian oscillation in cyanobacteria [J]. Cell,2000,101:223-233[37] Schmitz O,Katayama M,Williams SB et al. CikA,a bacteriophytochrome that resets the cyanobacterial circadian clock [J]. Science,2000,289:765-768[38] Liu Y,Tsinoremas NF,Johnson CH,et al. Circadian orchestration of gene expression in cyanobacteria [J]. Genes Dev,1995,9:1469-78[39] Buikema WJ,Haselkorn R.Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions [J]. Proc Natl Acad Sci USA,2001,98:2729-34[40] Zhou R,Wei X,Jiang N,Li H,Dong Y,Hsi KL and Zhao J.Evidence that HetR protein is an unusual serine-type protease [J]. Proc Natl Acad Sci USA,1998,95:4959-63[41] Liang J,Scappino L,Haselkorn R. The patA gene product,which contains a region similar to CheY of Escherichia coli,controls heterocyst pattern formation in the cyanobacterium Anabaena 7120 [J]. Proc Natl Acad Sci USA,1992,89:5655-5659[42] Xu X,Wolk CP. Role for hetC in the transition to a nondividing state during heterocyst differentiation in Anabaena sp[J]. J Bacteriol,2001,183:393-396[43] Yoon HS and Golden JW. Heterocyst pattern formation controlled by a diffusible peptide [J]. Science,1998,282:935-938[44] Cai Y,Wolk CP. Anabaena sp. strain PCC7120 responds to nitrogen deprivation with a cascade-like sequence of transcriptional activations [J].J Bacteriol,1997,179:267-271[45] Zhu J,Kong R Wolk CP. Regulation of hepA of Anabaena sp. strain by elements 5' from the gene and by hepK [J]. J Bacteriol,1998,180:4233-4242[46] Fiedler G,Arnold M,Hannus S, et al. The DevBCA exporter is essential for envelope formation in heterocysts of the cyanobacterium Anabaena sp. strain PCC7120 [J]. Mol Microbiol,1998,27:1193-1202[47] Xu X,Khudyakov I,Wolk CP. Lipopolysaccharide dependence of cyanophage sensitivity and aerobic nitrogen fixation in Anabaena sp. strain PCC7120 [J]. J Bacteriol,1997,179:2884-91[48] Westphal S,Heins L,Jurgen S,et al. Vipp1 deletion mutant of Synechocystis:A connection between bacterial phage shock and thylakoid biogenesis [J] ? Proc Natl Acad Sci USA,2001,98:4243-4248[49] Tillett D,Dittmann E,Erhard M,et al. Structural organization of microcystin biosynthesis in Microcystis aeroginosa PCC7806:an integrated peptide-polyketide synthetase system [J].Chem Biol,2000.7:753-764
王业勤,徐旭东,黎尚豪. 蓝藻分子遗传学十年研究进展[J]. 水生生物学报,1991,15:356-367[2] Bryant DA. Molecular biology of cyanobacteria [C]. Dordrecht/Boston/London:Kluwer Academic Publishers.1994[3] Kaneko T,Sato S,Kotani H,et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. Ⅱ. Sequence determination of the entire genome and assignment of potential protein-coding regions [J]. DNA Res,1996,3:109-136[4] Brahamsha B. A genetic manipulation system for oceanic cyanobacteria of the genus Synechococcus [J]. Appl Environ Microbiol,1996,62:1747-1751[5] Wolk C P. Heterocyst formation in Anabaena [C].Brun Y V and Shimkets L J. Prokaryotic Development. Washington,DC:American Society for Microbiology,2000.83-104[6] Meeks J C. Symbiosis between nitrogen-fixing cyanobacteria and plants [J]. BioScience,1998,48:266-276[7] Cohen M F,Wallis J G,Campbell E L,et al.Transposon mutagensis of Nostoc sp.strain ATCC 29133,a cyanobacterium with multiple cellular differentiation alternatives. Microbiology,1994,140(Pt12):7324-7329[8] Carrasco C,Buettner JA,Golden JW. Programed DNA rearrangement of a cyanobacterial hupL gene in heterocysts [J]. Proc. Natl. Acad. Sci. USA,1995,92:791-5[9] Xu MQ,Kathe SD,Goodrich-Blair H,et al. Bacterial origin of a chloroplast intron:conserved self-splicing group I introns in cyanobacteria [J]. Science,1990,250:1566-70[10] Rudi K,Jakobsen KS.Complex evolutionary patterns of tRNAleuUAA group I introns in cyanobacterial radiation[J].J Bacteriol,1999,181:3445-51[11] Ikawa Y,Naito D,Aono N,et al. A conserved motif in group IC3 introns is a new class of GNRA receptor [J].Nucleic Acids Res,1999,27:1859-65[12] Zaug AJ,MaEvoy MM,Cech TR. Self-splicing of the group I intron from Anabaena pre-tRNA:requirement for base-pair of the exons in the anticodon stem [J]. Biochemistry,1993,32:7946-53[13] Paquin B,Kathe SD,Nierzwicki-Bauer SA and Shub DA. Origin and evolution of group I introns in cyanobacterial tRNA genes [J].J Bacteriol,1997,179:6798-6806[14] Paquin B,Heinfling A,Shub DA.Sporadic distribution of tRNAArgCCUintrons among α-purple bacteria:evidence for horizontal transmission and transposition of a group I intron [J]. J Bacteriol,1999,181:1049-53[15] Ferat J.-L.,Michel F.Group Ⅱ self-splicing introns in bacteria [J].Nature,1993,364:358-61[16] Gorbalenya AE. Non-canonical inteins [J]. Nucleic Acids Res,1998,26:1741-8[17] Liu XQ,Hu Z.A DnaB intein in Rhodothermus marinus:indication of recent intein homing across remotely related organisms [J].Proc Natl Acad Sci USA,1997,94:7851-6[18] Mathys S,Evans Jr TC,Chute IC,et al.Characterization of a self-splicing miniintein and its conversion into autocatalytic N-and C-terminal cleavage elements:facile production of protein building blocks for protein ligation [J]. Gene,1999,231:1-13[19] Wu H,Hu Z,Liu XQ. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803 [J]. Proc Natl Acad Sci USA,1998,95:9226-31[20] Brahamsha B,Haselkorn R.Identification of multiple RNA polymerase sigma factor homologs in the cyanobacterium Anabaena sp. Strain 7120:Cloning,expression,and inactivation of the sigB and sigC genes [J].J Bacteriol,1991,174:7273-7282[21] Gruber T M,Bryant D A. Characterization of the alternative σ-factors SigD and SigE in Synechococcus sp. Strain PCC 7002. SigE is implicated in transcription of post-exponential-phase-specific genes [J]. Arch Microbiol,1998,169:211-219[22] Tsinoremas N F,Ishiura M,Kondo T, et al. A sigma factor that modifies the circadian expression of a subset of genes in cyanobacteria [J]. EMBO J,1996,15:2488-2495[23] Bhaya D,Watanabe N,Ogawa T,et al. The role of an alternative sigma factor in motility and pilus formation in the cyanobacterium Synechocystis sp. strain PCC6803 [J]. Proc Natl Acad Sci USA,1999,96:3188-3193[24] Campbell E L,Brahamsha B,Meeks J C.Mutation of an alternative sigma factor in the cyanobacterium Nostoc punctiforme results in increased infection of its symbiotic plant partner,Anthoceros punctatus [J].J Bacteriol,1998,180:4938-4941[25] Goto-Seki A,Shirokane M,Masuda S,et al. Specificity crosstalk among group 1 and group 2 sigma factors in the cyanobacterium Synechococcus sp. PCC7942:in vitro specificity and a phylogenetic analysis [J]. Mol Microbiol,1999,34:473-484[26] Muro-Pastor A M,Valladares A,Flores E,et al. The hetC gene is a direct target of the NtcA transcriptional regulator in cyanobacteial heterocyst development [J]. J Bacteriol,1999,181:6664-6669[27] Frias J E,Flores E,Herrero A.Activation of the Anabaena nir operon promoter requires both NtcA(CAP family)and NtcB(LysR family)transcription factors [J]. Mol Microbiol,2000,38:613-625[28] Zhang C C. Bacterial signaling involving eukaryotic-type protein kinases [J]. Mol Microbiol,1996,20:9-15[29] Kehoe D M,Grossman A R. Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors [J]. Science,1996,273:1409-1412[30] Kehoe D M,Grossman A R. New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system [J]. J Bacteriol,1997,179:3914-3921[31] Yeh K C,Wu S H,Murphy J T,et al. A cyanobacterial phytochrome two-component light sensory system [J]. Science,1997,277:1505-1508[32] Yoshihara S,Suzuki F,Fujita H,et al. Novel putative photoreceptor and regulatory genes required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC6803 [J]. Plant Cell Physiol,2000,41:1299-1304[33] Kondo T and Ishiura M. Circadian rhythms of cyanobacteria:monitoring the biological clocks of individual colonies by bioluminescense [J]. J Bacteriol,1994,176:1881-5[34] Ishiura M,Kutsuna S,Aoki S,et al. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria [J]. Science,1998,281:1519-23[35] Iwasaki H,Taniguchi Y,Ishiura M,et al. Physical interactions among circadian clock proteins,KaiA,KaiB,KaiC,in cyanobacteria [J].EMBO J,1999,18:1137-45[36] Iwasaki H,William SB,Kitayama Y,et al. A KaiC-interacting sensory histidine kinase,SasA,necessary to sustain robust circadian oscillation in cyanobacteria [J]. Cell,2000,101:223-233[37] Schmitz O,Katayama M,Williams SB et al. CikA,a bacteriophytochrome that resets the cyanobacterial circadian clock [J]. Science,2000,289:765-768[38] Liu Y,Tsinoremas NF,Johnson CH,et al. Circadian orchestration of gene expression in cyanobacteria [J]. Genes Dev,1995,9:1469-78[39] Buikema WJ,Haselkorn R.Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions [J]. Proc Natl Acad Sci USA,2001,98:2729-34[40] Zhou R,Wei X,Jiang N,Li H,Dong Y,Hsi KL and Zhao J.Evidence that HetR protein is an unusual serine-type protease [J]. Proc Natl Acad Sci USA,1998,95:4959-63[41] Liang J,Scappino L,Haselkorn R. The patA gene product,which contains a region similar to CheY of Escherichia coli,controls heterocyst pattern formation in the cyanobacterium Anabaena 7120 [J]. Proc Natl Acad Sci USA,1992,89:5655-5659[42] Xu X,Wolk CP. Role for hetC in the transition to a nondividing state during heterocyst differentiation in Anabaena sp[J]. J Bacteriol,2001,183:393-396[43] Yoon HS and Golden JW. Heterocyst pattern formation controlled by a diffusible peptide [J]. Science,1998,282:935-938[44] Cai Y,Wolk CP. Anabaena sp. strain PCC7120 responds to nitrogen deprivation with a cascade-like sequence of transcriptional activations [J].J Bacteriol,1997,179:267-271[45] Zhu J,Kong R Wolk CP. Regulation of hepA of Anabaena sp. strain by elements 5' from the gene and by hepK [J]. J Bacteriol,1998,180:4233-4242[46] Fiedler G,Arnold M,Hannus S, et al. The DevBCA exporter is essential for envelope formation in heterocysts of the cyanobacterium Anabaena sp. strain PCC7120 [J]. Mol Microbiol,1998,27:1193-1202[47] Xu X,Khudyakov I,Wolk CP. Lipopolysaccharide dependence of cyanophage sensitivity and aerobic nitrogen fixation in Anabaena sp. strain PCC7120 [J]. J Bacteriol,1997,179:2884-91[48] Westphal S,Heins L,Jurgen S,et al. Vipp1 deletion mutant of Synechocystis:A connection between bacterial phage shock and thylakoid biogenesis [J] ? Proc Natl Acad Sci USA,2001,98:4243-4248[49] Tillett D,Dittmann E,Erhard M,et al. Structural organization of microcystin biosynthesis in Microcystis aeroginosa PCC7806:an integrated peptide-polyketide synthetase system [J].Chem Biol,2000.7:753-764
|