REPRODUCTION TIME AND MAIN INFLUENCING FACTORS OF SCHIZOTHORAX PRENANTI IN THE MIDDLE REACHES OF THE DADU RIVER
-
摘要:
为了解天然条件下齐口裂腹鱼(Schizothorax prenanti)的繁殖规律, 文章采用耳石日轮技术对2012—2014年采自大渡河中游的齐口裂腹鱼仔稚鱼样本进行了出膜期推算, 并在此基础上结合胚胎发育积温和水文因子等分析了亲鱼产卵时间及其影响因素。结果表明: 在人工养殖条件下的齐口裂腹鱼胚胎发育积温是1467.36℃·h。采集的仔稚鱼出膜时间为11月30日至次年的4月19日, 并由此推算出其亲本产卵时间为11月8日至次年的4月11日, 繁殖高峰期为1月上旬至3月中旬。相关性分析发现, 亲鱼的繁殖活动与流量、水温、气温、降水量、含沙量和水位呈显著负相关(P<0.05), 亲鱼产卵时间和仔鱼出膜时间主要集中于流量小、水温低、水位小、降水少和含沙量小的11月至次年4月的枯水期时段。频繁或集中的流量波动, 能更好地刺激齐口裂腹鱼进行产卵活动。研究结果为齐口裂腹鱼野生种群繁殖规律研究及其资源保护措施制定等提供基础数据。
Abstract:In order to understand the natural spawning pattern of Schizothorax prenanti, we calculated the hatching period of S. prenanti larvae and juveniles collected from the middle reaches of the Dadu River from 2012 to 2014. The spawning period of the parent fish was determined by integrating the accumulated temperature required for fertilized egg development. Additionally, we conducted an analysis of the correlation between hydrological factors and their spawning activity. The results showed that the incubation accumulated temperature for fertilized eggs of S. prenanti under artificial breeding conditions was 1467.36℃·h. The hatching time for collected juvenile fish spanned from November 30th to April 19th of the following year, and the estimated spawning time was from November 8th to April 11th of the following year. The peak spawning period occurred from early January to mid-March. Correlation analysis revealed a negative association between the reproductive activities of parent fish and various factors, including flow, water temperature, air temperature, precipitation, sediment concentration and water level (P<0.05). The spawning time of parent fish and the hatching time of larvae predominantly coincided with the dry season from November to April characterized by low flow, water temperature, water level, precipitation, and sediment concentration. Notably, frequent or more concentrated flow fluctuations appeared to better stimulate the spawning activities of S. prenanti. These results provide basic data for comprehending the reproductive patterns of the wild S. prenanti population and contribute to the formulation of resource protection measures.
-
-
图 3 不同年份齐口裂腹鱼仔鱼的出膜比率与流量关系
A、B和C图中阴影分别表示2012—2014仔鱼出膜时间区段; D、E和F图中阴影分别表示2012—2014年仔鱼孵化出膜期重合时间段
Figure 3. Relationship between hatching ratio and discharge of the larvae and juveniles of Schizothorax prenanti in different years
The shadows in A, B, and C represent the hatching period of juvenile fish from 2012 to 2014; the shadows in D, E, and F represent the overlapping period of hatching period of juvenile fish from 2012 to 2014
图 5 齐口裂腹鱼产卵期分布及日流量上升过程识别
横坐标时间区段表示前1年10月1日至当前年份5月10日, 黑色圈表示识别的流量上升过程
Figure 5. Identification of the rising process of daily flow during spawning and hatching of Schizothorax prenanti
The abscissa time range represents the period from October 1 of the previous year to May 10 of the current year, the black circle represents the identified flow rising process
图 6 水文因子与产卵日期分布
A. 多年月平均气温与水温(1952—2009年); B. 2011—2014年水位; C. 多年月平均含沙量(1952—2009年); D. 多年月平均降水量(1952—2009年); 蓝色阴影表示齐口裂腹鱼产卵时间区段
Figure 6. Hydrological factors and the distribution of spawning date
A. Average monthly temperature and water temperature (1952—2009); B. Water level from 2011 to 2014; D. Precipitation and sediment concentration (1952—2009); The blue shadow represents the spawning period of the Schizothorax prenanti
表 1 野生齐口裂腹鱼仔稚鱼信息
Table 1 Information of wild Schizothorax prenanti larvae and juvenile
采样时间
Sampling time全长
Total length (mm)平均全长
Average total length (mm)体重
Body weight (g)平均体重
Average body weight (g)样本量
Number of sample2012.5.20—21 16.74—47.82 26.32±4.04 0.0111—0.8380 0.1038±0.0728 419 2013.5.28—30 21.60—46.80 34.58±4.64 0.0533—1.0199 0.3928±0.1730 498 2013.6.4—6 24.12—55.50 36.60±5.87 0.0674—1.9920 0.4463±0.2391 504 2014.4.23 22.04—63.34 43.74±6.64 0.0659—3.3716 0.9649±0.5365 540 2014.5.13—19 27.86—59.88 46.38±6.51 0.0867—1.3215 0.5533±0.2619 531 2014.6.14—17 33.00—56.88 45.44±4.96 0.2731—2.0163 0.9700±0.3104 185 共计Total 16.74—63.34 38.61±8.94 0.0111—3.3716 0.5449±0.4244 2677 表 2 不同年份齐口裂腹鱼产卵日期流量上升过程特征指标
Table 2 Characteristic indicators of flow rise during hatching of larvae and juveniles in different years
特征指标
Characteristic indexN T (d) ${ Q}^- $ (m3/s) ${\Delta Q}_r^- $ (m3/s) ${ \eta}^- $ 2012年 19 5.63 576.56 194.00 1.01 2013年 14 5.57 878.97 222.20 1.30 2014年 17 4.35 711.82 221.65 1.24 平均值Average 16.67 5.18 722.45 212.62 1.18 注: N. 产卵季节上升过程总数; T. 产卵季节每个流量上升过程的平均持续时间; ${ Q}^- $. 产卵季节流量上升过程中的日平均流量; ${\Delta Q}_r^- $. 产卵季节平均流量增量, 反映流量增量的绝对强度; ${ \eta}^- $. 产卵季节平均流量上升率Note: N. the total number of rising processes in the spawning season; T. the average duration in days of each flow rising process in the spawning season; ${ Q}^- $. daily average flow in the flow rising processes in the spawningseason as defined below; ${\Delta Q}_r^- $. average flow increment in a spawning season, which reflects the absolute intensity of the flow increment; ${ \eta}^- $. average flow rising ratio in a spawning season -
[1] 谈龙飞, 徐东坡, 祁洪芳, 等. 沙柳河青海湖裸鲤早期资源发生量及时空分布 [J]. 水生生物学报, 2022, 46(2): 265-272. Tan L F, Xu D P, Qi H F, et al. The spatial temporal distribution in life history stages of Gymnocypris przewalskii in Shaliu River [J]. Acta Hydrobiologica Sinica, 2022, 46(2): 265-272.
[2] Wang X, Deng Y, An R, et al. Evaluating the impact of power station regulation on the suitability of drifting spawning fish habitat based on the fuzzy evaluation method [J]. Science of the Total Environment, 2023(866): 161327.
[3] Massie J A, Santos R O, Rezek R J, et al. Primed and cued: long-term acoustic telemetry links interannual and seasonal variations in freshwater flows to the spawning migrations of Common Snook in the Florida Everglades [J]. Movement Ecology, 2022, 10(1): 48. doi: 10.1186/s40462-022-00350-5
[4] 周仰璟, 吴万荣. 大川河虎嘉鱼产卵场条件及其产卵习性的初步研究 [J]. 水生生物学报, 1987, 11(4): 375-376. Zhou Y J, Wu W R. A preliminary research for the conditions of spawning ground and the spawning habit of Hucho bleekeri Kimura in the Dachuan He, Sichuan [J]. Acta Hydrobiologica Sinica, 1987, 11(4): 375-376.
[5] 颜文斌, 朱挺兵, 吴兴兵, 等. 短须裂腹鱼产卵行为观察 [J]. 淡水渔业, 2017, 47(3): 9-15. Yan W B, Zhu T B, Wu X B, et al. An observation of spawning behavior of Schizothorax wangchiachii [J]. Freshwater Fisheries, 2017, 47(3): 9-15.
[6] Liu C, Zhao C, Xia J, et al. An instream ecological flow method for data-scarce regulated rivers [J]. Journal of Hydrology, 2011, 398(1/2): 17-25.
[7] Yu Y, Zhao R, Zhang J, et al. Identification and restoration of hydrological processes alteration during the fish spawning period [J]. Scientific Reports, 2023, 13(1): 11307. doi: 10.1038/s41598-023-38441-x
[8] Bartoň D, Brabec M, Sajdlová Z, et al. Hydropeaking causes spatial shifts in a reproducing rheophilic fish [J]. Science of the Total Environment, 2022, 806(2): 150649.
[9] 朱其广, 唐会元, 林晖, 等. 金沙江中下游细鳞裂腹鱼的年龄生长及种群动态 [J]. 水生态学杂志, 2021, 42(2): 56-63. Zhu Q G, Tang H Y, Lin H, et al. Age structure, growth characteristics and population dynamic of Schizothorax chongi in middle and lower Jinsha River [J]. Journal of Hydroecology, 2021, 42(2): 56-63.
[10] Li A, Fan J, Guo F, et al. Assessing the impact of river connectivity on fish biodiversity in the Yangtze River Basin using a multi-index evaluation framework [J]. Environmental Research., 2024(242): 117729.
[11] Virbickas T, Vezza P, Kriaučiūnienė J, et al. Impacts of low-head hydropower plants on cyprinid-dominated fish assemblages in Lithuanian rivers [J]. Scientific Reports, 2020, 10(1): 21687.
[12] 王登菊, 李政柯, 陈仁军, 等. 水电开发对鱼类资源的影响及其保护措施 [J]. 海河水利, 2014(4): 53-56. Wang D J, Li Z K, Chen R J, et al. Impacts of hydropower development on fish and protection measures [J]. Haihe Water Resources, 2014(4): 53-56.
[13] Haworth, Bestgen. Daily increment validation and effects of streamflow variability and water temperature on growth of age-0 Flathead chub [J]. North American Journal of Fisheries Management, 2016, 36(4): 744-753. doi: 10.1080/02755947.2016.1165772
[14] Jurevičius L, Punys P, Šadzevičius R, et al. Monitoring dewatering fish spawning sites in the reservoir of a large hydropower plant in a lowland country using unmanned aerial vehicles [J]. Sensors, 2022, 23(1): 303.
[15] Laplanche C, Elger A, Santoul F, et al. Modeling the fish community population dynamics and forecasting the eradication success of an exotic fish from an alpine stream [J]. Biological Conservation, 2018(223): 34-46.
[16] 丁瑞华. 四川鱼类志 [M]. 成都: 四川科学技术出版社, 1994: 370-371. Ding R H. The Fishes of Sichuan [M]. Chengdu: Sichuan Science and Technology Publishing House, 1994: 370-371.
[17] Liu M Y, Zhang L L, Li J, et al. Characteristics of the cross-sectional vorticity of the natural spawning grounds of Schizothorax prenanti and a vague-set similarity model for ecological restoration [J]. PLoS One, 2015, 10(8): e0136724.
[18] Liang J, Liu Y, Zhang X, et al. An observation of the loss of genetic variability in prenant’s schizothoracin, Schizothorax prenanti, inhabiting a plateau lake [J]. Biochemical Systematics and Ecology, 2011, 39(4/5/6): 361-370.
[19] Li G, Sun S, Liu H, et al. Schizothorax prenanti swimming behavior in response to different flow patterns in vertical slot fishways with different slot positions [J]. Science of the Total Environment, 2021(754): 142142.
[20] 刘小帅, 何智, 蔡跃平, 等. 齐口裂腹鱼耳石早期生长发育与日轮特征研究 [J]. 水生生物学报, 2016, 40(2): 268-276. Liu X S, He Z, Cai Y P, et al. Studies on the ontogeny, growth and daily increment of otoliths in larvae and juveniles of Schizothorax prenanti [J]. Acta Hydrobiologica Sinica, 2016, 40(2): 268-276.
[21] 严太明, 张松培, 何亮, 等. 松潘裸鲤仔稚鱼耳石生长轮日周期确证及其孵化期推算 [J]. 水生生物学报, 2019, 43(5): 1034-1040. Yan T M, Zhang S P, He L, et al. Characteristics of hatching time and daily increments confirmation of otolith in Gymnocypris potanini larvae and juvenile [J]. Acta Hydrobiologica Sinica, 2019, 43(5): 1034-1040.
[22] 孙儒泳. 普通生态学 [M]. 北京: 高等教育出版社, 1993: 49-51. Sun R Y. General Ecology [M]. Beijing: Higher Education Press, 1993: 49-51.
[23] Qiu J, Wei J H, Jiang H, et al. Ecohydrological evaluation for fish spawning based on fluctuation identification algorithm (FIA) [J]. Ecological Modelling, 2019(402): 35-44.
[24] 方静, 何敏, 杜仲君, 等. 齐口裂腹鱼卵巢发育的组织学研究 [J]. 四川农业大学学报, 2007, 25(1): 88-93. Fang J, He M, Du Z J, et al. Histological Studies on the the ovary development of Schizothorax prenanti [J]. Journal of Sichuan Agricultural University, 2007, 25(1): 88-93.
[25] 若木, 王鸿泰, 殷启云, 等. 齐口裂腹鱼人工繁殖的研究 [J]. 淡水渔业, 2001, 31(6): 3-5. Ruo M, Wang H T, Yin Q Y, et al. Study on artificial propagation of Schizothorax prenanti [J]. Freshwater Fisheries, 2001, 31(6): 3-5.
[26] 段鹏翔. 金沙江下游齐口裂腹鱼种群动态研究 [D]. 长沙: 湖南农业大学, 2015: 33-34. Duan P X. Study on the population dynamics of Schizothorax prenanti in the lower reaches of Jinsha River [D]. Changsha: Hunan Agricultural University, 2015: 33-34.
[27] Kim S, Kanno Y. Spawning periodicity and synchrony of bluehead chub (Nocomis leptocephalus) and a nest associate, yellowfin shiner (Notropis lutipinnis), across local streams [J]. Ecology of Freshwater Fish, 2020, 29(2): 299-310. doi: 10.1111/eff.12515
[28] Williams J, Hindell J S, Swearer S E, et al. Influence of freshwater flows on the distribution of eggs and larvae of black bream Acanthopagrus butcheri within a drought-affected estuary [J]. Journal of Fish Biology, 2012, 80(6): 2281-2301. doi: 10.1111/j.1095-8649.2012.03283.x
[29] Falke J A, Bestgen K R, Fausch K D. Streamflow reductions and habitat drying affect growth, survival, and recruitment of brassy minnow across a great plains riverscape [J]. Transactions of the American Fisheries Society, 2010, 139(5): 1566-1583. doi: 10.1577/T09-143.1
[30] Nicolas Medley C, Shirey P D. Review and reinterpretation of Rio Grande silvery minnow reproductive ecology using egg biology, life history, hydrology, and geomorphology information [J]. Ecohydrology, 2013, 6(3): 491-505. doi: 10.1002/eco.1373
[31] Friday M, Haxton T. Evaluating the effects of controlled flows on historical spawning site access, reproduction and recruitment of lake sturgeon Acipenser fulvescens [J]. Journal of Fish Biology, 2021, 99(6): 1940-1957. doi: 10.1111/jfb.14900
[32] Jenkins G P, Kent J A, Woodland R J, et al. Delayed timing of successful spawning of an estuarine dependent fish, black bream Acanthopagrus butcheri [J]. Journal of Fish Biology, 2018, 93(5): 931-941. doi: 10.1111/jfb.13806
[33] King A J, Gwinn, D C, Tonkin Z, et al. Using abiotic drivers of fish spawning to inform environmental flow management [J]. Journal of Applied Ecology, 2016, 53(1): 34-43. doi: 10.1111/1365-2664.12542
[34] Erickson K A, Sakaris P C, Conner H, et al. Hydrologic effects on growth and hatching success of age-0 channel catfish in the Tallapoosa River Basin: implications for management in regulated systems [J]. North American Journal of Fisheries Management, 2021, 41(S1): 118-132.
[35] 王文君, 谢山, 张晓敏, 等. 岷江下游产漂流性卵鱼类的繁殖活动与生态水文因子的关系 [J]. 水生态学杂志, 2012, 33(6): 29-34. Wang W J, Xie S, Zhang X M, et al. Relationship between eco-hydrological factors and spawning activities of fishes with pelagic eggs in the lower reaches of the Minjiang River [J]. Journal of Hydroecology, 2012, 33(6): 29-34.
[36] Durham B W, Wilde G R. Asynchronous and synchronous spawning by smalleye shiner Notropis buccula from the Brazos River, texas [J]. Ecology of Freshwater Fish, 2008, 17(4): 528-541. doi: 10.1111/j.1600-0633.2008.00303.x
[37] Durham B, Wilde G. Effects of streamflow and intermittency on the reproductive success of two broadcast-spawning cyprinid fishes [J]. Copeia, 2009(1): 21-28.
[38] Durham B W, Wilde G R. Understanding complex reproductive ecology in fishes: the importance of individual and population-scale information [J]. Aquatic Ecology, 2014, 48(1): 91-106. doi: 10.1007/s10452-014-9469-0
[39] Cockayne B J, Sternberg D, Schmarr D W, et al. Lake Eyre golden perch (Macquaria sp.) spawning and recruitment is enhanced by flow events in the hydrologically variable rivers of Lake Eyre Basin, Australia [J]. Marine and Freshwater Research, 2015, 66(9): 822-830. doi: 10.1071/MF14242
[40] Deng Q, Zhang X, Zhao Z, et al. Conservation and restoration of riverine spawning habitats require fine-scale functional connectivity and functional heterogeneity [J]. Science of the Total Environment, 2023, 857(3): 159571.
[41] Warren M, Dunbar M J, Smith C. River flow as a determinant of salmonid distribution and abundance: a review [J]. Environmental Biology of Fishes, 2015, 98(6): 1695-1717. doi: 10.1007/s10641-015-0376-6